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Abstract— In this paper we propose a new method of test 

patterns compression based on a design of a dedicated 

SAT-based ATPG (Automatic Test Pattern Generator). This 

compression method is targeted to systems on chip (SoCs) 

provided with the P1500 test standard. The RESPIN architecture 

can be used for test patterns decompression. These are 

decompressed in the scan chain during the test, no additional 

hardware is required. The main idea is based on finding the best 

overlap of test patterns. During the test generation, we are trying 

to efficiently generate patterns as candidates for an overlap, 

unlike other methods, which are based on efficient overlapping of 

pre-generated test patterns. The proposed algorithm takes 

advantage of an implicit test representation as a SAT problem 

instance. We show results of test patterns compression obtained 

for standard ISCAS’85 and ‘89 benchmark circuits. The results 

are compared with competitive test compression methods. 
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I.  INTRODUCTION  

Testing of digital circuits is quite a difficult task, for a huge 
amount test data needed to be delivered to the circuit under test 
(CUT). With the growing complexity of designs, scan-based 
test techniques are becoming a standard. The test patterns are 
shifted into the chain of scan registers (scan chain) through a 
serial interface and the circuit under test response is shifted out 
to the response compactor.  

Generally, we can use a deterministic or pseudorandom test 
patterns set for testing. Both have their advantages and 
drawbacks. Pseudorandom testing may be easily realized 
on the chip by a linear-feedback shift register (LFSR) [1, 2] or 
by other automata [3]. Test patterns generated in such a way 
cover most of easily-detectable faults, but the patterns can be 
quite inefficient in covering random pattern resistant faults. 
Also a great number of test patterns are needed to generate. It 
means that the time consumption may grow up significantly.  

On the other hand, we can generate deterministic test 
patterns for all detectable faults. These patterns, having a 
considerable data volume, need to be sent into scan chains. 
This data transfer is realized by a TAM (Test Access 
Mechanism), which creates an interface between ATE 
(Automatic Test Equipment) and the on-chip test mechanism.  

Design requirements force us to make the TAM as narrow 
as possible, but sending test patterns through a narrow TAM 
may cause a considerable growth of the testing time. That is 

why the compression of the test patterns is needed to decrease 
the bandwidth between ATE and TAM.  

There are several methods used for a test patterns 
compression. Many of these methods are based on using 
of some encoding, such as statistical codes [2, 4, 5, 6, 7], 
run-length codes [4, 5, 6, 8, 9], and Golomb codes [10], others 
are based on XOR networks [11, 12], hybrid patterns [13], 
EDT (Embedded Deterministic Test) [14] and reuse of scan 
chains [15]. Another approaches are based on test patterns 
compaction [16, 17] and overlapping [18, 19, 20, 21].  

In this paper we introduce a novel test patterns compression 
algorithm SAT-Compress based on a design of a dedicated 
SAT-ATPG [22, 23]. The compression algorithm exploits an 
overlapping of test patterns. Unlike other compression methods 
based on this principle [18, 19, 20, 21], we do not use test 
patterns pre-generated by an ATPG; we generate them on the 
fly to reach the locally best overlap and maximize the 
compression. Test patterns compressed this way can be easily 
decompressed by the RESPIN decompression architecture [24], 
which is intended to test system on chip (SoC) cores by reusing 
scan chains. 

The paper is organized as follows: first a brief summary 
of the previous work on test patterns compression is presented 
in Section II. Then the representation of the test vector set as an 
instance of the SAT problem is considered and basic principles 
of SAT-based ATPGs [22] are described (see Section III). The 
RESPIN decompression architecture is shown in Section IV.A 
new test patterns compression algorithm based on dedicated 
SAT-ATPG is introduced in Section V. and finally the 
experimental results and comparison with other compression 
methods are shown (see Section VI). 

