
Test Patterns Compression Technique Based on a

Dedicated SAT-based ATPG

Jiří Balcárek

Dept. of Computer Science & Engineering

Czech Technical University in Prague, FEL

Prague, Czech Republic

balcaji2@fel.cvut.cz

Petr Fišer, Jan Schmidt

Faculty of Information Technology

Czech Technical University in Prague

Prague, Czech Republic
fiserp@fit.cvut.cz, schmidt@fit.cvut.cz

Abstract— In this paper we propose a new method of test

patterns compression based on a design of a dedicated

SAT-based ATPG (Automatic Test Pattern Generator). This

compression method is targeted to systems on chip (SoCs)

provided with the P1500 test standard. The RESPIN architecture

can be used for test patterns decompression. These are

decompressed in the scan chain during the test, no additional

hardware is required. The main idea is based on finding the best

overlap of test patterns. During the test generation, we are trying

to efficiently generate patterns as candidates for an overlap,

unlike other methods, which are based on efficient overlapping of

pre-generated test patterns. The proposed algorithm takes

advantage of an implicit test representation as a SAT problem

instance. We show results of test patterns compression obtained

for standard ISCAS’85 and ‘89 benchmark circuits. The results

are compared with competitive test compression methods.

Keywords: Test patterns compression, testing, ATPG, SAT

I. INTRODUCTION

Testing of digital circuits is quite a difficult task, for a huge
amount test data needed to be delivered to the circuit under test
(CUT). With the growing complexity of designs, scan-based
test techniques are becoming a standard. The test patterns are
shifted into the chain of scan registers (scan chain) through a
serial interface and the circuit under test response is shifted out
to the response compactor.

Generally, we can use a deterministic or pseudorandom test
patterns set for testing. Both have their advantages and
drawbacks. Pseudorandom testing may be easily realized
on the chip by a linear-feedback shift register (LFSR) [1, 2] or
by other automata [3]. Test patterns generated in such a way
cover most of easily-detectable faults, but the patterns can be
quite inefficient in covering random pattern resistant faults.
Also a great number of test patterns are needed to generate. It
means that the time consumption may grow up significantly.

On the other hand, we can generate deterministic test
patterns for all detectable faults. These patterns, having a
considerable data volume, need to be sent into scan chains.
This data transfer is realized by a TAM (Test Access
Mechanism), which creates an interface between ATE
(Automatic Test Equipment) and the on-chip test mechanism.

Design requirements force us to make the TAM as narrow
as possible, but sending test patterns through a narrow TAM
may cause a considerable growth of the testing time. That is

why the compression of the test patterns is needed to decrease
the bandwidth between ATE and TAM.

There are several methods used for a test patterns
compression. Many of these methods are based on using
of some encoding, such as statistical codes [2, 4, 5, 6, 7],
run-length codes [4, 5, 6, 8, 9], and Golomb codes [10], others
are based on XOR networks [11, 12], hybrid patterns [13],
EDT (Embedded Deterministic Test) [14] and reuse of scan
chains [15]. Another approaches are based on test patterns
compaction [16, 17] and overlapping [18, 19, 20, 21].

In this paper we introduce a novel test patterns compression
algorithm SAT-Compress based on a design of a dedicated
SAT-ATPG [22, 23]. The compression algorithm exploits an
overlapping of test patterns. Unlike other compression methods
based on this principle [18, 19, 20, 21], we do not use test
patterns pre-generated by an ATPG; we generate them on the
fly to reach the locally best overlap and maximize the
compression. Test patterns compressed this way can be easily
decompressed by the RESPIN decompression architecture [24],
which is intended to test system on chip (SoC) cores by reusing
scan chains.

The paper is organized as follows: first a brief summary
of the previous work on test patterns compression is presented
in Section II. Then the representation of the test vector set as an
instance of the SAT problem is considered and basic principles
of SAT-based ATPGs [22] are described (see Section III). The
RESPIN decompression architecture is shown in Section IV.A
new test patterns compression algorithm based on dedicated
SAT-ATPG is introduced in Section V. and finally the
experimental results and comparison with other compression
methods are shown (see Section VI).

