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Abstract. Abstract—The main aim of our research is to design dependable 
circuit in FPGA. To make a real dependability model the real effects of injected 
errors and faults have to be studied. We proposed a hardware fault emulator 
here. The emulator deals with single-bit change in bitstream. Emulation is 
performed in user-selected area. Look-Up-Tables, cell interconnection, cell-to-
bus connection and routing resources are considered. Other FPGA resources are 
not considered. Only combinatorial circuits and benchmarks were measured due 
to our knowledge of FPGA resource limitation. All tests were performed on 
Atmel FPSLIC architecture.  

1   Introduction 

The size, versatility, and price of commercial Field Programmable Logic Arrays 
(FPGAs) allows replacing ASICs in many applications [1]-[3]. The SRAM, which the 
FPGA configuration is based on, is sensitive on Single Event Upset SEU [4]. The 
SEU can be caused by high-energy particles hitting the silicon and changing the logic 
state of the SRAM cell.  

The main aim of our research is to design dependable circuit in FPGA. To make a 
real dependability model the real effects of injected errors and faults have to be 
studied. This paper is about the detailed analysis about the possible faults and their 
effects to the final design implemented in FPGA. Experiments apply fault injection 
into the bitstream and emulation method [5-8].  

The SEU impact to FPGA was also performed by another research group [6]. Here 
the possible situations are divided into 6 groups. Models and experiments were done 
for ATMEL FPGAs. Results could lead to reliability parameters increasing in our 
future research. Some publications have focused on reliable systems based on a single 
FPGA using a Triple Module Redundancy (TMR) structure inside [9] and [10]. These 
techniques can be based on knowledge of FPGA reliability resources cost. 

The structure of the paper is following: The section 2 describes our proposed 
classes for Area in FPGA and possible classes of faults in FPGA structure. The 
section 3 describes our emulator, where the measurement was performed. The section 
4 shows result from the experimental fault injection, and the section 5 concludes the 
results and the contribution of the measurement.  



2   FPGA fault analysis 

The main problem in detailed studies of real faults and their effects to the function of 
design implemented in FPGA is the very confined knowledge of front-end of FPGA 
professional design tools (due to licensees). Here the detailed experiments and 
methods how to get know this information are presented.  

2.1   FPGA resources 

The FPGA resources were divided into disjoint sets (listed below), which are 
specified by their location and function.  
1. LUT: It holds the logic function in SRAM memory.  
2. Cell interconnection: The configuration of Logic cells; these bits are responsible 

for the LUT correct inputs selection; feedback in logic cell, correct output selection 
(registered/nonregistered function, 3- or 4-input LUT organization). 

3. BUS to Cell/Cell to BUS: This is a bidirectional connection, which connects the 
Logic Cell to one of BUS plane. 

4. BUS crossing: This is a connection in the centre of perpendicular bus crossing, 
which allows connections between these lines. 

5. BUS repeater: This is a simple 4-port switchbox. It allows driving of each wire 
from every input.  

6. Forbidden: These are bits, that have their own place in bitstream, but a physical 
SRAM cell is probably not assigned to them. This is caused by the bitstream byte 
organization. It is also possible that these bits have other (for us unknown) 
meaning. We assume, that these bits does not exist therefore should not be tested. 

7. Unexplored: other resources, which were not listed above. The position in the 
bitstream implies their usage, although their exact role in the bitstream has not 
been completely analysed. Parts of RAM, reset and clock resources are expected to 
lie in this category. 

This list is not complete. RAM, reset, clocks and I/O pad (only partially covered here 
by unexplored set) are missing in the list. Our emulator almost doesn’t use them. 

However incompleteness of the list does not imply that SEU occurrence in 
nonlisted region could not destroy the design. The time needed to determine the 
category, which the bit belong in, corresponds to )1(O  time complexity. 

2.2   Fault groups 

Primary goal of fault division is a separation of bits, which can never influence on the 
function of the loaded design, and bits which can lead to the modification of the 
design. Such a classification is possible only when the complete structure of FPGA is 
known (and corresponding bitstream position is known).  

A class cannot be correctly evaluated without knowledge of wire state (Function, 
constant or High-Z) and current bit value. The computation is therefore based on the 
design bitstream, because the distribution into these groups is specified by the 
physical layout of the FPGA.  



 

 
Fig.  1. Fault groups 

 

  
Fig.  2. Used bits: a) connection (open possible), b) no connection (short circuit possible) and c) 

no connection (antenna possible) 

Every fault belongs to one fault group, as shown in Fig. 1. In the first 
approximation, the bit is placed in Used, Unused or Unknown group. 
1. Unused: this bit does not concern the design area. No signal path can exist between 

the design and wires associated with the fault. Therefore neither static nor dynamic 
design changes in the design are expected. Although, such a fault could potentially 
lead to higher static current consumption when ‘0’ collides with ‘1’. 