II. PREVIOUS WORK 

The proposed test patterns compression method is basically 
based on finding the best overlap of test patterns pre-generated 
by an ATPG (Fig. 1). The test patterns are serially shifted into 
the scan chain. This idea was described in [21] for the first 
time. This algorithm generally tries to find contiguous and 
consecutive test patterns having the maximum overlap. 
Deterministic test patterns are generated by an ATPG and 
compacted. Patterns in the scan chain are checked whether they 
match with one or more test patterns which were not employed 
in the sequence yet. In [20], the pattern overlapping problem is 



converted into a Traveling Salesman Problem (TSP), for which 
different heuristics have been proposed. 
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Figure 1.  Test patterns overlapping 

The COMPAS [18] test patterns compression tool is based 
on a similar approach, but it does not use compacted test 
patterns. Test patterns that are to be compressed are pre-
generated by an ATPG as well. However, these test patterns 
should contain as many don’t care bits (DC bits, means not 
specified) as possible. For this purpose, one test pattern for 
each fault from the fault list is generated Greater number 
of don’t care bits grants the algorithm much more possibilities 
to combine test patterns and reach better compression. Other 
improvements are the simulation after every test pattern 
application and searching for best successors of a given starting 
pattern (usually an all-zero pattern). These improvements make 
COMPAS very efficient in comparison with other compression 
tools, see. Table II. The only weakness of COMPAS is the 
need for don’t care bits. The number of DCs and the fact that 
the algorithm fully relies on a pre-generated test set can also 
affect the test compression ratio. When the test patterns are 
highly specified (they contain only few don’t care’s), it is much 
harder for COMPAS to find a good overlap of the test patterns 
and the efficiency of the test patterns encoding decreases which 
cause greater memory consumption [25].  

Another compression technique based on the RESPIN 
architecture is presented in [15]. Suitable test patterns are 
produced by a standard ATPG tool performing dynamic 
compaction, while constraints to circuit inputs are applied. 
In contrast to this, we apply these constraints to the SAT 
instances, in a SAT-based ATPG. 

The state-of-the-art compression/decompression 
architecture used in industry is the Embedded Deterministic 
Test (EDT) [14]. Here a high test compression is achieved 
by employing a dedicated but generic test decompressor. The 
compressed test patterns serve as seeds for a pseudo-random 
pattern generator (“ring register”), where they are 
decompressed and further distributed to scan-chains using a 
XOR-network structure (“phase-shifter”). The compressed test 
patterns are obtained as a solution of a set of linear equations. 
Similarly to the previously mentioned test compression 
methods, the test patterns to be compressed need to be pre-
computed by an ATPG. Again, high amount of test don’t cares 
is essential for achieving a good compression ratio [14]. 

III. SAT-BASED ATPG AND ITS PRINCIPLES  

A. Circuit to SAT Conversion 

Conversion of a digital circuit to a CNF (Conjunctive 
Normal Form) is an essential task for our SAT-based 
compression algorithm. The SAT instance in CNF represents 
in our case the whole set of test patterns detecting a given fault. 
Each SAT instance is described as a Boolean formula in CNF. 

A CNF Φ with m Boolean variables is a conjunction of n 
clauses, where each clause is a disjunction of literals. Each 

literal is a Boolean variable or its complement. The CNF Φ is 
satisfiable, if there exists some assignment of variables, for 
which all clauses are satisfied.  

A Boolean variable is assigned to each signal in the circuit 

C.  For each gate, the CNF Φg is derived from its characteristic 

function. The CNF Φc representing the circuit’s function is 
constructed as a conjunction of the CNFs of all gates 

g1,…,gn∈C: 

∏
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To generate the test for a fault F, the characteristic function 

Φf of the faulty circuit is generated. Only a necessary part 

of the circuit has to be included in the CNF Φf, for reasons 
of efficiency; circuit parts not propagating the fault may be 
omitted. Finally the SAT instance for a fault F is obtained as a 

product of ΦC, Φf and a characteristic function of a XOR of the 
fault-free and faulty circuit outputs: 

XORFC

F

test Φ⋅Φ⋅Φ=Φ  

The 
F

testΦ solutions represents the whole set of test patterns 

detecting the fault F. If 
F

testΦ  is unsatisfiable, the fault F is 

undetectable. More information can be found in [22, 23]. 

