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Abstract 
We propose a method to efficiently design a “parity 

generator”, which is a stand-alone block producing 
multiple parity bits of a given circuit. The parity 
generator is designed by duplicating the original 
circuit, XOR-ing given groups of its outputs and 
resynthesizing the whole circuit. The resulting circuitry 
is mostly smaller than the original circuit. The major 
task to be solved is to properly select the groups 
of outputs to be XORed to obtain multiple parity bits 
and maximally reduce the generator size. A method 
based on principles of the FC-Min minimizer is 
proposed in this paper. The parity generator is 
exploited in on-line diagnostics, to design self-checking 
circuits based on a modified duplex system. 

1. Introduction 
Systems realized by FPGAs are being more and 

more popular and widely used in many applications 
due to several advantages they possess, like a high 
flexibility in achieving multiple requirements such 
as cost, performance and turnaround time and the 
possibility of reconfiguration. The FPGA circuits can 
be used in mission critical applications such 
as aviation, medicine, railway applications, and space 
missions as well [1]. Most of FPGAs are based 
on SRAM memories sensitive to Single Even Upsets 
(SEUs), therefore a simple usage of FPGA circuits 
in mission critical applications without using any 
method of error detection (and possibly correction) is 
impossible. The Concurrent Error Detection (CED) 
techniques allow a faster detection of soft errors (errors 
which can be corrected by reconfiguration) caused 
by SEUs [2]. The probability of a SEU occurrence 
in the SRAM is described in [3]. 

The self-checking (SC) circuit based on a CED 
technique is used to detect an occurrence of a fault 
in the tested circuit. We use the Modified Duplex 
System (MDS) architecture [4]. The self checking 
circuit quality is determined by an area overhead and 
the number of undetectable faults while keeping 
dependability parameters [5].  

This paper presents a parity generator design 
method based on parity bits grouping, by using 

the FC-Min minimizer [6, 7]. Here we exploit 
principles of sharing group implicants among two or 
more outputs of the function. The groups of outputs 
to be XORed are derived from the numbers of group 
implicants they share.  

2. The Parity Generator 
The self-checking circuit is constructed 

by duplicating the original circuit and XORing the 
outputs of the duplicate circuit, to obtain multiple 
parity bits. The code words obtained by the original 
circuit and the parity generator are then compared 
in the Checker, see Fig. 1. 
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Figure 1: The self-checking circuit design 

The number of used parity bits significantly 
influences the area overhead, together with the 
dependability parameters, see [8]. 

3. FC-Min 
The output grouping method is based on the 

FC-Min minimizer principles [6]. The minimization is 
being conducted in a reverse way than the standard 
minimizers do. First, the group cover of the on-set 
of all output functions is found. After that the 
minimized implicants are produced by processing the 
source implicants, in order to satisfy the cover. Thus, 
group implicants are generated directly, not like 
in other minimization methods by reducing prime 
implicants of single functions. This approach makes 
FC-Min a very fast, since only implicants that will be a 
part of the final solution are produced. 

The minimization process consists of two processes: 
the Find Coverage algorithm and Implicants 
Generation. 



The Find Coverage process is the essential phase 
of FC-Min. The whole cover of the on-set of the 
multi-output function is found first, using the output 
part of the source function only. The algorithm tries 
to find a cover of the on-set by finding a rectangle 
cover of all the “1” values in the output matrix 
(description of the function’s on-set). 

An example of such a cover is shown in Fig. 2. 
There is shown a 5-input and 5-output function defined 
by 10 terms, in a form of a truth table. The result of the 
Find Coverage algorithm is a cover consisting of six 
coverage elements, t1 – t6. A coverage element is a 
Cartesian product of two sets, the coverage set C(ti) 
and the coverage mask M(ti). The coverage set 
describes the rows that are covered by ti, the coverage 
mask gives the output variables covered by ti. Our 
example coverage elements are shown in Tab. 1. 

Each coverage element describes a potential 
implicant. For example, the group term (implicant) t1 
covers “1”s of the fourth and fifth output variable (y3 
and y4) in vectors 4, 6 and 8. 
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Figure 2: Cover of the output matrix 

Table 1: Coverage elements from Fig. 2 

Implicant C(ti) M(ti) 
t1 {4, 6, 8} {y3, y4} ≡ 00011 
t2 {1, 2, 7} {y1, y2} ≡ 01100 
t3 {8, 9} {y0, y2} ≡ 10100 
t4 {3} {y1, y3} ≡ 01010 
t5 {0, 1} {y0, y1} ≡ 10000 
t6 {4, 7} {y2, y4} ≡ 00101 

 
After each coverage element is produced, it has 

to be validated, i.e., we must verify, whether there exist 
an implicant covering the “1”s in C(ti) × M(ti). This is 
done by directly generating the respective implicant. 
If this process fails, the coverage element is discarded 
and another, different one is computed. 

