
Experimental emulation of FPGA bitstream faults in
combinatorial circuits

Jiří Kvasnička, Pavel Kubalík, Hana Kubátová

Department of Computer Science and Engineering

Czech Technical University in Prague
Karlovo nam. 13, 121 35 Prague 2

{kvasnj1, xkubalik, kubatova}@fel.cvut.cz

Abstract. Abstract—The main aim of our research is to design dependable
circuit in FPGA. To make a real dependability model the real effects of injected
errors and faults have to be studied. We proposed a hardware fault emulator
here. The emulator deals with single-bit change in bitstream. Emulation is
performed in user-selected area. Look-Up-Tables, cell interconnection, cell-to-
bus connection and routing resources are considered. Other FPGA resources are
not considered. Only combinatorial circuits and benchmarks were measured due
to our knowledge of FPGA resource limitation. All tests were performed on
Atmel FPSLIC architecture.

1 Introduction

The size, versatility, and price of commercial Field Programmable Logic Arrays
(FPGAs) allows replacing ASICs in many applications [1]-[3]. The SRAM, which the
FPGA configuration is based on, is sensitive on Single Event Upset SEU [4]. The
SEU can be caused by high-energy particles hitting the silicon and changing the logic
state of the SRAM cell.

The main aim of our research is to design dependable circuit in FPGA. To make a
real dependability model the real effects of injected errors and faults have to be
studied. This paper is about the detailed analysis about the possible faults and their
effects to the final design implemented in FPGA. Experiments apply fault injection
into the bitstream and emulation method [5-8].

The SEU impact to FPGA was also performed by another research group [6]. Here
the possible situations are divided into 6 groups. Models and experiments were done
for ATMEL FPGAs. Results could lead to reliability parameters increasing in our
future research. Some publications have focused on reliable systems based on a single
FPGA using a Triple Module Redundancy (TMR) structure inside [9] and [10]. These
techniques can be based on knowledge of FPGA reliability resources cost.

The structure of the paper is following: The section 2 describes our proposed
classes for Area in FPGA and possible classes of faults in FPGA structure. The
section 3 describes our emulator, where the measurement was performed. The section
4 shows result from the experimental fault injection, and the section 5 concludes the
results and the contribution of the measurement.

2 FPGA fault analysis

The main problem in detailed studies of real faults and their effects to the function of
design implemented in FPGA is the very confined knowledge of front-end of FPGA
professional design tools (due to licensees). Here the detailed experiments and
methods how to get know this information are presented.

2.1 FPGA resources

The FPGA resources were divided into disjoint sets (listed below), which are
specified by their location and function.
1. LUT: It holds the logic function in SRAM memory.
2. Cell interconnection: The configuration of Logic cells; these bits are responsible

for the LUT correct inputs selection; feedback in logic cell, correct output selection
(registered/nonregistered function, 3- or 4-input LUT organization).

3. BUS to Cell/Cell to BUS: This is a bidirectional connection, which connects the
Logic Cell to one of BUS plane.

4. BUS crossing: This is a connection in the centre of perpendicular bus crossing,
which allows connections between these lines.

5. BUS repeater: This is a simple 4-port switchbox. It allows driving of each wire
from every input.

6. Forbidden: These are bits, that have their own place in bitstream, but a physical
SRAM cell is probably not assigned to them. This is caused by the bitstream byte
organization. It is also possible that these bits have other (for us unknown)
meaning. We assume, that these bits does not exist therefore should not be tested.

7. Unexplored: other resources, which were not listed above. The position in the
bitstream implies their usage, although their exact role in the bitstream has not
been completely analysed. Parts of RAM, reset and clock resources are expected to
lie in this category.

This list is not complete. RAM, reset, clocks and I/O pad (only partially covered here
by unexplored set) are missing in the list. Our emulator almost doesn’t use them.

However incompleteness of the list does not imply that SEU occurrence in
nonlisted region could not destroy the design. The time needed to determine the
category, which the bit belong in, corresponds to)1(O time complexity.

2.2 Fault groups

Primary goal of fault division is a separation of bits, which can never influence on the
function of the loaded design, and bits which can lead to the modification of the
design. Such a classification is possible only when the complete structure of FPGA is
known (and corresponding bitstream position is known).

