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Abstract. The aim of this work is to develop a USB device core that can be 
used to transfer large amount of data. Therefore we focused on the BULK 
transfer mode. The core enables to create a simple connection between a PC 
and a developed device. The core is described in VHDL language. The USB 
core implementation and testing were performed on the XSV800 development 
board. 

1 Introduction 

Nowadays extensive usage of FPGAs implies the need for communication that is faster than 
a simple serial line. The designer has to transmit large volumes of data between his FPGA 
application and the PC. The USB interface is one of the solutions to this problem. The USB 
interface conforms to the requirements of simplicity and universal usage, which comes 
from its widespread presence in current PCs. In order to use the USB, one has to add a USB 
core and a USB transceiver to the application board. 
 The designer should invite software tools that simplify the implementation of the USB 
communication. These tools include a USB driver implementing the basic transfer methods, 
and a simple application demonstrating the way of communication with the driver on the 
PC side. The FPGA side consists of the USB transceiver and the USB core, which is 
designed at the register transfer level (RTL). 
 There are several designs dealing with various parts of the given problem. The majority 
of them are commercial solutions, which are not suitable for research. The reason is the 
absence of source code and thus the inability of modification. 
 The ultimate goal of our work is to gradually create universal software tools for simple 
usage of the USB communication. During the design it is not possible to concentrate solely 
on one part, it is necessary to create them at the same time. The reason is the ability to test 
and gather specific communication parameters, which determine the fitness for a particular 
application. 



2 Solution 

This chapter is divided to five basic parts. The first part describes the USB core itself 
implemented in FPGA. The second part deals with using the USB transceiver. The third 
part describes the external microcontroller used for making the initial communication and 
setting transfer parameters. The fourth part deals with using the USB driver and the final 
part describes the testing application. 

2.1 USB core for FPGA 

The USB core is written with respect to simple portability to other developed devices. 
Special attention was devoted to the minimum resources needed to transfer large amount of 
data from and to the PC. The second important point is the maximum transfer rate achieved 
by the USB core. 
 This section describes four parts (see figure 1). The first two parts are the receiver and 
the transmitter implementing the low level of the USB communication protocol. Next part 
deals with the control of the middle level of communication protocol such as handshaking. 
The final part is the microcontroller interface used for the communication with the external 
microcontroller.  
 

 

Figure 1: USB core block diagram 

Receiver 

The receiver processes the data coming from the external USB physical layer transceiver 
and stores it at various places depending on the type of the packet received. The receiver 
block is hierarchically divided into several parts. 
 

 

Figure 2: Transceiver block diagram 



 The top level of the receiver consists of two parts. The first part processes the input data 
stream and analyzes its structure. The second part is the receiver controller, which uses the 
information about the structure to deliver the data to the corresponding storage area. 
 The data received at the primary inputs has the form of a serial signal that is 
asynchronous to the system clock. Therefore the first block to which the data is routed 
performs synchronization to the system clock. The synchronization is done using a digital 
PLL state machine. The data is decoded from the NRZI form in the process of 
synchronization. 
 In the next step the stuffed bits in the data stream are detected and marked for removal. 
The start and the end of the packet are detected and signaled for further processing. The 
serial data is then converted to parallel. 
 The parallel data is examined in order to determine the packet type. The packet types 
recognized at this level are: the token, the data and the handshake. The type of the packet is 
determined using the PID field, which is the first byte after the synchronization sequence. 
The data and token packets are secured against transmission errors by a 16-bit and 5-bit 
CRC, respectively. 
 If the packet is a token, the received bytes are stored in a temporary register. After the 
CRC is confirmed to be valid, the packet is transferred to the token register and its 
information can be used during the current transaction. 
 If the packet type is data, we check whether there is free space in the buffer of the 
destination endpoint and whether this data packet is a valid part of a running transaction. If 
these conditions are fulfilled, the data is written into the corresponding endpoint buffer. 
Otherwise the data is received but discarded. The data is checked for possible errors using 
the 16-bit CRC. The receiver status is signaled to the main controller. 

Transmitter 

The transmitter is used for packet sending. The transmitter is divided into four blocks. The 
first block, the nearest to the main control (see figure 3), implements the control endpoint 
buffers and sends its contents to the parallel/serial block. The data stored at each buffer is 
sent after the send command is received. The commands are received from the main 
control. The last received token determines the buffer, which will be used for sending data.  
 