2. Used: This group belongs to bits, which are primary created by the design of 
connecting resources (a sample shown on Bus crossing in Fig. 2.a or by standing in 
the critical position, where switching this resource can lead to conflict (Fig. 2.b) or 
alternation.  
Any bit from this group influences an active part of the design. Alternation of this 
bit can lead to the design modification, shorts in design, open on the datapath, 
which can functionally alter the design. A special group, antenna, can alter only 
the dynamic behavior by adding an extra capacitance to load (Fig. 2.c).  

3. Unknown: A class of bits, whose correct class can not be evaluated. This, in 
simplification, can be caused by unknown state on the wire, or by missing 
information about the bit meaning in FPGA resources.  

2.2.1   Subcategories of used bits 
A group of used bits covers many versatile types of fault. Almost all of them can lead 
to design functional alternation. The only exception is Antenna group. 

All the Figures in this subsection show both the original (correct) configuration and 
the modified configuration (after the fault).  



 
Fig.  3. Open at the bus crossing 

 
Fig.  4. Open in 2:1 mux 

 
Fig.  5. Alternate at 2:1 multiplexor 

 

Fig.  6. Alternate at LUT 

 
Fig.  7. Conflict at the bus crossing 

 
Fig.  8. Conflict in multiplexor – multiple input 

1. Open: The basic model of this class is a wire interruption, which can have many 
different origins in the FPGA architecture. The most lucid case is an open in bus 
crossing (Fig. 3). 
Another case of open is in 2:1 mux, where the resulting function (on the left) 
suddenly has no source driver on the fault occurrence. This case is shown on Fig. 4 
and assumes transfer-gate mux realization: 

2. Alternate: These bits alternate the design without any conflict on the bus. A 2:1 
mux with configuration shown in Fig. 5 is a typical example of alternate group. In 
some situation (e.g. Fig. 5), the alternate fault can be viewed as a special 
combination of open and antenna, which does not leave any wire undriven and 
which does not creates conflict when connecting another signal. 
 A special case, when both f1 and f2 are the same function, is possible, but these 
cases are neither detected nor separated in our fault emulator. Another example is a 
bit alternation in truth table of LUT. (Fig. 6).  

3. Conflict: This is a special category defined by connecting of two or more driven 
wires. This conflict leads to a short circuit between power supply and ground 
through the drivers. The result of conflict is hard to predict, unless a detailed FPGA 
layout is known. A simple conflict can occur on BUS crossings (Fig. 7). The “◦” 
operator in Figures 7 and following should be interpreted as dominance: if one of 
the operands can drain more current, that will be result of the “◦” operator. 
 Conflicts can also occur in multiplexers when selecting more than 1 input (see 
Fig. 8). Another possibility of signal conflict is in bus network. In altered state, a 
conflict on a common bus wire can occur (Fig. 9), with the same current drain 
strength of the drivers. 



 

Fig.  9. Conflict at the bus repeater 

A conflict is separated into 2 subcategories: 
• “0-F” in cases, where any function conflicts with constant ‘0’ 
•  “F-F”, where conflict is between two non-constant functions. 

4. Unpredictable faults are a special case of open, where the default logical value ‘1’ 
is substituted with ‘Z’. Two cases in FPSLIC architecture are presented at Figures 
10 and 11. These unpredictable faults were separated from other faults only 
because of unknown physical layout of these elements.  

5. Antenna: A special case of a used bit, where an unused wire is connected to the 
datapath. This fault statically has no influence on the design function. An example 
of antenna fault is shown in bus crossing at Fig. 12. When the appended wire has 
not assigned a driver, the appended line is driven from the first input (Fig.13.) 
 Another multiplexor configuration is shown in Fig. 14. The multiplexor has no 
selected input. The output wire of the multiplexor is not driven nor read. Selecting 
the input will not harm the design, it append an unused wire to the datapath. 

 
Fig.  14. Output antenna at mux with no input selection 

 Since a bus repeater has a build-in driver, the appended output should be not as 
big capacitance as other listed cases. Despite, such case is also considered as 
antenna. 

 
Fig.  10.  Unpredictable output enable buffer 
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Fig.  11. Unpredictable mux selector driver 

  

Fig.  12. Antenna at the bus crossing 

..
.

..
.