Considering the conditions described above, 
a simple rule the implicants have to satisfy can be 
derived: the minimum implicant satisfying the 
particular cover can be constructed as a minimum 
supercube of all the input vectors corresponding to the 

rows of the cover of ti. Moreover, this supercube must 
not intersect any term that is not included in the 
particular cover C(ti). In our example, the minimum 
implicant t1 would be (-01--). 

4. The Output Grouping 
The idea of grouping multiple-output function’s 

outputs to form multiple parity bits is straightforward: 
we try to group together outputs having many common 
group implicants. Such outputs will more likely share 
some terms, thus grouping them together would be 
advantageous for a two-level implementation of the 
source multi-output function. We have found 
experimentally that the same effect can be observed for 
a multi-level synthesis as well; the outputs sharing 
many group implicants share a lot of logics in the 
multi-level implementation of the function as well [7]. 
When these outputs are connected by a XOR gate 
to form a parity bit and the circuit is resynthesized, the 
overall logic could be furthermore reduced. 

Since there are often big numbers of possible group 
implicants (coverage elements) and output variables, it 
is not easy to combine the influences of the implicants. 
We have found that an efficient way to estimate the 
grouping of the outputs is by constructing a grouping 
matrix G. It is a symmetric matrix of dimensions 
[m, m], where m is the number of outputs. The value 
G[i, j] defines the “binding strength” of two output 
variables i and j. 

The G matrix is being constructed during the 
coverage generation process. Firstly, the matrix is 
filled with zeros. After each valid coverage element is 
produced, the values in all the positions in G 
corresponding to all the couples of variables in M(ti) 
are increased by one. This describes an increased 
likelihood that the outputs y3 and y4 will be grouped 
together. For details see [7]. 

5. Experimental Results 

5.1. The Overall Synthesis Process 
The overall synthesis process, i.e., the way how all 

the tests have been performed will be described in this 
subsection. 

The source functions for our experiments were the 
MCNC [11] benchmark circuits. The parity generator 
design process has been held in the following steps: 
1. First, the benchmark described as a PLA structure 

has to be pre-processed, in order to generate the 
function’s on-set and off-set, which is needed for 
FC-Min. This is done by ESPRESSO [10]. 

2. The circuit is then processed by FC-Min, to derive 
the output grouping. 



3. The obtained groups of outputs are XORed, to obtain 
the parity bits. This is done by converting the 
original circuit’s PLA into a BLIF [9] file by SIS [9] 
and appending the XOR gates to the outputs. 

4. The obtained parity generator is decomposed into 
LUTs by SIS. The number LUTs is counted then, 
to make an estimation of the size of the parity 
generator. 

5.2. The Efficiency of the Method 
In order to evaluate the efficiency of the proposed 

method, we have compared the FC-Min based parity 
bits grouping with a purely random grouping. We have 
varied the number of parity bits from one to the 
number of the circuit’s outputs. One limit, the 1-parity 
bit case, involves XORing all of the circuit’s outputs, 
thus any “smart” output grouping method cannot come 
into effect. The second limit case, i.e., the number 
of parity bits equal to the number of outputs, 
corresponds to the original circuit (no XORs). For each 
benchmark circuit and a given number of parity bits, 
500 random and 500 FC-Min based output groupings 
have been generated and the average of each was 
taken. A typical growth of the number of look-up 
tables (LUTs) for the FPGA realization obtained 
by SIS [9] is shown in Fig. 3a for a sqr6 MCNC [11] 
benchmark circuit. The size of the circuit grows with 
the number of parity bits here. It can be concluded that 
by XORing the circuit’s output its size is reduced after 
resynthesis; producing the parity bits only is 
advantageous here, with respect to the total area. 

On the other hand, Fig. 3b shows the alu2 
benchmark results. Here the number of LUTs increases 
with decreasing the number of the parity bits, thus 
adding XORs to the circuit inputs involves the circuit 
size growth, even after the resynthesis. Adding XOR 
gates to their output just increases their complexity 
and, moreover, standard synthesis tools, like SIS are 
not able to handle such circuits efficiently [12]. 
Fortunately, such cases are quite rare. 

Two curves are shown in figures 3a and 3b. One 
curve corresponds to the FC-Min based output 
grouping, one to a random grouping. We can see that 
the FC-Min grouping always produced a circuit having 
fewer LUTs. 
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Figure 3a,b: The sqr6 and alu2 MCNC example 

The summary results obtained from several MCNC 
benchmarks [11] are shown in Tab. 2. The “Bench” 
column shows the benchmark name, the number of its 
outputs follows (m). The ratio of the size of a 1-parity 
generator to the original circuit is shown in the next 
column (“Ratio”). 100% means no difference, circuits 
having the ratio less than 100% correspond to the 
Fig. 3a case, ratios higher than 100% to the Fig. 3b.  

