
An Efficient Multiple-Parity Generator Design for On-Line Testing on FPGA

Petr Fišer, Pavel Kubalík, Hana Kubátová
Czech Technical University in Prague, Dept. of Computer Science and Engineering

e-mail: fiserp@fel.cvut.cz, xkubalik@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract
We propose a method to efficiently design a “parity

generator”, which is a stand-alone block producing
multiple parity bits of a given circuit. The parity
generator is designed by duplicating the original
circuit, XOR-ing given groups of its outputs and
resynthesizing the whole circuit. The resulting circuitry
is mostly smaller than the original circuit. The major
task to be solved is to properly select the groups
of outputs to be XORed to obtain multiple parity bits
and maximally reduce the generator size. A method
based on principles of the FC-Min minimizer is
proposed in this paper. The parity generator is
exploited in on-line diagnostics, to design self-checking
circuits based on a modified duplex system.

1. Introduction
Systems realized by FPGAs are being more and

more popular and widely used in many applications
due to several advantages they possess, like a high
flexibility in achieving multiple requirements such
as cost, performance and turnaround time and the
possibility of reconfiguration. The FPGA circuits can
be used in mission critical applications such
as aviation, medicine, railway applications, and space
missions as well [1]. Most of FPGAs are based
on SRAM memories sensitive to Single Even Upsets
(SEUs), therefore a simple usage of FPGA circuits
in mission critical applications without using any
method of error detection (and possibly correction) is
impossible. The Concurrent Error Detection (CED)
techniques allow a faster detection of soft errors (errors
which can be corrected by reconfiguration) caused
by SEUs [2]. The probability of a SEU occurrence
in the SRAM is described in [3].

The self-checking (SC) circuit based on a CED
technique is used to detect an occurrence of a fault
in the tested circuit. We use the Modified Duplex
System (MDS) architecture [4]. The self checking
circuit quality is determined by an area overhead and
the number of undetectable faults while keeping
dependability parameters [5].

This paper presents a parity generator design
method based on parity bits grouping, by using

the FC-Min minimizer [6, 7]. Here we exploit
principles of sharing group implicants among two or
more outputs of the function. The groups of outputs
to be XORed are derived from the numbers of group
implicants they share.

2. The Parity Generator
The self-checking circuit is constructed

by duplicating the original circuit and XORing the
outputs of the duplicate circuit, to obtain multiple
parity bits. The code words obtained by the original
circuit and the parity generator are then compared
in the Checker, see Fig. 1.

Combinational
circuit

Inputs

}
Parity

predictor

Checker

circuit
Outputs

code
word

Check
bits

Figure 1: The self-checking circuit design

The number of used parity bits significantly
influences the area overhead, together with the
dependability parameters, see [8].

3. FC-Min
The output grouping method is based on the

FC-Min minimizer principles [6]. The minimization is
being conducted in a reverse way than the standard
minimizers do. First, the group cover of the on-set
of all output functions is found. After that the
minimized implicants are produced by processing the
source implicants, in order to satisfy the cover. Thus,
group implicants are generated directly, not like
in other minimization methods by reducing prime
implicants of single functions. This approach makes
FC-Min a very fast, since only implicants that will be a
part of the final solution are produced.

The minimization process consists of two processes:
the Find Coverage algorithm and Implicants
Generation.

The Find Coverage process is the essential phase
of FC-Min. The whole cover of the on-set of the
multi-output function is found first, using the output
part of the source function only. The algorithm tries
to find a cover of the on-set by finding a rectangle
cover of all the “1” values in the output matrix
(description of the function’s on-set).

An example of such a cover is shown in Fig. 2.
There is shown a 5-input and 5-output function defined
by 10 terms, in a form of a truth table. The result of the
Find Coverage algorithm is a cover consisting of six
coverage elements, t1 – t6. A coverage element is a
Cartesian product of two sets, the coverage set C(ti)
and the coverage mask M(ti). The coverage set
describes the rows that are covered by ti, the coverage
mask gives the output variables covered by ti. Our
example coverage elements are shown in Tab. 1.

Each coverage element describes a potential
implicant. For example, the group term (implicant) t1
covers “1”s of the fourth and fifth output variable (y3
and y4) in vectors 4, 6 and 8.