 

Figure 3: Transmitter block diagram 

The transmit control block can only read data from these buffers. The write operations to 
the buffers are performed by the microcontroller interface. Data is sent to the parallel/serial 
block by bytes. The first and the last byte marked in order to detect start and end of packet. 
The parallel/serial block is used for making serial data from received bytes. The generated 
serial data is sent to the CRC16 block. The CRC16 block generates a 16-bit control 
checksum. This block is unused when a handshake packet is sent. The last block included in 
the transmitter is the NRZI coder, which performs the bit stuffing and NRZI coding. This 
block controls the external USB transceiver. Coded and stuffed data is sent outside of the 
FPGA. 



 The transmitter is designed with respect to the maximum time allowed for generating 
the first bit of the response to the received command. 

Transmitter buffers 

The first approach was using 1024-byte buffers implemented with the blockram 
components included in the FPGA and the length of the transferred packet was 1023-bytes. 
After implementation and testing the USB core buffers were shortened to 64-byte length. 
We expected that the maximum transfer rate depend on the length of the packet. Of course 
it did but we can reach the same speed with 64-byte packets. In other words, the minimum 
length of the packet to reach the maximum transfer rate is 64-bytes. If the USB driver is not 
written effectively then the max packet length is very important. It is due to the number of 
packets transmitted in 1 ms. For example, if the length of packet is 1023 we transferred 9 
packets. That means 9288 bytes per 1 ms. By using 64-byte packets we transferred 150 
packets, i.e. 9600 bytes. In other words using 64-byte packets is faster than 1023-byte 
packets.  
 Because of the short time interval between two consecutively transferred packets the 
double-buffering technique must be used. It means while the first buffer is being filled the 
second buffer is waiting to be sent. The 64-byte buffers are implemented as a distributed 
RAM. 

Main controller 

The main controller manages the middle level of the USB protocol, such as handshaking. 
The communication on this level is based on transactions consisting of token, data and 
acknowledge parts. Some of the transactions do not include the data part. Each small part of 
the transaction is received as a separate packet. The error checking of the packet is 
performed in the receiver and the information signal is sent to the main controller. The 
receiver block takes care of the CRC checking and the corresponding response is prepared 
in the main controller block. The response must be generated immediately after the packet 
is received to achieve the maximum allowed time given by the USB specification. 
 The main controller consists of a state machine. The actual state depends on the type of 
the token and on the position in each transaction. Each endpoint has a few parameters such 
as the transfer type or the status register that defines its current state. These parameters are 
stored in structures. When data has been sent or received the interrupt signal is generated 
and the type of this interrupt is placed into the status register. The status register can be read 
by the external microcontroller. 

Microcontroller interface 

The microcontroller interface block takes care of the communication between the USB core 
and the microcontroller. The register field used for filling or reading buffers and setting 
basic parameters of transfer is implemented in this block. By using the select endpoint 
command, the actual endpoint for read or write operations can be selected. Because of the 
external microcontroller, input registers must be used to prevent metastable states. Input 
buffers add other delays. 



2.2 USB physical layer 

The USB core needs only one external circuit implementing the physical layer. The 
external circuit used is the PDIUSBP11A. This circuit is included on the XSV800 board but 
the USB core is independent on type of used the USB transceiver and can be replaced by 
another one. 
 The USB core was tested only for full speed baud rate because of simplicity the USB 
core. The USB transceiver is permanently receiving serial data and sending them to the 
USB receiver block. It means that every packet is received, even the packet sent by the 
USB transmitter. Unexpected packets in the USB receiver are ignored and information 
about received packet is not generated. In other words idle packets are dropped. 