A class cannot be correctly evaluated without knowledge of wire state (Function,
constant or High-Z) and current bit value. The computation is therefore based on the
design bitstream, because the distribution into these groups is specified by the
physical layout of the FPGA.

Fig. 1. Fault groups

Fig. 2. Used bits: a) connection (open possible), b) no connection (short circuit possible) and c)

no connection (antenna possible)

Every fault belongs to one fault group, as shown in Fig. 1. In the first
approximation, the bit is placed in Used, Unused or Unknown group.
1. Unused: this bit does not concern the design area. No signal path can exist between

the design and wires associated with the fault. Therefore neither static nor dynamic
design changes in the design are expected. Although, such a fault could potentially
lead to higher static current consumption when ‘0’ collides with ‘1’.

2. Used: This group belongs to bits, which are primary created by the design of
connecting resources (a sample shown on Bus crossing in Fig. 2.a or by standing in
the critical position, where switching this resource can lead to conflict (Fig. 2.b) or
alternation.
Any bit from this group influences an active part of the design. Alternation of this
bit can lead to the design modification, shorts in design, open on the datapath,
which can functionally alter the design. A special group, antenna, can alter only
the dynamic behavior by adding an extra capacitance to load (Fig. 2.c).

3. Unknown: A class of bits, whose correct class can not be evaluated. This, in
simplification, can be caused by unknown state on the wire, or by missing
information about the bit meaning in FPGA resources.

2.2.1 Subcategories of used bits
A group of used bits covers many versatile types of fault. Almost all of them can lead
to design functional alternation. The only exception is Antenna group.

All the Figures in this subsection show both the original (correct) configuration and
the modified configuration (after the fault).

Fig. 3. Open at the bus crossing

Fig. 4. Open in 2:1 mux

Fig. 5. Alternate at 2:1 multiplexor

Fig. 6. Alternate at LUT

Fig. 7. Conflict at the bus crossing

Fig. 8. Conflict in multiplexor – multiple input

1. Open: The basic model of this class is a wire interruption, which can have many
different origins in the FPGA architecture. The most lucid case is an open in bus
crossing (Fig. 3).
Another case of open is in 2:1 mux, where the resulting function (on the left)
suddenly has no source driver on the fault occurrence. This case is shown on Fig. 4
and assumes transfer-gate mux realization:

2. Alternate: These bits alternate the design without any conflict on the bus. A 2:1
mux with configuration shown in Fig. 5 is a typical example of alternate group. In
some situation (e.g. Fig. 5), the alternate fault can be viewed as a special
combination of open and antenna, which does not leave any wire undriven and
which does not creates conflict when connecting another signal.
 A special case, when both f1 and f2 are the same function, is possible, but these
cases are neither detected nor separated in our fault emulator. Another example is a
bit alternation in truth table of LUT. (Fig. 6).

3. Conflict: This is a special category defined by connecting of two or more driven
wires. This conflict leads to a short circuit between power supply and ground
through the drivers. The result of conflict is hard to predict, unless a detailed FPGA
layout is known. A simple conflict can occur on BUS crossings (Fig. 7). The “◦”
operator in Figures 7 and following should be interpreted as dominance: if one of
the operands can drain more current, that will be result of the “◦” operator.
 Conflicts can also occur in multiplexers when selecting more than 1 input (see
Fig. 8). Another possibility of signal conflict is in bus network. In altered state, a
conflict on a common bus wire can occur (Fig. 9), with the same current drain
strength of the drivers.

Fig. 9. Conflict at the bus repeater

A conflict is separated into 2 subcategories:
• “0-F” in cases, where any function conflicts with constant ‘0’
• “F-F”, where conflict is between two non-constant functions.

4. Unpredictable faults are a special case of open, where the default logical value ‘1’
is substituted with ‘Z’. Two cases in FPSLIC architecture are presented at Figures
10 and 11. These unpredictable faults were separated from other faults only
because of unknown physical layout of these elements.

5. Antenna: A special case of a used bit, where an unused wire is connected to the
datapath. This fault statically has no influence on the design function. An example
of antenna fault is shown in bus crossing at Fig. 12. When the appended wire has
not assigned a driver, the appended line is driven from the first input (Fig.13.)
 Another multiplexor configuration is shown in Fig. 14. The multiplexor has no
selected input. The output wire of the multiplexor is not driven nor read. Selecting
the input will not harm the design, it append an unused wire to the datapath.