II. PREVIOUS WORK

The proposed test patterns compression method is basically
based on finding the best overlap of test patterns pre-generated
by an ATPG (Fig. 1). The test patterns are serially shifted into
the scan chain. This idea was described in [21] for the first
time. This algorithm generally tries to find contiguous and
consecutive test patterns having the maximum overlap.
Deterministic test patterns are generated by an ATPG and
compacted. Patterns in the scan chain are checked whether they
match with one or more test patterns which were not employed
in the sequence yet. In [20], the pattern overlapping problem is

converted into a Traveling Salesman Problem (TSP), for which
different heuristics have been proposed.

0010-

010--

101--

01010

10100

100--

00111

0111-

11100

10001

0010-

 010--

 101--

 01010

 10100

 100--

 00111

 0111-

 11100

 10001

0010101001110001

Test bitstream:
 010-- 01010 100-- 0111- 100010010- 101-- 10100 00111 11100

Compressed test bitstream:
 0010101001110001

Test patterns Overlapped test patterns

Figure 1. Test patterns overlapping

The COMPAS [18] test patterns compression tool is based
on a similar approach, but it does not use compacted test
patterns. Test patterns that are to be compressed are pre-
generated by an ATPG as well. However, these test patterns
should contain as many don’t care bits (DC bits, means not
specified) as possible. For this purpose, one test pattern for
each fault from the fault list is generated Greater number
of don’t care bits grants the algorithm much more possibilities
to combine test patterns and reach better compression. Other
improvements are the simulation after every test pattern
application and searching for best successors of a given starting
pattern (usually an all-zero pattern). These improvements make
COMPAS very efficient in comparison with other compression
tools, see. Table II. The only weakness of COMPAS is the
need for don’t care bits. The number of DCs and the fact that
the algorithm fully relies on a pre-generated test set can also
affect the test compression ratio. When the test patterns are
highly specified (they contain only few don’t care’s), it is much
harder for COMPAS to find a good overlap of the test patterns
and the efficiency of the test patterns encoding decreases which
cause greater memory consumption [25].

Another compression technique based on the RESPIN
architecture is presented in [15]. Suitable test patterns are
produced by a standard ATPG tool performing dynamic
compaction, while constraints to circuit inputs are applied.
In contrast to this, we apply these constraints to the SAT
instances, in a SAT-based ATPG.

The state-of-the-art compression/decompression
architecture used in industry is the Embedded Deterministic
Test (EDT) [14]. Here a high test compression is achieved
by employing a dedicated but generic test decompressor. The
compressed test patterns serve as seeds for a pseudo-random
pattern generator (“ring register”), where they are
decompressed and further distributed to scan-chains using a
XOR-network structure (“phase-shifter”). The compressed test
patterns are obtained as a solution of a set of linear equations.
Similarly to the previously mentioned test compression
methods, the test patterns to be compressed need to be pre-
computed by an ATPG. Again, high amount of test don’t cares
is essential for achieving a good compression ratio [14].

III. SAT-BASED ATPG AND ITS PRINCIPLES

A. Circuit to SAT Conversion

Conversion of a digital circuit to a CNF (Conjunctive
Normal Form) is an essential task for our SAT-based
compression algorithm. The SAT instance in CNF represents
in our case the whole set of test patterns detecting a given fault.
Each SAT instance is described as a Boolean formula in CNF.

A CNF Φ with m Boolean variables is a conjunction of n
clauses, where each clause is a disjunction of literals. Each

literal is a Boolean variable or its complement. The CNF Φ is
satisfiable, if there exists some assignment of variables, for
which all clauses are satisfied.

A Boolean variable is assigned to each signal in the circuit

C. For each gate, the CNF Φg is derived from its characteristic

function. The CNF Φc representing the circuit’s function is
constructed as a conjunction of the CNFs of all gates

g1,…,gn∈C:

∏
=

Φ=Φ
n

i

giC

1

To generate the test for a fault F, the characteristic function

Φf of the faulty circuit is generated. Only a necessary part

of the circuit has to be included in the CNF Φf, for reasons
of efficiency; circuit parts not propagating the fault may be
omitted. Finally the SAT instance for a fault F is obtained as a

product of ΦC, Φf and a characteristic function of a XOR of the
fault-free and faulty circuit outputs:

XORFC

F

test Φ⋅Φ⋅Φ=Φ

The
F

testΦ solutions represents the whole set of test patterns

detecting the fault F. If
F

testΦ is unsatisfiable, the fault F is

undetectable. More information can be found in [22, 23].