Example 1. A circuit having three gates is shown in Fig. 2. 
To detect a given fault, two copies of the circuit are created: the 
fault-free circuit and the circuit with a particular fault. In order 
to detect the fault, output values of these two circuits must 
differ. This is indicated by XORing their outputs (X and X’). 
Characteristic functions are derived from logic functions of the 
gates. For example, let us consider the AND gate D=A^B. For 
any two functions P and Q, P=Q is equivalent 

to (P⇒Q)∧(Q⇒P). In this way the AND gate characteristic 

function is constructed as (D⇒ (A∧B))∧((A∧B) ⇒D). Next we 
transform this expression to CNF, obtaining 

(¬D∨A)∧(¬D∨B)∧(D∨¬A∨¬B). 
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Figure 2.  Faulty and fault-free circuit [23] 

All gates in Fig. 2 are processed in this way, to obtain the 
final CNF for detecting the stuck-at-1 fault on D: 

(¬D∨A)∧(¬D∨B)∧(D∨¬A∨¬B)∧(C∨E)∧(¬C∨¬E)∧(X∨ D) 

∧(X∨¬E)∧(¬X∨D∨E)∧(D’)∧(X’∨¬D’)∧(X’∨¬E) 

∧(¬X’∨D’∨E)∧(C∨E)∧(¬C∨¬E)∧(¬X∨X’∨BD) 

∧(X∨¬X’∨BD)∧(X∨X’∨¬BD) ∧(¬X∨¬X’∨¬BD) (1) 

The assignment of input variables corresponds to the test 
pattern detecting this fault. In particular, the example CNF (1) 
is satisfied by assignment A=1, B=0, C=1, D=0, D’=1, E=0, 
X=0, X’=1, BD=1. Therefore, the stuck-at-1 at D fault is 
detected by the pattern (A, B, C) = (101). 

B. SAT-based ATPG  

A SAT-based ATPG algorithm [23] can be described 
in four steps: 

1) Generate a fault list for a given circuit. 

2) Pick one fault from the fault list and generate its CNF 
(CNF implicitly represents the whole set of the test patterns 
detecting a given fault). 

3) Solve the CNF of the fault and obtain its particular 
solution which represents one test pattern detecting the 
respective fault. If the CNF is unsatisfiable, the fault is 
removed from the fault list as an undetectable fault. 

4) Simulate the test pattern obtained in step 3 and 
remove all detected faults from the fault list. Repeat steps 2-4 
until the fault list is empty.  

For details on the SAT-based ATPGs, see [22, 23]. 

IV. TEST DECOMPRESSION 

The decompression of compressed test patterns is 
conducted by the RESPIN (REusing Scan chains for test 
Pattern decompression) [15, 24] architecture. This architecture 
is intended for testing systems on chip (SoCs). Basically, scan 
chains of different cores are reused for updating of the content 
of the tested core scan chain (SC). RESPIN is based on the 
IEEE 1500 proposed standard for testing of embedded cores 
[26]. Each core has a serial test access, which is a mandatory 
element of IEEE 1500 and a parallel access. A core test 
wrapper, which is the interface between the embedded core 
(core terminals) and its system on chip environment (rest of the 

integrated circuit and TAM), is defined. By definition, the core 
test wrapper is implemented on-chip and should have three 
mandatory modes: 

1) Normal operation – the core is connected to its system 
IC (integrated circuit) environment and the wrapper is 
transparent. 

2) Core-internal test – the TAM is connected to the core 
such that test patterns can be applied at the cores inputs and 
responses are observed at cores outputs. 

3) Core-external test - the TAM is connected to the 
interconnect wiring and logic such that a test patterns can be 
applied at cores outputs and responses are observed at the cores 
inputs.  

An example of RESPIN architecture for one SC is shown 
in Fig. 3.  

This architecture consists of ETC (Embedded Test Core) 
and CUT. During the test, both are isolated from the rest of the 
SoC by a test wrapper. The decompression of test patterns is 
performed in the ETC, which is supposed to be a reused scan 
chain of another core (ETC SC). This ETC SC is extended only 
by a single multiplexer (controlled by signal test - tc) and a 
feedback wire. Reusing of scan chains grants a minimal 
decompression hardware overhead.  

The CUT scan chain is the scan chain of the tested core. It 
is filled by the decompressed test patterns from the ETC SC 
and, after application of the functional clock, the responses are 
shifted out to the signature analyzer (SA). SA compares 
responses with the expected signature and the circuit is marked 
as fault-free or faulty. 

The control signal tc (test) of the ETC SC is also connected 
to the scan enable signal of the CUT SC.  This control signal 
selects between the serial mode (tc = 0) and the circular mode 
(tc = 1) of the ETC SC and between capture mode (tc = 0) and 
scan mode (tc = 1) of the CUT SC.  