Fig. 14. Output antenna at mux with no input selection

 Since a bus repeater has a build-in driver, the appended output should be not as
big capacitance as other listed cases. Despite, such case is also considered as
antenna.

Fig. 10. Unpredictable output enable buffer

f1

f0

f1

f1?

f0?

?

0 1

Fig. 11. Unpredictable mux selector driver

Fig. 12. Antenna at the bus crossing

..
.

..
.

Fig. 13. Antenna in the mux, multiple inputs

3 Our Emulator

Fig. 15. The FPGA fault emulator overview

Fig. 16. Resources in Bitstream distribution
for Atmel At40 FPGA. Dark slices (IO pads

and Others) were not tested

We used a hardware emulator described in [8], which was extended by ability to test
bits listed in chapter 2.1. The SEU fault is emulated in the FPGA through the dynamic
reconfiguration. Each single bit in the bitstream represents one possible fault, which is
injected into the FPGA by writing the inverted value into the design.

The FPGA is virtually divided into two areas: fault injection area and fault safe
area. The emulator (Fig. 15) was implemented in the ATMEL FPSLIC device.

In this paper, the resulting class of the fault is interpreted only as a “fault is
modifying the design” or “fault is not modifying the design.” However, more
resulting categories according to [11] is also possible to obtain from the emulator.

4 Results

The first important result is the number of bits in every FPGA resource and every
fault class.. The S1488 benchmark is presented in Table 1. Each column represents
one resource from section 2.1. Each row represents one fault from section 2.2.1. Total
number of bits for each resource and fault category can be found in crossing of related
column and row. Impossible combinations of categories are marked by “–“symbol.

Table 1. Total bit count in s1488 benchmark

LU
T

C
el

l
in

te
rc

.

B
us

/
ce

ll

B
us

cr

os
s.

B

us

re
pe

at
. F

or
bi

d
. U

ne
xp

l.

Unused 13 304 23 286 6 155 6 434 18 916 1 104 –
Alternate 4 360 3 417 – – – – –

Open – 730 1 643 363 1 077 – –
Conflict 0F – 2 228 – – – – –
Conflict FF – 5 133 817 1 181 9 403 – –

Antenna – 12 108 2 425 3 062 5 824 – –
Unpredictable – 570 – – – – –

Unknown – – – – – – 11 740

Table 2. Ratio of bits altering the design to all bits in category

 LU
T

 [%
]

C
el

l i
nt

er
c.

[%

]

B
us

 to
 c

el
l

[%
]

B
us

 c
ro

s-

si
ng

 [%
]

B
us

 r
ep

ea
-

te
r

[%
]

F
or

bi
dd

en

[%
]

U
ne

xp
lo

re
d

[%
]

Unused 0.0 0.0 0.0 0.0 0.0 0.0 –
Alternate 84.8 79.0 – – – – –

Open – 98.8 97.6 100.0 100.0 – –
Conflict_0F – 87.9 – – – – –
Conflict_FF – 64.9 59.6 38.6 89.1 – –

Antenna – 0.0 0.0 0.0 0.0 – –
Unpredictable – 19.6 – – – – –

Unknown – – – – – – 3.3

Interpretation of Table 1: Although the place and route tool from Atmel reports

329 used logic cells, more logic cells are occupied. Additional logic cells are used on
routing. However, less LUT bit number (only 4360 bits) is in alternate fault group
instead of more than 5280 bits expected. This less number is caused by utilization of
LUT, which is not always used as a 4-input LUTs or two 3-input LUTs.

Table 2 shows the ratio between bits, which modify the design during the fault
injection, and all bits in corresponding area and fault category. The layout of the
results in this table is similar to Table 1.

The assumption, that the antenna and unused bits have no influence on the design
function, was confirmed by these experiments. Open fault have significantly higher
probability that can change the design. On the other hand, a conflict between two
functions at bus crossings, cell interconnections and bus/cell connection have
unexpectedly low ratio of altering bits to all bits. The reason of this result has not yet
been fully analyzed. It may indicate a higher probability of conflict between same
functions in the logic cell or significantly different strengths of drivers in logic cells.