Example 1. A circuit having three gates is shown in Fig. 2.
To detect a given fault, two copies of the circuit are created: the
fault-free circuit and the circuit with a particular fault. In order
to detect the fault, output values of these two circuits must
differ. This is indicated by XORing their outputs (X and X’).
Characteristic functions are derived from logic functions of the
gates. For example, let us consider the AND gate D=A^B. For
any two functions P and Q, P=Q is equivalent

to (P⇒Q)∧(Q⇒P). In this way the AND gate characteristic

function is constructed as (D⇒ (A∧B))∧((A∧B) ⇒D). Next we
transform this expression to CNF, obtaining

(¬D∨A)∧(¬D∨B)∧(D∨¬A∨¬B).

E

X
P

ri
m

a
ry

 i
n

p
u

t
v
a
ri

a
b

le
s

Internal variables

Fault-free circuit
A

B

C

D

E

Circuit with fault on internal wire
D stuck-at 1

D'=1

D

X'

BD

Figure 2. Faulty and fault-free circuit [23]

All gates in Fig. 2 are processed in this way, to obtain the
final CNF for detecting the stuck-at-1 fault on D:

(¬D∨A)∧(¬D∨B)∧(D∨¬A∨¬B)∧(C∨E)∧(¬C∨¬E)∧(X∨ D)

∧(X∨¬E)∧(¬X∨D∨E)∧(D’)∧(X’∨¬D’)∧(X’∨¬E)

∧(¬X’∨D’∨E)∧(C∨E)∧(¬C∨¬E)∧(¬X∨X’∨BD)

∧(X∨¬X’∨BD)∧(X∨X’∨¬BD) ∧(¬X∨¬X’∨¬BD) (1)

The assignment of input variables corresponds to the test
pattern detecting this fault. In particular, the example CNF (1)
is satisfied by assignment A=1, B=0, C=1, D=0, D’=1, E=0,
X=0, X’=1, BD=1. Therefore, the stuck-at-1 at D fault is
detected by the pattern (A, B, C) = (101).

B. SAT-based ATPG

A SAT-based ATPG algorithm [23] can be described
in four steps:

1) Generate a fault list for a given circuit.

2) Pick one fault from the fault list and generate its CNF
(CNF implicitly represents the whole set of the test patterns
detecting a given fault).

3) Solve the CNF of the fault and obtain its particular
solution which represents one test pattern detecting the
respective fault. If the CNF is unsatisfiable, the fault is
removed from the fault list as an undetectable fault.

4) Simulate the test pattern obtained in step 3 and
remove all detected faults from the fault list. Repeat steps 2-4
until the fault list is empty.

For details on the SAT-based ATPGs, see [22, 23].

IV. TEST DECOMPRESSION

The decompression of compressed test patterns is
conducted by the RESPIN (REusing Scan chains for test
Pattern decompression) [15, 24] architecture. This architecture
is intended for testing systems on chip (SoCs). Basically, scan
chains of different cores are reused for updating of the content
of the tested core scan chain (SC). RESPIN is based on the
IEEE 1500 proposed standard for testing of embedded cores
[26]. Each core has a serial test access, which is a mandatory
element of IEEE 1500 and a parallel access. A core test
wrapper, which is the interface between the embedded core
(core terminals) and its system on chip environment (rest of the

integrated circuit and TAM), is defined. By definition, the core
test wrapper is implemented on-chip and should have three
mandatory modes:

1) Normal operation – the core is connected to its system
IC (integrated circuit) environment and the wrapper is
transparent.

2) Core-internal test – the TAM is connected to the core
such that test patterns can be applied at the cores inputs and
responses are observed at cores outputs.

3) Core-external test - the TAM is connected to the
interconnect wiring and logic such that a test patterns can be
applied at cores outputs and responses are observed at the cores
inputs.

An example of RESPIN architecture for one SC is shown
in Fig. 3.

This architecture consists of ETC (Embedded Test Core)
and CUT. During the test, both are isolated from the rest of the
SoC by a test wrapper. The decompression of test patterns is
performed in the ETC, which is supposed to be a reused scan
chain of another core (ETC SC). This ETC SC is extended only
by a single multiplexer (controlled by signal test - tc) and a
feedback wire. Reusing of scan chains grants a minimal
decompression hardware overhead.