11010 10000
10000 11100
01001 01100
01111 01010
00110 00111
01110 00000
10110 00011
00001 01101
10101 10111
11100 10100

{y -y0 4

Figure 2: Cover of the output matrix

Table 1: Coverage elements from Fig. 2

Implicant C(ti) M(ti)
t1 {4, 6, 8} {y3, y4} ≡ 00011
t2 {1, 2, 7} {y1, y2} ≡ 01100
t3 {8, 9} {y0, y2} ≡ 10100
t4 {3} {y1, y3} ≡ 01010
t5 {0, 1} {y0, y1} ≡ 10000
t6 {4, 7} {y2, y4} ≡ 00101

After each coverage element is produced, it has

to be validated, i.e., we must verify, whether there exist
an implicant covering the “1”s in C(ti) × M(ti). This is
done by directly generating the respective implicant.
If this process fails, the coverage element is discarded
and another, different one is computed.

Considering the conditions described above,
a simple rule the implicants have to satisfy can be
derived: the minimum implicant satisfying the
particular cover can be constructed as a minimum
supercube of all the input vectors corresponding to the

rows of the cover of ti. Moreover, this supercube must
not intersect any term that is not included in the
particular cover C(ti). In our example, the minimum
implicant t1 would be (-01--).

4. The Output Grouping
The idea of grouping multiple-output function’s

outputs to form multiple parity bits is straightforward:
we try to group together outputs having many common
group implicants. Such outputs will more likely share
some terms, thus grouping them together would be
advantageous for a two-level implementation of the
source multi-output function. We have found
experimentally that the same effect can be observed for
a multi-level synthesis as well; the outputs sharing
many group implicants share a lot of logics in the
multi-level implementation of the function as well [7].
When these outputs are connected by a XOR gate
to form a parity bit and the circuit is resynthesized, the
overall logic could be furthermore reduced.

Since there are often big numbers of possible group
implicants (coverage elements) and output variables, it
is not easy to combine the influences of the implicants.
We have found that an efficient way to estimate the
grouping of the outputs is by constructing a grouping
matrix G. It is a symmetric matrix of dimensions
[m, m], where m is the number of outputs. The value
G[i, j] defines the “binding strength” of two output
variables i and j.

The G matrix is being constructed during the
coverage generation process. Firstly, the matrix is
filled with zeros. After each valid coverage element is
produced, the values in all the positions in G
corresponding to all the couples of variables in M(ti)
are increased by one. This describes an increased
likelihood that the outputs y3 and y4 will be grouped
together. For details see [7].

5. Experimental Results

5.1. The Overall Synthesis Process
The overall synthesis process, i.e., the way how all

the tests have been performed will be described in this
subsection.

The source functions for our experiments were the
MCNC [11] benchmark circuits. The parity generator
design process has been held in the following steps:
1. First, the benchmark described as a PLA structure

has to be pre-processed, in order to generate the
function’s on-set and off-set, which is needed for
FC-Min. This is done by ESPRESSO [10].

2. The circuit is then processed by FC-Min, to derive
the output grouping.

3. The obtained groups of outputs are XORed, to obtain
the parity bits. This is done by converting the
original circuit’s PLA into a BLIF [9] file by SIS [9]
and appending the XOR gates to the outputs.

4. The obtained parity generator is decomposed into
LUTs by SIS. The number LUTs is counted then,
to make an estimation of the size of the parity
generator.

5.2. The Efficiency of the Method
In order to evaluate the efficiency of the proposed

method, we have compared the FC-Min based parity
bits grouping with a purely random grouping. We have
varied the number of parity bits from one to the
number of the circuit’s outputs. One limit, the 1-parity
bit case, involves XORing all of the circuit’s outputs,
thus any “smart” output grouping method cannot come
into effect. The second limit case, i.e., the number
of parity bits equal to the number of outputs,
corresponds to the original circuit (no XORs). For each
benchmark circuit and a given number of parity bits,
500 random and 500 FC-Min based output groupings
have been generated and the average of each was
taken. A typical growth of the number of look-up
tables (LUTs) for the FPGA realization obtained
by SIS [9] is shown in Fig. 3a for a sqr6 MCNC [11]
benchmark circuit. The size of the circuit grows with
the number of parity bits here. It can be concluded that
by XORing the circuit’s output its size is reduced after
resynthesis; producing the parity bits only is
advantageous here, with respect to the total area.