Table 3 shows several benchmarks and their ratio of bits, which can change the
design, to all bits in corresponding fault category. The first line in the Table 2 shows a
total LUT bit number in alternate category as an indicator of the benchmark size.

Table 3. Ratio of altering bits in fault categories for different benchmarks

5x
p1

al
u1

al
u2

al
u3

b1
1

b1
2

br
1

bw

s1
48

8

s1
49

4

used LUT bits 388 676 1102 1090 420 650 822 834 4360 4042
Unused 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Alternate 90.0 92.3 84.7 84.5 83.6 86.0 81.0 80.5 82.3 81.0
Open 97.6 99.3 98.1 97.8 98.4 98.2 99.6 98.9 98.7 98.9

Conflict 0F 93.6 94.4 87.2 87.4 89.2 86.1 87.7 88.1 87.9 88.1
Conflict FF 84.7 86.0 80.6 79.5 79.9 82.2 77.7 81.5 76.5 76.4

Antenna 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Unpredict. 24.7 19.8 10.9 15.3 25.8 48.9 11.1 20.4 19.6 22.6
Unknown 0.2 0.3 0.6 0.5 0.2 0.3 0.5 0.4 3.3 3.0

5 Conclusion

We are able to obtain precisely how many bits can change the design, which is
actually mapped and running into the FPGA. This is a significant pre-requirement in
dependability modeling and calculations. Moreover, we are able to separate bits,
which can not change the design from the whole bitstream.

The obtained results opens a new field of application in adjusting the synthesis and
place&route tools to compile a design, which would be slightly more resistant to SEU
- but with noticeable worse delays in FPGA and the maximum frequency decrease.

Acknowledgements

This research has been partially supported by MSMT under research program
MSM6840770014 and FI-IM4/149 grant.

References

1 Dobiáš, R., Kubátova, H.:“FPGA Based Design of Raiway's Interlocking Equipment”, In
Proceedings of EUROMICRO Symposium on Digital System Design. Piscataway: IEEE,
2004, pp 467-473.

2 Ratter, D.:“FPGAs on Mars”, www.xilinx.com, Xcell Journal Online, 2004.
3 Actel Corporation.: “Historic Phoenix Mars Mission Flies Actel RTAX-S Devices”,

www.actel.com, 2007.
4 Normand, E.:“Single Event Upset at Ground Level,” IEEE Transactions on Nuclear Science,

vol. 43, 1996, pp. 2742-2750.
5 Kafka, L., Novak, O.: “FPGA-based fault simulator”, In Proceedings of the 2006 IEEE

Workshop on Design and Diagnostics of Electronic Circuits and Systems DDECS2006,
CTU Prague 2006, vol. 1, pp. 274-278.

6 Bellato, M., Bernardi, P., Bortalato, D., Candelaro, A., Ceschia, M., Paccagnella, A.,
Rebaudego, M., Sonza Reorda, M., Violante, M., Zambolin, P.: “Evaluating the effects of
SEUs affecting the configuration memory of an SRAM-based FPGA.” Design Automation
Event for Electronic System in Europe 2004, pp. 584-589.

7 Graham, P., Caffrey, M., Zimmerman, J., Sundararajan, P., Johnson, E., Patterson,
C.:"Consequences and Categories of SRAM FPGA Configuration SEUs", MAPLD
International Conference, Washington DC, 2003, Paper C6.

8 Kubalík, P., Kvasnička, J., Kubátová, H.:“ Fault Injection and Simulation for Fault Tolerant
Reconfigurable Duplex System”, In Proceedings of DDECS 2007, pp. 357-360

9 Sterpone, L., Violante, M.: “A design flow for protecting FPGA-based systems against
single event upsets “, DFT2005, 20th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, pp. 436 – 444.

10 Berg, M.: “Fault Tolerance Implementation within SRAM Based FPGA Design Based upon
the Increased Level of Single Event Upset Susceptibility”, In Proceedings of the 12th IEEE
International On-Line Testing Symposium, IOLTS'06, pp. 89-91, July 2006.

11 Kafka L., Kubalík P., Kubátová H., Novák O.: “Fault Classification for Self-checking
Circuits Implemented in FPGA”, Proceedings of IEEE Design and Diagnostics of Electronic
Circuits and Systems Workshop. Sopron University of Western Hungary, 2005, pp. 228-231