The CUT scan chain is the scan chain of the tested core. It
is filled by the decompressed test patterns from the ETC SC
and, after application of the functional clock, the responses are
shifted out to the signature analyzer (SA). SA compares
responses with the expected signature and the circuit is marked
as fault-free or faulty.

The control signal tc (test) of the ETC SC is also connected
to the scan enable signal of the CUT SC. This control signal
selects between the serial mode (tc = 0) and the circular mode
(tc = 1) of the ETC SC and between capture mode (tc = 0) and
scan mode (tc = 1) of the CUT SC.

 Table I. shows that while the CUT SC captures the system
response (tc = 0, capture mode) and shift it out to the signature
analyzer (tc = 1, scan mode). The ETC SC is in serial mode
(tc = 0) and loads one new bit from the encoded test data
(compressed test bitstream). Thus only one bit per test pattern
is scanned into the ETC SC from the ATE. Whenever the CUT
SC scans in test data (tc = 1, scan mode) from the ETC SC, the
ETC SC is in circular mode and the feedback is used to shift
valid part of the test pattern back to the ETC SC and reuse it
in new test pattern. For using cores as ETC SC both their shift
and capture clocks must be compatible with the CUT SC
clocks and ETC SC must have at least as many scan cells as the
CUT SC.

More specific details of the RESPIN architecture can be
found in [15, 24].

The RESPIN architecture is suitable for decompression
of the test patterns compressed by overlapping, because while
the ETC SC preserves the useful bits of the test patterns
by looping through the feedback, the CUT SC obtains
responses on previous test pattern and shifts them to the

signature analyzer (SA) to be evaluated. At the same time a
new test pattern is shifted from ETC SC into the CUT SC.
Moreover, the hardware overhead is minimal since the
decompression is made by reusing of the SCs of non-tested
cores and no additional decompression hardware is required.

TABLE I. OPERATION MODES OF ETC SC AND CUT SC [15, 24]

tc = scan enable 0 1

CUT capture mode scan mode

ETC serial mode circular mode

Figure 3. RESPIN testing architecture [15, 24]

V. THE SAT-COMPRESS ALGORITHM PRINCIPLES

A. Basic Idea

In our new approach we try to eliminate weaknesses
of COMPAS. The main idea is not to overlap test patterns
pre-generated by an ATPG, but to generate most suitable test
patterns on the fly, to reach the (locally) best overlap. The basic
question is how to find these test patterns. Each fault has its set
of test patterns by which it is detected. If we were able to pick
the right pattern for each fault in the right order, we could have
reached the best possible compression of the test patterns.

Because explicit computation and storing of all these test
patterns is inefficient (and mostly even infeasible), we were
forced to find another, more efficient way of test patterns set
representation.

We have researched possibilities of implicit representations
of test patterns. We have found that we can take advantage
of principles of SAT-based ATPGs and efficiently represent all
test patterns for one fault implicitly, by one SAT problem
instance in a CNF. The CNF test set representation is much less
memory consuming than a standard tabular test set
representation. Our proposed test set compression algorithm
sequentially generates the compressed test bitstream. A SAT
instance in CNF is generated for each fault. This SAT instance
contains both variables representing the circuit’s primary inputs
and variables representing internal signals. The test pattern is
determined by values of the primary input variables in the SAT

solution; values of internal variables are of no significance. The
variables not present in the generated CNF or in the SAT
solution are set as don’t cares (DCs). A SAT instance is solved
with constraints given by the test pattern generated in the
preceding algorithm step. A satisfiable solution of a SAT
instance forms the next suitable test pattern for an overlap.
Higher time consumption can be expected, because this method
requires a repeated SAT solving. Our aim, however, is to find
the best overlap and maximize the test patterns compression, as
testing time, not test generation time, forms currently a
bottleneck.

B. The SAT-Compress Algorithm Description

We try to find the best overlap by gradually building the
compressed test patterns bitstream for the scan chain. The basic
algorithm is shown in Fig. 5.

1) First, we generate a complete fault list (FL).

2) A zero state (all-zero test pattern) or the test pattern
covering any fault from the fault list is used as the initial test
pattern.

3) The pattern is simulated and all detected faults are
deleted from the fault list. The leftmost bit of the pattern goes
to the resulting bitstream (Fig. 4).