 Table I. shows that while the CUT SC captures the system 
response (tc = 0, capture mode) and shift it out to the signature 
analyzer (tc = 1, scan mode). The ETC SC is in serial mode 
(tc = 0) and loads one new bit from the encoded test data 
(compressed test bitstream). Thus only one bit per test pattern 
is scanned into the ETC SC from the ATE. Whenever the CUT 
SC scans in test data (tc = 1, scan mode) from the ETC SC, the 
ETC SC is in circular mode and the feedback is used to shift 
valid part of the test pattern back to the ETC SC and reuse it 
in new test pattern. For using cores as ETC SC both their shift 
and capture clocks must be compatible with the CUT SC 
clocks and ETC SC must have at least as many scan cells as the 
CUT SC. 

More specific details of the RESPIN architecture can be 
found in [15, 24].    

The RESPIN architecture is suitable for decompression 
of the test patterns compressed by overlapping, because while 
the ETC SC preserves the useful bits of the test patterns 
by looping through the feedback, the CUT SC obtains 
responses on previous test pattern and shifts them to the 



signature analyzer (SA) to be evaluated. At the same time a 
new test pattern is shifted from ETC SC into the CUT SC. 
Moreover, the hardware overhead is minimal since the 
decompression is made by reusing of the SCs of non-tested 
cores and no additional decompression hardware is required.  

TABLE I.  OPERATION MODES OF ETC SC AND CUT SC [15, 24] 

tc = scan enable 0 1 

CUT capture mode scan mode 

ETC serial mode circular mode 

 

 
Figure 3.  RESPIN testing architecture [15, 24] 

V. THE SAT-COMPRESS ALGORITHM PRINCIPLES 

A. Basic Idea 

In our new approach we try to eliminate weaknesses 
of COMPAS. The main idea is not to overlap test patterns 
pre-generated by an ATPG, but to generate most suitable test 
patterns on the fly, to reach the (locally) best overlap. The basic 
question is how to find these test patterns. Each fault has its set 
of test patterns by which it is detected. If we were able to pick 
the right pattern for each fault in the right order, we could have 
reached the best possible compression of the test patterns.  

Because explicit computation and storing of all these test 
patterns is inefficient (and mostly even infeasible), we were 
forced to find another, more efficient way of test patterns set 
representation.  

We have researched possibilities of implicit representations 
of test patterns. We have found that we can take advantage 
of principles of SAT-based ATPGs and efficiently represent all 
test patterns for one fault implicitly, by one SAT problem 
instance in a CNF. The CNF test set representation is much less 
memory consuming than a standard tabular test set 
representation. Our proposed test set compression algorithm 
sequentially generates the compressed test bitstream. A SAT 
instance in CNF is generated for each fault. This SAT instance 
contains both variables representing the circuit’s primary inputs 
and variables representing internal signals. The test pattern is 
determined by values of the primary input variables in the SAT 

solution; values of internal variables are of no significance. The 
variables not present in the generated CNF or in the SAT 
solution are set as don’t cares (DCs). A SAT instance is solved 
with constraints given by the test pattern generated in the 
preceding algorithm step. A satisfiable solution of a SAT 
instance forms the next suitable test pattern for an overlap. 
Higher time consumption can be expected, because this method 
requires a repeated SAT solving. Our aim, however, is to find 
the best overlap and maximize the test patterns compression, as 
testing time, not test generation time, forms currently a 
bottleneck. 

B. The SAT-Compress Algorithm Description 

We try to find the best overlap by gradually building the 
compressed test patterns bitstream for the scan chain. The basic 
algorithm is shown in Fig. 5. 

1) First, we generate a complete fault list (FL). 

2) A zero state (all-zero test pattern) or the test pattern 
covering any fault from the fault list is used as the initial test 
pattern.  

3) The pattern is simulated and all detected faults are 
deleted from the fault list. The leftmost bit of the pattern goes 
to the resulting bitstream (Fig. 4). 

4) The pattern is shifted left and a DC bit is put to its 
rightmost position. This is the mask for the next pattern (Fig. 4, 
next pattern mask). The mask constraints the values of primary 
inputs (PI) in subsequent SAT instances.  Only care bits 
generate the PI constraints. 