  

Fig.  13. Antenna in the mux, multiple inputs 



3   Our Emulator 

 
Fig.  15. The FPGA fault emulator overview 

 

Fig.  16. Resources in Bitstream distribution 
for Atmel At40 FPGA. Dark slices (IO pads 

and Others) were not tested 

We used a hardware emulator described in [8], which was extended by ability to test 
bits listed in chapter 2.1. The SEU fault is emulated in the FPGA through the dynamic 
reconfiguration. Each single bit in the bitstream represents one possible fault, which is 
injected into the FPGA by writing the inverted value into the design. 

The FPGA is virtually divided into two areas: fault injection area and fault safe 
area. The emulator (Fig. 15) was implemented in the ATMEL FPSLIC device.  

In this paper, the resulting class of the fault is interpreted only as a “fault is 
modifying the design” or “fault is not modifying the design.” However, more 
resulting categories according to [11] is also possible to obtain from the emulator. 

4   Results 

The first important result is the number of bits in every FPGA resource and every 
fault class.. The S1488 benchmark is presented in Table 1. Each column represents 
one resource from section 2.1. Each row represents one fault from section 2.2.1. Total 
number of bits for each resource and fault category can be found in crossing of related 
column and row. Impossible combinations of categories are marked by “–“symbol.  

Table 1. Total bit count in s1488 benchmark 
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Unused 13 304 23 286 6 155 6 434 18 916 1 104 – 
Alternate 4 360 3 417 – – – – – 

Open – 730 1 643 363 1 077 – – 
Conflict 0F – 2 228 – – – – – 
Conflict FF – 5 133 817 1 181 9 403 – – 

Antenna – 12 108 2 425 3 062 5 824 – – 
Unpredictable – 570 – – – – – 

Unknown – – – – – – 11 740 



Table 2. Ratio of bits altering the design to all bits in category 
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Unused 0.0 0.0 0.0 0.0 0.0 0.0 – 
Alternate 84.8 79.0 – – – – – 

Open – 98.8 97.6 100.0 100.0 – – 
Conflict_0F – 87.9 – – – – – 
Conflict_FF – 64.9 59.6 38.6 89.1 – – 

Antenna – 0.0 0.0 0.0 0.0 – – 
Unpredictable – 19.6 – – – – – 

Unknown – – – – – – 3.3 

 
Interpretation of Table 1: Although the place and route tool from Atmel reports 

329 used logic cells, more logic cells are occupied. Additional logic cells are used on 
routing. However, less LUT bit number (only 4360 bits) is in alternate fault group 
instead of more than 5280 bits expected. This less number is caused by utilization of 
LUT, which is not always used as a 4-input LUTs or two 3-input LUTs.  

Table 2 shows the ratio between bits, which modify the design during the fault 
injection, and all bits in corresponding area and fault category. The layout of the 
results in this table is similar to Table 1. 

The assumption, that the antenna and unused bits have no influence on the design 
function, was confirmed by these experiments. Open fault have significantly higher 
probability that can change the design. On the other hand, a conflict between two 
functions at bus crossings, cell interconnections and bus/cell connection have 
unexpectedly low ratio of altering bits to all bits. The reason of this result has not yet 
been fully analyzed. It may indicate a higher probability of conflict between same 
functions in the logic cell or significantly different strengths of drivers in logic cells.  

Table 3 shows several benchmarks and their ratio of bits, which can change the 
design, to all bits in corresponding fault category. The first line in the Table 2 shows a 
total LUT bit number in alternate category as an indicator of the benchmark size. 

Table 3. Ratio of altering bits in fault categories for different benchmarks 
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used LUT bits 388 676 1102 1090 420 650 822 834 4360 4042 
Unused 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Alternate 90.0 92.3 84.7 84.5 83.6 86.0 81.0 80.5 82.3 81.0 
Open 97.6 99.3 98.1 97.8 98.4 98.2 99.6 98.9 98.7 98.9 

Conflict 0F 93.6 94.4 87.2 87.4 89.2 86.1 87.7 88.1 87.9 88.1 
Conflict FF 84.7 86.0 80.6 79.5 79.9 82.2 77.7 81.5 76.5 76.4 

Antenna 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Unpredict. 24.7 19.8 10.9 15.3 25.8 48.9 11.1 20.4 19.6 22.6 
Unknown 0.2 0.3 0.6 0.5 0.2 0.3 0.5 0.4 3.3 3.0 



5   Conclusion 

We are able to obtain precisely how many bits can change the design, which is 
actually mapped and running into the FPGA. This is a significant pre-requirement in 
dependability modeling and calculations. Moreover, we are able to separate bits, 
which can not change the design from the whole bitstream.  

The obtained results opens a new field of application in adjusting the synthesis and 
place&route tools to compile a design, which would be slightly more resistant to SEU 
- but with noticeable worse delays in FPGA and the maximum frequency decrease. 
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