2.3 External microcontroller 

In order to make testing of the USB core simpler, an external microcontroller was used. It 
enables an easy way of making changes at the higher level of the USB protocol like setting 
the length of the sent packet. The ATMEL AT90S8515 is used as the microcontroller. The 
program is written in the C language and compiled by the GCC to the microcontroller code. 
Before data can be transmitted, initial communication (i.e. enumeration) has to be 
performed and transmission parameters must be set. 
 For keeping information about transfer parameters it is necessary to use a table for each 
endpoint and pipe. Implementing tables in the microcontroller is simple. The solution with 
microcontroller is better than a hardware state machine because of the complexity of the 
protocol layer. It means the microcontroller is a suitable solution because of its simple 
enhancement and adequate parameters. A simple microcontroller core could be used for 
initial communication and a simple state machine for the data transmission. 
 Due to the fact that the microcontroller is external to the FPGA, the read and write 
operations were slowed down. In order to test the maximum throughput of the core, we had 
to skip filling the buffer. Instead we sent a large amount of identical packets only by 
repeatedly validating the transmit buffer. This was enabled by the fact that the transmit 
buffer is not cleared after sending. 

2.4 USB driver for PC 

The USB core was tested under MS Windows. It is necessary to use a driver to transfer 
data. The driver must be written as a WDM driver. It ensures the usability under Windows 
98/2000/XP. The driver was adopted from the Bulk USB driver in the Microsoft Driver 
Development Kit. The driver must be modified to improve transfer rate. Namely the length 
of buffers must be increased and round on multiple length of the packet. After the test was 
passed the best length of driver buffer was determined.  

2.5 Application for PC 

A simple application was written for testing purpose only. It contains functions that take 
care of the initialization of the interface to the USB device driver. After that the transaction 
are performed using the standard API function such as ReadFile or WriteFile. A lot of the 
code is adopted from the Bulk USB example in the Microsoft Driver Development Kit. 
 We implemented a simple 1-megabyte buffer for storing received data during analysis 
of the maximum transfer rate. Data was read from the USB driver by an integer multiple of 
the length of the driver buffer. 



2.6 Analysis of the USB bus 

During the development of a USB device it was necessary to have a closer look at the USB 
traffic. We designed a USB analyzer for this purpose. The analyzer is a cut down version of 
the USB core containing merely the receiver part and a FIFO. The analyzer is connected to 
the PC via serial or parallel interface. The analysis is then performed on the PC. 
 The first version utilized a RS-232 serial line, which showed to be insufficient. When 
using the serial line, we could not monitor the data portion of the packets due to the lack of 
speed (maximum 115200 bits per second on our PCs). In order to see more information e.g. 
during the enumeration phase, we needed to implement a faster interface. We decided to 
use the EPP parallel interface. Maximum speed we achieved was ca. 700 kilobytes per 
second. We used the largest available FIFO implemented using all blockrams available in 
the FPGA. However, FIFO overflows still occurred and in the time of traffic peaks we lost 
some information. It was necessary to create a simple line protocol in order to discriminate 
individual packets. 
 By using this tool, we can observe the USB traffic and analyze it on the PC. We 
analyzed the packets that were transmitted between various devices and we used that 
information during debugging of our USB core. 

3 Results 

The main result of this work is the USB 1.1 VHDL core. The core implements a BULK 
data transfer between the XSV800 prototyping board and the PC. The USB core occupies 
1165 slices, 520 of these are used for buffers. 
 This design contains only the USB core without the microcontroller. As an external 
microcontroller we used the AT90S8515 made by ATMEL. The PC side consists of a USB 
driver and an application. The driver source code is a part of the driver development kit 
software by Microsoft. A simple application is written only for testing purpose and 
gathering transfer parameters. 
 To achieve the maximum transfer speed it is necessary to adjust the size of the data 
transfer buffers in the driver. In addition the application must use an integer factor of the 
data transfer buffers. The maximum transfer rate achieved by the correct settings was 
8Mb/s that is 1 megabyte/sec. The ineffective driver source code is the bottleneck of the 
communication, which prevents achieving the maximum transfer rate. 

4 Future Work 

In the future we want to embed the microprocessor into the FPGA. We expect to use the 
microprocessor developed at CTU. We plan to finish the core in such a way that it can be 
easily integrated into other projects. We need to further optimize the usage of the FPGA 
internal memory. 

5 Summary 

The result of our work is USB 1.1 VHDL core written in the VHDL language. We have 
implemented only the BULK mode for data transfer and the CONTROL mode for 
enumeration. We achieved 1 megabyte/sec transfer rate for BULK mode. The USB core 



occupies 1165 slices, 520 of these are used for buffers. We implemented the USB bus 
analyzer working concurrently with the USB core.   
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