5) To generate the next test pattern having the highest 
overlap with the previously generated one, a CNF for each 
fault in the fault list is generated, while the primary input 
variables are set according the mask. The orders of faults are of 
no significance. If a CNF for a fault is satisfiable for a given 
assignment of primary variables, a new test pattern is obtained. 
If none of these CNFs is satisfiable, the pattern is shifted one 
more bit left, which generates a new mask of SAT constraints. 

6) These operations (3-6) are performed while the fault 
list is not empty or until all care bits from the mask of primary 
inputs setting are shifted out while there is still no satisfiable 
CNF (rest of the fault in FL is undetectable). 

1 0 1 1- - - First test pattern1

10 1- - -- -

New bitstream bit

Insert DC bit

Next pattern mask

Walk through fault list, generate its CNF, 
set primary inputs mask, get satisfiable 
instance and its solution pattern

10 1 --0 1 New test pattern
 

Figure 4.  Next pattern generation example 

 

 



1. Generate FL  (FL = fault list) 
2. TP = 0  (TP = test pattern = all-zero seed) 

 mask = DC  (DC = don’t care) 
3. FL = FL - detected_by_simulation(TP) 

 compressed_bitstream += TP[0] 
4. mask = TP[1 .. n-1] + DC 
5. do { 

for each fault in FL { 
Create CNF 
Apply mask to PIs in CNF    
if CNF is SAT { 

break the for loop  
} 

} 
TP = CNF_Solution 
FL = FL - detected_by_simulation(TP) 
compressed_bitstream += TP[0] 
mask = TP[1 .. n-1] + DC 

  } 
6. while (FL!=0 or (mask==DC and All_CNF==UNSAT)) 

Figure 5.  The SAT-Compress algorithm 

VI. EXPERIMENTAL RESULTS 

The experimental results and a comparison of our algorithm 
with similar compression methods are presented in the 
following two subsections. Unfortunately, comparison with 
[15] could not be performed, since only results for 20 parallel 
scan-chains are presented in [15]. 

The measurement was performed on Intel Xenon CPU - 
2GHz with 4GB RAM.  

A. Comparison of Different Compression Techniques 

A comparison of SAT-Compress with other state-of-the-art 
test compression techniques is presented in Table II. The first 
column “Bench.” represents the benchmark name. The 
compressed test lengths in bits, for seven different competitive 
methods, are shown then. A comparison of only seven biggest 
ISCAS’89 circuits is shown, since no more relevant data was 
available to us. The last column shows the compressed test data 
size for our proposed compression tool SAT-Compress. An 
all-zero initial test pattern for both COMPAS and 
SAT-Compress is used, thus the results are not influenced 
by different initial states.   

It can be concluded from Table II., that our proposed 
algorithm can reach better compression of test patterns than 
most of the presented techniques; we are able to obtain results 
such as the state-of-the-art compression methods EDT or 
COMPAS and in some cases even better. The time 
consumptions of SAT-Compress are shown in Table III. The 
comparison between presented tools was not possible 
to measure because of the unavailability of source codes.  

B. Comparison COMPAS and SAT-Compress Algorithms 

In this Subsection we will present a more detailed 
comparison of SAT-Compress and COMPAS, as a 
representative of test compression algorithms based on 
overlapping of patterns. 

Results for ISCAS’85 and ’89 benchmarks [27, 28] are 
presented in Table III. 

TABLE II.  COMPAS AND SAT-COMPRESS TEST LENGTHS  

COMPAS SAT-Compress 
Bench. 

bits avg. var. bits avg. var. time [s] 