4) The pattern is shifted left and a DC bit is put to its
rightmost position. This is the mask for the next pattern (Fig. 4,
next pattern mask). The mask constraints the values of primary
inputs (PI) in subsequent SAT instances. Only care bits
generate the PI constraints.

5) To generate the next test pattern having the highest
overlap with the previously generated one, a CNF for each
fault in the fault list is generated, while the primary input
variables are set according the mask. The orders of faults are of
no significance. If a CNF for a fault is satisfiable for a given
assignment of primary variables, a new test pattern is obtained.
If none of these CNFs is satisfiable, the pattern is shifted one
more bit left, which generates a new mask of SAT constraints.

6) These operations (3-6) are performed while the fault
list is not empty or until all care bits from the mask of primary
inputs setting are shifted out while there is still no satisfiable
CNF (rest of the fault in FL is undetectable).

1 0 1 1- - - First test pattern1

10 1- - -- -

New bitstream bit

Insert DC bit

Next pattern mask

Walk through fault list, generate its CNF,
set primary inputs mask, get satisfiable
instance and its solution pattern

10 1 --0 1 New test pattern

Figure 4. Next pattern generation example

1. Generate FL (FL = fault list)
2. TP = 0 (TP = test pattern = all-zero seed)

 mask = DC (DC = don’t care)
3. FL = FL - detected_by_simulation(TP)

 compressed_bitstream += TP[0]
4. mask = TP[1 .. n-1] + DC
5. do {

for each fault in FL {
Create CNF
Apply mask to PIs in CNF
if CNF is SAT {

break the for loop
}

}
TP = CNF_Solution
FL = FL - detected_by_simulation(TP)
compressed_bitstream += TP[0]
mask = TP[1 .. n-1] + DC

 }
6. while (FL!=0 or (mask==DC and All_CNF==UNSAT))

Figure 5. The SAT-Compress algorithm

VI. EXPERIMENTAL RESULTS

The experimental results and a comparison of our algorithm
with similar compression methods are presented in the
following two subsections. Unfortunately, comparison with
[15] could not be performed, since only results for 20 parallel
scan-chains are presented in [15].

The measurement was performed on Intel Xenon CPU -
2GHz with 4GB RAM.

A. Comparison of Different Compression Techniques

A comparison of SAT-Compress with other state-of-the-art
test compression techniques is presented in Table II. The first
column “Bench.” represents the benchmark name. The
compressed test lengths in bits, for seven different competitive
methods, are shown then. A comparison of only seven biggest
ISCAS’89 circuits is shown, since no more relevant data was
available to us. The last column shows the compressed test data
size for our proposed compression tool SAT-Compress. An
all-zero initial test pattern for both COMPAS and
SAT-Compress is used, thus the results are not influenced
by different initial states.

It can be concluded from Table II., that our proposed
algorithm can reach better compression of test patterns than
most of the presented techniques; we are able to obtain results
such as the state-of-the-art compression methods EDT or
COMPAS and in some cases even better. The time
consumptions of SAT-Compress are shown in Table III. The
comparison between presented tools was not possible
to measure because of the unavailability of source codes.

B. Comparison COMPAS and SAT-Compress Algorithms

In this Subsection we will present a more detailed
comparison of SAT-Compress and COMPAS, as a
representative of test compression algorithms based on
overlapping of patterns.

Results for ISCAS’85 and ’89 benchmarks [27, 28] are
presented in Table III.

TABLE II. COMPAS AND SAT-COMPRESS TEST LENGTHS

COMPAS SAT-Compress
Bench.

bits avg. var. bits avg. var. time [s]