The average and maximum improvement obtained 
by our output grouping method, with respect to the 
random grouping is shown in the next two columns, 
in terms of the number of LUTs. The number of parity 
bits, where the maximum improvement was reached is 
indicated in the parentheses in the “Max. impr.“ 
column. The average improvement values computed 
from results of 40 circuits are indicated in the last row. 

Table 2: Output grouping results 

Bench m Ratio Avg. impr. Max. impr. 
alu1 8 3950.0% 11.7% 37.9% (4) 
alu2 8 284.8% 25.3% 42.9% (3) 
alu3 8 356.7% 3.5% 8.9% (4) 
apla 12 32.2% 13.8% 28.0% (4) 
br1 8 35.9% 7.4% 18.9% (5) 
br2 8 15.7% 13.4% 36.4% (4) 
in2 10 33.3% 6.1% 21.3% (7) 
in7 10 86.2% 30.4% 51.5% (2) 
m1 12 11.1% 6.8% 33.3% (4) 
m2 16 13.3% 15.6% 32.4% (4) 
mlp4 8 20.0% 6.6% 26.9% (6) 
mp2d 14 151.4% 25.1% 42.0% (3) 
newbyte 8 6.3% 11.7% 37.9% (4) 
newcpla 16 52.4% 17.4% 28.2% (6) 
newcpla2 10 19.4% 29.9% 53.3% (3) 
p82 14 8.6% 4.3% 20.0% (10) 
sex 14 47.4% 23.4% 38.1% (9) 
sqr6 12 18.9% 13.9% 25.0% (9) 
t4 8 192.9% 6.8% 28.6% (4) 
tms 16 8.3% 10.1% 27.3% (10) 
Average   10.1% 24.0% 

5.3. The Dependability Parameters 
Availability computations were used to compare our 

modified duplex system with a standard duplex system 
and with the TMR (Triple Modular Redundancy) 
system. Availability is a function of a time A(t), 
defined as the probability that a system is operating 
correctly and is available to perform its functions at an 
instant of a time t.  



Dependability calculations are processed for a 
single parity first, then for a multiple parity. In the 
multiple parity case 2 or 3 parity groups were selected. 

Our results of improved availability parameters are 
shown in Tab. 3. Here “Bench” is the name of the 
benchmark circuit, “AO” is the area overhead, “FS” is 
the probability that a fault is detected by a code word, 
“ASS” is the steady-state availability and “Impr. ASS” 
indicates the improvement of ASS against single parity 
when multiple parity is used. The results show that the 
multiple parity predictor technique can be used 
to improve steady state availability parameters.  
In some cases the improvement of availability 
parameter is more than 10%. 

6. Conclusions 
We have proposed an efficient method to design a 

multiple parity generator for on-line BIST. The method 
is based on properly choosing the original circuit’s 
outputs to be XORed to obtain respective parity bits. 
The choice is being done by determining outputs that 
share many group implicants in the two-level 
representation of the multi-output function. These 
outputs share a lot of combinational logic and, most 
likely, the amount of the overall logic would be 
reduced by appending XOR gates to these outputs. 

The availability parameters of the MDS architecture 
based on self-checking circuits have been calculated. 
The results show that using the multiple parity bits 
increase availability parameters at the price of a higher 
area overhead, with respect to the single parity case. 
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Table 3: Improved availability parameters 
 

 

Bench Single parity Multiple parity Impr. 
ASS AO FS ASS AO FS ASS 

alu1 3337.5% 100.0% 1 275.00% 100.00% 1 0.0% 
apla 40.5% 74.3% 0.999988965 76.19% 87.21% 0.999991356 18.2% 
b10 26.7% 92.6% 0,999997416 44.40% 95.83% 0,999998095 3.4% 
dk17 41.9% 84.9% 0.999993387 100.00% 95.23% 0.999995824 13.9% 
f51m 50.0% 87.2% 0.999993736 72.22% 88.48% 0.999992583 -7.4% 
newapla 43.8% 85.3% 0.999993388 75.00% 92.81% 0.999995204 10.7% 
newbyte 11.1% 100.0% 1 33.33% 100.00% 1 0.0% 
p82 14.7% 85.3% 0.999995793 20.59% 90.33% 0.999996931 6.1% 
sex 57.9% 83.6% 0.999991106 84.21% 92.35% 0.999994391 20.4% 