c17 9 9 1.5 11 12.3 1 0 

c432 195 218 30.6 189 198.2 21.8 3 

c499 260 303.7 47.6 187 198.2 8.7 6 

c880 540 412.7 44.3 410 561.5 60.99 10 

c1355 1040 1126 68.6 349 - - 74 

c1908 1009 989.8 49.6 624 - - 229 

c2670 6553 5940 269.7 2223 - - 2305 

c3540 747 743.7 32.9 1622 - - 3569 

c5315 1255 1159.5 64.8 881 - - 156 

c6288 82 95.2 36.6 97 - - 165 

c7552 6005 6430.7 345.2 4840 - - 7406 

s27 16 13.2 2.3 23 21.5 2.1 0 

s208 130 124.1 9.1 202 209 15.9 0 

s298 101 79.6 5.5 137 139.7 8.2 0 

s344 85 80.9 6.7 116 114.7 10.2 0 

s349 85 80.1 6.8 116 114.4 10 0 

s382 123 111.3 6.6 191 179.2 12.8 0 

s386 264 255 10.8 304 319 12.5 4 

s400 121 109 7.2 173 170.9 9.7 0 

s420 352 315.9 29.1 624 574.8 46.4 11 

s444 116 107 7.5 160 150.6 10.5 0 

s510 160 156 8.9 210 211.8 10.3 2 

s526 344 349.8 18.4 521 482.8 22.7 4 

s526n 344 350.2 18.1 493 - - 3 

s641 397 393.3 24.2 710 670.7 28.4 15 

s713 428 403.8 26.1 642 672 38.7 32 

s820 460 504.6 21.9 697 697.7 26.3 28 

s832 494 498.8 19.5 729 690.7 24.1 36 

s838 920 762.3 79.6 1800 1638.3 103.5 136 

s953 723 700.4 24.7 825 - - 51 

s1196 740 738.5 23.5 1211 1202.2 41.9 173 

s1238 741 769.2 24.3 1300 1268.7 41.7 365 

s1423 596 621.5 38.6 794 827.6 43.9 72 

s1488 488 461.5 15.1 546 - - 20 

s1494 431 451.3 16.6 573 - - 25 

s5378 2148 1995.6 73.8 2407 - - 631 

s9234 11594 11309.6 310.7 9928 - - 68119 

s13207 4163 - - 10457 - - 67751 

s15850 8234 - - 12987 - - 114932 

s38417 24198 24926.3 1717.7 19291 - - 91713 

s38584 7291 - - 14271 - - 122143 

The first column “Bench.” presents the name of the 
benchmark. The compressed test lengths generated 
by COMPAS and SAT-Compress, both starting with an all-
zero test pattern, are shown in the column “bits”. Then we have 
tried to repeatedly run the algorithms starting with different 



initial test patterns. The average compressed test patterns 
lengths are shown in the columns “avg.” and average 
variations of compressed test patterns lengths are shown in the 
columns “var.”. The time consumptions of test patterns 
compression for SAT-Compress algorithm in seconds are 
shown in the “time” column. The results of this measurement 
show that the bitstream length for both tools significantly 
depends on the initial test pattern and starting with an all-zero 
seed (which is the default setting for COMPAS) can produce 
outstandingly poor results, out of the range of the variation 
(see, e.g., s298 for COMPAS). In some cases, our tool reaches 
much better compression than COMPAS, but it may also fail. 
For an unknown reason the efficiency of proposed algorithm is 
much better for ISCAS’85 benchmarks than for ISCAS’89 
ones. As can be seen from Table III., the time consumption 
may be considerable for larger circuits, but we suppose, that 
scalability of proposed algorithm may grow up by using of 
more scan chains and division of the circuit into smaller parts.  

Figs. 6, 7, and 8 show examples of distributions 
of bitstream lengths using different starting patterns for 
COMPAS and SAT-Compress. In both cases we always start 
with a test pattern covering one particular fault. The number 
of restarts is equal to the number of faults. 
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Figure 6.  Frequency of bitstream length distribution (c499) 
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Figure 7.  Frequency of bitstream length distribution (c432) 
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Figure 8.  Frequency of bitstream length distribution (s400) 

As can be seen, the compressed bitstream length seems 
to have Gaussian-like distribution and the only difference 
between SAT-Compress and COMPAS characteristics is their 
displacement. This Gaussian distribution of the compressed 
bitstream lengths for different starting seeds is a common 
characteristic of these two tools for all tested benchmarks. It 
can be seen that the selection of the initial test pattern has a 
crucial impact on the resulting compressed test length, for both 
algorithms. The way of its proper choice will be a topic of our 
further investigation. 

VII. CONCLUSION 

New test patterns compression algorithm (SAT-Compress) 
based on a modification of SAT-based ATPG is presented. 
This algorithm utilizes a CNF (Conjunctive Normal Form) 
implicit representation of test patterns and tries to compress the 
test patterns by overlapping. In contrast to competitive 
state-of-the-art test compression techniques, the proposed 
algorithm does not rely on a pre-generated test set; most 
suitable test patterns are being generated on the fly. 