On the other hand, Fig. 3b shows the alu2
benchmark results. Here the number of LUTs increases
with decreasing the number of the parity bits, thus
adding XORs to the circuit inputs involves the circuit
size growth, even after the resynthesis. Adding XOR
gates to their output just increases their complexity
and, moreover, standard synthesis tools, like SIS are
not able to handle such circuits efficiently [12].
Fortunately, such cases are quite rare.

Two curves are shown in figures 3a and 3b. One
curve corresponds to the FC-Min based output
grouping, one to a random grouping. We can see that
the FC-Min grouping always produced a circuit having
fewer LUTs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25

30

35

40

Random

FC-Min

sqr6

LU
Ts

Parity bits

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Random

FC-Min

alu2

LU
Ts

Parity bits

Figure 3a,b: The sqr6 and alu2 MCNC example

The summary results obtained from several MCNC
benchmarks [11] are shown in Tab. 2. The “Bench”
column shows the benchmark name, the number of its
outputs follows (m). The ratio of the size of a 1-parity
generator to the original circuit is shown in the next
column (“Ratio”). 100% means no difference, circuits
having the ratio less than 100% correspond to the
Fig. 3a case, ratios higher than 100% to the Fig. 3b.

The average and maximum improvement obtained
by our output grouping method, with respect to the
random grouping is shown in the next two columns,
in terms of the number of LUTs. The number of parity
bits, where the maximum improvement was reached is
indicated in the parentheses in the “Max. impr.“
column. The average improvement values computed
from results of 40 circuits are indicated in the last row.

Table 2: Output grouping results

Bench m Ratio Avg. impr. Max. impr.
alu1 8 3950.0% 11.7% 37.9% (4)
alu2 8 284.8% 25.3% 42.9% (3)
alu3 8 356.7% 3.5% 8.9% (4)
apla 12 32.2% 13.8% 28.0% (4)
br1 8 35.9% 7.4% 18.9% (5)
br2 8 15.7% 13.4% 36.4% (4)
in2 10 33.3% 6.1% 21.3% (7)
in7 10 86.2% 30.4% 51.5% (2)
m1 12 11.1% 6.8% 33.3% (4)
m2 16 13.3% 15.6% 32.4% (4)
mlp4 8 20.0% 6.6% 26.9% (6)
mp2d 14 151.4% 25.1% 42.0% (3)
newbyte 8 6.3% 11.7% 37.9% (4)
newcpla 16 52.4% 17.4% 28.2% (6)
newcpla2 10 19.4% 29.9% 53.3% (3)
p82 14 8.6% 4.3% 20.0% (10)
sex 14 47.4% 23.4% 38.1% (9)
sqr6 12 18.9% 13.9% 25.0% (9)
t4 8 192.9% 6.8% 28.6% (4)
tms 16 8.3% 10.1% 27.3% (10)
Average 10.1% 24.0%

5.3. The Dependability Parameters
Availability computations were used to compare our

modified duplex system with a standard duplex system
and with the TMR (Triple Modular Redundancy)
system. Availability is a function of a time A(t),
defined as the probability that a system is operating
correctly and is available to perform its functions at an
instant of a time t.

Dependability calculations are processed for a
single parity first, then for a multiple parity. In the
multiple parity case 2 or 3 parity groups were selected.

Our results of improved availability parameters are
shown in Tab. 3. Here “Bench” is the name of the
benchmark circuit, “AO” is the area overhead, “FS” is
the probability that a fault is detected by a code word,
“ASS” is the steady-state availability and “Impr. ASS”
indicates the improvement of ASS against single parity
when multiple parity is used. The results show that the
multiple parity predictor technique can be used
to improve steady state availability parameters.
In some cases the improvement of availability
parameter is more than 10%.