c17 9 9 1.5 11 12.3 1 0

c432 195 218 30.6 189 198.2 21.8 3

c499 260 303.7 47.6 187 198.2 8.7 6

c880 540 412.7 44.3 410 561.5 60.99 10

c1355 1040 1126 68.6 349 - - 74

c1908 1009 989.8 49.6 624 - - 229

c2670 6553 5940 269.7 2223 - - 2305

c3540 747 743.7 32.9 1622 - - 3569

c5315 1255 1159.5 64.8 881 - - 156

c6288 82 95.2 36.6 97 - - 165

c7552 6005 6430.7 345.2 4840 - - 7406

s27 16 13.2 2.3 23 21.5 2.1 0

s208 130 124.1 9.1 202 209 15.9 0

s298 101 79.6 5.5 137 139.7 8.2 0

s344 85 80.9 6.7 116 114.7 10.2 0

s349 85 80.1 6.8 116 114.4 10 0

s382 123 111.3 6.6 191 179.2 12.8 0

s386 264 255 10.8 304 319 12.5 4

s400 121 109 7.2 173 170.9 9.7 0

s420 352 315.9 29.1 624 574.8 46.4 11

s444 116 107 7.5 160 150.6 10.5 0

s510 160 156 8.9 210 211.8 10.3 2

s526 344 349.8 18.4 521 482.8 22.7 4

s526n 344 350.2 18.1 493 - - 3

s641 397 393.3 24.2 710 670.7 28.4 15

s713 428 403.8 26.1 642 672 38.7 32

s820 460 504.6 21.9 697 697.7 26.3 28

s832 494 498.8 19.5 729 690.7 24.1 36

s838 920 762.3 79.6 1800 1638.3 103.5 136

s953 723 700.4 24.7 825 - - 51

s1196 740 738.5 23.5 1211 1202.2 41.9 173

s1238 741 769.2 24.3 1300 1268.7 41.7 365

s1423 596 621.5 38.6 794 827.6 43.9 72

s1488 488 461.5 15.1 546 - - 20

s1494 431 451.3 16.6 573 - - 25

s5378 2148 1995.6 73.8 2407 - - 631

s9234 11594 11309.6 310.7 9928 - - 68119

s13207 4163 - - 10457 - - 67751

s15850 8234 - - 12987 - - 114932

s38417 24198 24926.3 1717.7 19291 - - 91713

s38584 7291 - - 14271 - - 122143

The first column “Bench.” presents the name of the
benchmark. The compressed test lengths generated
by COMPAS and SAT-Compress, both starting with an all-
zero test pattern, are shown in the column “bits”. Then we have
tried to repeatedly run the algorithms starting with different

initial test patterns. The average compressed test patterns
lengths are shown in the columns “avg.” and average
variations of compressed test patterns lengths are shown in the
columns “var.”. The time consumptions of test patterns
compression for SAT-Compress algorithm in seconds are
shown in the “time” column. The results of this measurement
show that the bitstream length for both tools significantly
depends on the initial test pattern and starting with an all-zero
seed (which is the default setting for COMPAS) can produce
outstandingly poor results, out of the range of the variation
(see, e.g., s298 for COMPAS). In some cases, our tool reaches
much better compression than COMPAS, but it may also fail.
For an unknown reason the efficiency of proposed algorithm is
much better for ISCAS’85 benchmarks than for ISCAS’89
ones. As can be seen from Table III., the time consumption
may be considerable for larger circuits, but we suppose, that
scalability of proposed algorithm may grow up by using of
more scan chains and division of the circuit into smaller parts.

Figs. 6, 7, and 8 show examples of distributions
of bitstream lengths using different starting patterns for
COMPAS and SAT-Compress. In both cases we always start
with a test pattern covering one particular fault. The number
of restarts is equal to the number of faults.

0

20

40

60

80

100

120

140

160

180

200

220

240

150 180 210 240 270 300 330 360 390 420 450 480

Bitstream length clases [bit]

F
re

q
u

e
n

c
y

 o
f

o
c

c
u

re
n

c
e

s
 [

-]

COMPAS

SAT-Compress

Figure 6. Frequency of bitstream length distribution (c499)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360

Bitstream length clases [bit]

F
re

q
u

e
n

c
y

 o
f

o
c

c
u

re
n

c
e

s
 [

-]

COMPAS

SAT-Compress

Figure 7. Frequency of bitstream length distribution (c432)

0

20

40

60

80

100

120

140

160

180

80 100 120 140 160 180 200 220 240 260

Bitstream length clases [bit]

F
re

q
u

e
n

c
y

 o
f

o
c

c
u

re
n

c
e
s

 [
-]

Compas

SAT-Compres

Figure 8. Frequency of bitstream length distribution (s400)

As can be seen, the compressed bitstream length seems
to have Gaussian-like distribution and the only difference
between SAT-Compress and COMPAS characteristics is their
displacement. This Gaussian distribution of the compressed
bitstream lengths for different starting seeds is a common
characteristic of these two tools for all tested benchmarks. It
can be seen that the selection of the initial test pattern has a
crucial impact on the resulting compressed test length, for both
algorithms. The way of its proper choice will be a topic of our
further investigation.