The test decompression is based on a generic RESPIN 
architecture, where the patterns are being decompressed in the 
tested circuit scan-chain. Thus, the circuit needs not be 
modified to apply the test.  

The proposed method was compared with seven 
state-of-the-art test compression algorithms and a detailed 
comparison with COMPAS has been made. The comparison 
results seem to be promising – SAT-Compress achieved the 
best test compression ratio for many benchmark circuits. 
Moreover, there are yet many ways of possible improvements. 
These will be a topic of our further research. Possibilities 
of application of the method to multiple scan-chain designs 
will be also studied in the future. 

ACKNOWLEDGMENT 

This research has been supported by MSMT under research 
program MSM6840770014 and by the grant of the Czech 
Grant Agency GA102/09/1668. 

 

 



 REFERENCES 

 
[1] B. Koenemann, “LFSR-Coded Test Patterns for Scan Designs,” in Proc. 

of European Test Conf., IEEE CS Press, 1991, pp. 581-590. 

[2] C.V. Krishna, N.A. Touba, “Reducing Test Data Volume Using LFSR 
Reseeding with Seed Compression,” in Proc. of the International Test 
Conference, 2002, pp. 321-330. 

[3] F. Fummi, D. Sciuto, “Implicit test pattern generation constrained to 
cellular automata embedding,” 15th IEEE VLSI Test Symposium 
(VTS'97), 1997, pp.54-60. 

[4] P. T. Gonciari, B. M. Al-Hashimi, N. Nicolici, “Variable length input 
Huffman coding for system-on-a-chip test,” IEEE Trans. Computer- 
Aided Design, vol. 22, 2003, pp. 783–796. 

[5] H. Ichihara, A. Ogawa, T. Inoue, and A. Tamura, “Dynamic test 
compression using statistical coding,” in Proc. ATS, 2001, pp. 143–148. 

[6] H. Ichihara, K. Kinoshita, I. Pomeranz, and S. Reddy, “Test 
transformation to improve compaction by statistical encoding,” in Proc. 
Int. Conf. VLSI Design, 2000, pp. 294–299. 

[7] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan vector 
compression/decompression using statistical coding,” in Proc. VLSI Test 
Symp., 1999, pp. 114–120. 

[8] A. Chandra, K. Chakrabarty, “Frequency-Directed Run-Length (FDR) 
Codes with Application to System-on-a-Chip Test Data compression,” in 
Proc. of VLSI Test Symposium, 2001, pp. 42–47.  

[9] A. Jas and N. A. Touba, “Test vector decompression via cyclical scan 
chains and its application to testing core-based designs,” in Proc. ITC, 
1998, pp. 458–464. 

[10] A. Chandra, K. Chakrabarty, "Test Data Compression for System-on-a-
Chip Using Golomb Codes," 18th IEEE VLSI Test Symposium 
(VTS'00), 2000, pp.113-121. 

[11] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time 
reduction through scan chain concealment,” in Proc. Design Automation 
Conf., 2001, p. 151–155. 

[12] S. M. Reddy, K. Miyase, S. Kalihara, and I. Pomeranz, “On test data 
volume reduction for multiple scan chain design,” in Proc. VLSI Test 
Symp., 2002, pp. 103–108. 

[13] D. Das and N. A. Touba, “Reducing test data volume using external/ 
LBIST hybrid test patterns,” in Proc. ITC, 2000, pp. 115–122. 

[14] Rajski, J., “Embedded Deterministic Test” IEEE Trans. on CAD, vol. 
23, No. 5, 2004, pp. 776-792. 

[15] R. Dorsch and H.-J. Wunderlich, “Tailoring ATPG for embedded 
testing,” in Proc. ITC, 2001, pp. 530–537. 

[16] Seiji Kajihara, Kewal K. Saluja, "On Test Pattern Compaction Using 
Random Pattern Fault Simulation," vlsid, Eleventh International 
Conference on VLSI Design: VLSI for Signal Processing, 1998, pp.464-
470. 

[17] I. Pomeranz,  S. M. Reddy, ”A New Approach to Test Generation and 
Test Compaction for Scan Circuits,“ Proc. of the conference on Design, 
Automation and Test in Europe (DATE’03), 2003, pp. 11000-11006.  