6. Conclusions
We have proposed an efficient method to design a

multiple parity generator for on-line BIST. The method
is based on properly choosing the original circuit’s
outputs to be XORed to obtain respective parity bits.
The choice is being done by determining outputs that
share many group implicants in the two-level
representation of the multi-output function. These
outputs share a lot of combinational logic and, most
likely, the amount of the overall logic would be
reduced by appending XOR gates to these outputs.

The availability parameters of the MDS architecture
based on self-checking circuits have been calculated.
The results show that using the multiple parity bits
increase availability parameters at the price of a higher
area overhead, with respect to the single parity case.

Acknowledgment
This research has been partially supported

by MSMT under research program MSM6840770014
and FI-IM4/149 grant.

References
[1] D. Ratter, ” FPGAs on Mars”, www.xilinx.com,Xcell Journal

Online, 2004.
[2] M. Bellato, P. Bernardi, D. Bortalato, et al., “Evaluating the

effects of SEUs affecting the configuration memory of an
SRAM-based FPGA”, Design Automation Event for Electronic
System in Europe 2004, pp. 584-589.

[3] E. Normand, “Single Event Upset at Ground Level,” IEEE
Transactions on Nuclear Science, vol. 43, 1996, pp. 2742-2750.

[4] P. Kubalik, R. Dobias and H. Kubatova, “Dependable Design
for FPGA based on Duplex System and Reconfiguration”, In
Proc. of 9th Euromicro Conference on Digital System Design,
Los Alamitos: IEEE Computer Society, 2006, pp. 139-145.

[5] D.K. Pradhan, “Fault-Tolerant Computer System Design”,
Prentice-Hall, Inc., New Jersey, 1996.

[6] P. Fišer, J. Hlavička and H. Kubátová. FC-Min: A Fast Multi-
Output Boolean Minimizer, Proc. 29th Euromicro Symposium
on Digital Systems Design (DSD'03), Antalya (TR), 1.-
6.9.2003, pp. 451-454.

[7] P. Fišer and H. Kubátová, “Output Grouping-Based
Decomposition of Logic Functions”:, Proc. 8th IEEE Design
and Diagnostics of Electronic Circuits and Systems Workshop
2005 (DDECS'05), Sopron, HU, 13.-16.4.2005, pp. 137-144.

[8] P. Kubalík, P. Fišer and H. Kubátová, “Fault Tolerant System
Design Method Based on Self-Checking Circuits”, Proc. 12th
International On-Line Testing Symposium 2006 (IOLTS'06),
Lake of Como, Italy, July 10-12, 2006.

[9] E.M. Sentovich et al. “SIS: A System for Sequential Circuit
Synthesis”, Electronics Research Laboratory Memorandum No.
UCB/ERL M92/41, University of California, Berkeley, CA
94720, 1992.

[10] R.K. Brayton, et al. „Logic Minimization Algorithms for VLSI
Synthesis”, Boston, MA, Kluwer Academic Publishers, 1984.

[11] S. Yang, “Logic Synthesis and Optimization Benchmarks User
Guide”, Technical Report 1991-IWLS-UG-Saeyang, MCNC,
Research Triangle Park, NC, January 1991

[12] J. Cong and K. Minkovich, “Optimality Study of Logic
Synthesis for LUT-Based FPGAs”, Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on
CAD, Vol. 26, Issue 2, Feb. 2007, pp. 230 – 239.

Table 3: Improved availability parameters

Bench Single parity Multiple parity Impr.
ASS AO FS ASS AO FS ASS

alu1 3337.5% 100.0% 1 275.00% 100.00% 1 0.0%
apla 40.5% 74.3% 0.999988965 76.19% 87.21% 0.999991356 18.2%
b10 26.7% 92.6% 0,999997416 44.40% 95.83% 0,999998095 3.4%
dk17 41.9% 84.9% 0.999993387 100.00% 95.23% 0.999995824 13.9%
f51m 50.0% 87.2% 0.999993736 72.22% 88.48% 0.999992583 -7.4%
newapla 43.8% 85.3% 0.999993388 75.00% 92.81% 0.999995204 10.7%
newbyte 11.1% 100.0% 1 33.33% 100.00% 1 0.0%
p82 14.7% 85.3% 0.999995793 20.59% 90.33% 0.999996931 6.1%
sex 57.9% 83.6% 0.999991106 84.21% 92.35% 0.999994391 20.4%