VII. CONCLUSION

New test patterns compression algorithm (SAT-Compress)
based on a modification of SAT-based ATPG is presented.
This algorithm utilizes a CNF (Conjunctive Normal Form)
implicit representation of test patterns and tries to compress the
test patterns by overlapping. In contrast to competitive
state-of-the-art test compression techniques, the proposed
algorithm does not rely on a pre-generated test set; most
suitable test patterns are being generated on the fly.

The test decompression is based on a generic RESPIN
architecture, where the patterns are being decompressed in the
tested circuit scan-chain. Thus, the circuit needs not be
modified to apply the test.

The proposed method was compared with seven
state-of-the-art test compression algorithms and a detailed
comparison with COMPAS has been made. The comparison
results seem to be promising – SAT-Compress achieved the
best test compression ratio for many benchmark circuits.
Moreover, there are yet many ways of possible improvements.
These will be a topic of our further research. Possibilities
of application of the method to multiple scan-chain designs
will be also studied in the future.

ACKNOWLEDGMENT

This research has been supported by MSMT under research
program MSM6840770014 and by the grant of the Czech
Grant Agency GA102/09/1668.

 REFERENCES

[1] B. Koenemann, “LFSR-Coded Test Patterns for Scan Designs,” in Proc.

of European Test Conf., IEEE CS Press, 1991, pp. 581-590.

[2] C.V. Krishna, N.A. Touba, “Reducing Test Data Volume Using LFSR
Reseeding with Seed Compression,” in Proc. of the International Test
Conference, 2002, pp. 321-330.

[3] F. Fummi, D. Sciuto, “Implicit test pattern generation constrained to
cellular automata embedding,” 15th IEEE VLSI Test Symposium
(VTS'97), 1997, pp.54-60.

[4] P. T. Gonciari, B. M. Al-Hashimi, N. Nicolici, “Variable length input
Huffman coding for system-on-a-chip test,” IEEE Trans. Computer-
Aided Design, vol. 22, 2003, pp. 783–796.

[5] H. Ichihara, A. Ogawa, T. Inoue, and A. Tamura, “Dynamic test
compression using statistical coding,” in Proc. ATS, 2001, pp. 143–148.

[6] H. Ichihara, K. Kinoshita, I. Pomeranz, and S. Reddy, “Test
transformation to improve compaction by statistical encoding,” in Proc.
Int. Conf. VLSI Design, 2000, pp. 294–299.

[7] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan vector
compression/decompression using statistical coding,” in Proc. VLSI Test
Symp., 1999, pp. 114–120.

[8] A. Chandra, K. Chakrabarty, “Frequency-Directed Run-Length (FDR)
Codes with Application to System-on-a-Chip Test Data compression,” in
Proc. of VLSI Test Symposium, 2001, pp. 42–47.

[9] A. Jas and N. A. Touba, “Test vector decompression via cyclical scan
chains and its application to testing core-based designs,” in Proc. ITC,
1998, pp. 458–464.

[10] A. Chandra, K. Chakrabarty, "Test Data Compression for System-on-a-
Chip Using Golomb Codes," 18th IEEE VLSI Test Symposium
(VTS'00), 2000, pp.113-121.

[11] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time
reduction through scan chain concealment,” in Proc. Design Automation
Conf., 2001, p. 151–155.

[12] S. M. Reddy, K. Miyase, S. Kalihara, and I. Pomeranz, “On test data
volume reduction for multiple scan chain design,” in Proc. VLSI Test
Symp., 2002, pp. 103–108.

[13] D. Das and N. A. Touba, “Reducing test data volume using external/
LBIST hybrid test patterns,” in Proc. ITC, 2000, pp. 115–122.

[14] Rajski, J., “Embedded Deterministic Test” IEEE Trans. on CAD, vol.
23, No. 5, 2004, pp. 776-792.

[15] R. Dorsch and H.-J. Wunderlich, “Tailoring ATPG for embedded
testing,” in Proc. ITC, 2001, pp. 530–537.

[16] Seiji Kajihara, Kewal K. Saluja, "On Test Pattern Compaction Using
Random Pattern Fault Simulation," vlsid, Eleventh International
Conference on VLSI Design: VLSI for Signal Processing, 1998, pp.464-
470.