[18] O. Novák, J. Zahrádka, “COMPAS – Compressed Test Pattern 
Sequencer for Scan Based Circuits,” in Proc. of EDCC, 2005, pp. 403-
414. 

[19] C. Dufaza, H. Viallon, C. Chevalier, "BIST hardware generator for 
mixed test scheme," edtc, European Design and Test Conference 
(ED&TC '95), 1995, pp. 424-431. 

[20] C. Su, K. Hwang, “A Serial Scan Test Vector Compression 
Methodology,” in Proc. ITC, 1993, pp. 981-988. 

[21] Daehn, W., Mucha, J,: Hardware Test Pattern Generation for Built-in 
Testing. Proc. of IEEE Test Conference, 1981, pp. 110-113. 

[22] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability,”  
IEEE Transactions on Computer-Aided Design, 1992, pp. 4-15. 

[23] Drechsler, R., Eggersglüß, S., Fey, G., Tille, D., “Test Pattern 
Generation using Boolean Proof Engines,” Publisher Springer 
Netherlands, ISBN 978-90-481-2360-5, 2009, XII, p. 192. 

[24] Schafer L., Dorsch R., Wunderlich H.J., “RESPIN++- Deterministic 
Embedded Test,“ Proc. of the European Test Workshop, 2002, pp.37-42. 

[25] Jeníček J., Novák O.:A Test Pattern Compression Based on Pattern 
Overlapping, Proc. of DDECS 2007, Apr. 2007, Krakow, Poland, pp.29 
- 34, ISBSN: 1-4244-1161-0. 

[26] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel, 
“Towards a Standard for Embedded Core Test: An Example,” in 
Proceedings of the IEEE International Test Conference (ITC), pp. 616–
627, IEEE, 1999. 

[27] F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational  
Benchmark Circuits and a Target Translator in Fortan, Proc. of  
International Symposium on Circuits and Systems, pp. 663-698, 1985. 

[28] F. Brglez, D. Bryan and K. Kozminski. Combinational Profiles of  
Sequential Benchmark Circuits, Proc. of International Symposium of  
Circuits and Systems, pp. 1929-1934, 1989. 

[29] Janak H. Patel, Ilker Hamzaoglu, "Test Set Compaction Algorithms for 
Combinational Circuits," iccad, International Conference on Computer-
Aided Design (ICCAD '98), 1998, pp.283-289. 

[30] Irion, A.; Kiefer, G.; Vranken, H.; Wunderlich, H.-J.,  
“CircuitPartitioning for Efficient Logic BIST Synthesis,” Proc. DATE, 
2001, pp.88-93. 

[31] Hamzaoglu, I., and J.H. Patel, “Reducing Test Application Time for Full 
Scan Embedded Cores,” Proc. Of Int. Symp. on Fault Tolerant 
Computing, 1999, pp. 260-267. 

[32] A. Chandra and K. Chakrabarty, “Test Data Compression and Test 
Resource Partitioning for System-on-a-Chip Using Frequency-Directed 
Run-Length (FDR) Codes,” IEEE Transactions on Computers, vol. 52, 
May 2003, to appear. 

 

 

TABLE II.  COMPARISON OF THE TEST DATA AMOUNT FOR DIFFERENT COMPRESSION TECHNIQUES 

Bench. 
MinTest 

[29] 

Stat. Coding 

[7] 

LFSR Reseeding 

[2] 

Illinois Scan 

[30, 31] 
FDR Codes 

[8, 32] 

EDT 

[14] 
RESPIN++ 

[24] 
COMPAS 

[18] SAT-Compress 

s5378 20,758 15,417 6,180 14,572 12,346 - 17,332 2,148 2,407 

s9234 25,935 19,912 12,112 27,111 22,152 - 17,198 11,594 9,928 

s13207 163,100 52,741 11,285 109,772 30,880 10,585 26,004 4,163 10,457 

s15850 58,656 49,163 12,438 32,758 26,000 9,805 32,226 8,234 12,987 

s35932 21,156 - - - 22,744 - - 1,860 5,096 

s38417 113,152 172,216 34,767 96,269 93,466 31,458 89,132 24,198 19,291 

s38584 161,040 128,046 29,397 96,056 77,812 18,568 63,232 7,291 14,271 

 