[17] I. Pomeranz, S. M. Reddy, ”A New Approach to Test Generation and
Test Compaction for Scan Circuits,“ Proc. of the conference on Design,
Automation and Test in Europe (DATE’03), 2003, pp. 11000-11006.

[18] O. Novák, J. Zahrádka, “COMPAS – Compressed Test Pattern
Sequencer for Scan Based Circuits,” in Proc. of EDCC, 2005, pp. 403-
414.

[19] C. Dufaza, H. Viallon, C. Chevalier, "BIST hardware generator for
mixed test scheme," edtc, European Design and Test Conference
(ED&TC '95), 1995, pp. 424-431.

[20] C. Su, K. Hwang, “A Serial Scan Test Vector Compression
Methodology,” in Proc. ITC, 1993, pp. 981-988.

[21] Daehn, W., Mucha, J,: Hardware Test Pattern Generation for Built-in
Testing. Proc. of IEEE Test Conference, 1981, pp. 110-113.

[22] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability,”
IEEE Transactions on Computer-Aided Design, 1992, pp. 4-15.

[23] Drechsler, R., Eggersglüß, S., Fey, G., Tille, D., “Test Pattern
Generation using Boolean Proof Engines,” Publisher Springer
Netherlands, ISBN 978-90-481-2360-5, 2009, XII, p. 192.

[24] Schafer L., Dorsch R., Wunderlich H.J., “RESPIN++- Deterministic
Embedded Test,“ Proc. of the European Test Workshop, 2002, pp.37-42.

[25] Jeníček J., Novák O.:A Test Pattern Compression Based on Pattern
Overlapping, Proc. of DDECS 2007, Apr. 2007, Krakow, Poland, pp.29
- 34, ISBSN: 1-4244-1161-0.

[26] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel,
“Towards a Standard for Embedded Core Test: An Example,” in
Proceedings of the IEEE International Test Conference (ITC), pp. 616–
627, IEEE, 1999.

[27] F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortan, Proc. of
International Symposium on Circuits and Systems, pp. 663-698, 1985.

[28] F. Brglez, D. Bryan and K. Kozminski. Combinational Profiles of
Sequential Benchmark Circuits, Proc. of International Symposium of
Circuits and Systems, pp. 1929-1934, 1989.

[29] Janak H. Patel, Ilker Hamzaoglu, "Test Set Compaction Algorithms for
Combinational Circuits," iccad, International Conference on Computer-
Aided Design (ICCAD '98), 1998, pp.283-289.

[30] Irion, A.; Kiefer, G.; Vranken, H.; Wunderlich, H.-J.,
“CircuitPartitioning for Efficient Logic BIST Synthesis,” Proc. DATE,
2001, pp.88-93.

[31] Hamzaoglu, I., and J.H. Patel, “Reducing Test Application Time for Full
Scan Embedded Cores,” Proc. Of Int. Symp. on Fault Tolerant
Computing, 1999, pp. 260-267.

[32] A. Chandra and K. Chakrabarty, “Test Data Compression and Test
Resource Partitioning for System-on-a-Chip Using Frequency-Directed
Run-Length (FDR) Codes,” IEEE Transactions on Computers, vol. 52,
May 2003, to appear.

TABLE II. COMPARISON OF THE TEST DATA AMOUNT FOR DIFFERENT COMPRESSION TECHNIQUES

Bench.
MinTest

[29]

Stat. Coding

[7]

LFSR Reseeding

[2]

Illinois Scan

[30, 31]
FDR Codes

[8, 32]

EDT

[14]
RESPIN++

[24]
COMPAS

[18] SAT-Compress

s5378 20,758 15,417 6,180 14,572 12,346 - 17,332 2,148 2,407

s9234 25,935 19,912 12,112 27,111 22,152 - 17,198 11,594 9,928

s13207 163,100 52,741 11,285 109,772 30,880 10,585 26,004 4,163 10,457

s15850 58,656 49,163 12,438 32,758 26,000 9,805 32,226 8,234 12,987

s35932 21,156 - - - 22,744 - - 1,860 5,096

s38417 113,152 172,216 34,767 96,269 93,466 31,458 89,132 24,198 19,291

s38584 161,040 128,046 29,397 96,056 77,812 18,568 63,232 7,291 14,271

