
Design Methodology for High Reliable System

Pavel Kubalík, Hana Kubátová
Department of Computer Science and Engineering,

Czech Technical University in Prague, Karlovo nam. 13, 121 35 Prague 2
E-mail: xkubalik@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract

This paper deals with design methodology of high reliable digital system based on modified duplex
system. Our modified duplex system is based on two FPGAs, where every FPGA can be reconfigured when
a fault is detected. Design implemented in each FPGAs is based on one of several methods how to ensure the
self checking properties. Our design methodology reflects requirements on area overhead and value of
dependability parameters. Our modified duplex system is compared with standard duplex system. Our
dependability model and dependability calculations are used to quantify proposed solutions. Availability
parameters have been calculated by dependability Markov models. The final reliable system is fault tolerant.
Combinational circuit benchmarks have been considered in this work to compute the quality of the final
adapted duplex system. The benchmarks are represented by two level networks (truth table). All of our
experimental results are obtained by XILINX FPGA implementation by EDA tools and our design tools.

Keywords: adopted duplex system, on-line testing, self checking circuits, FPGA, dependability parameters.

1. Introduction

Systems realized by FPGAs are more and
more popular due to several properties and
advantages:

• High flexibility in achieving multiple
requirements such as cost, performance,
turnaround time.
• Possible reconfiguration and later
changes of the implemented circuit e.g. only
via radio net connections.
• Mission critical applications such as
aviation, medicine, space missions or also in
railway applications [1].

The FPGAs are based on SRAM memories
sensitive to Single Event Upsets (SEUs),
therefore simple usage of FPGA circuits in
mission critical applications without any
method of SEUs detection is impossible.
One change of a bit in the configuration
memory by SEUs leads to a change of a circuit
function, even drastically. The Concurrent
Error Detection (CED) techniques allow a
faster detection of soft errors (errors which can
be corrected by the reconfiguration) caused by
SEU [2, 3, 4]. SEUs can change the content of
the embedded memory or Look-up Tables

(LUTs) used in the design. These changes are
not detectable by off-line tests, therefore some
CED techniques have to be used. The
probability of a SEU occurrence in the random
access memory (RAM) is described in [5].
The possibilities how to keep proper system
functions are based always on some
redundancy. Redundancy obviously means
great area and/or time overhead. Our proposed
structure increases dependability parameters
together with ensuring a relatively low area
overhead compared with classical methods
such as duplication or triplication [6]. The
term dependability is used to encapsulate the
concepts of reliability, availability, safety,
maintainability, performability, and testability.
Availability is a function of time, A(t), defined
as the probability that a system is operating
correctly and is available to perform its
function its functions at the instant of time [7].
Our previous research shows the relation
between the area overhead and the SEUs fault
coverage [8]. Due to a need for a small area
overhead, the SEUs fault coverage for most
circuits is less than 100%. The SEUs fault
coverage varies typically from 75% to 95%.
Therefore an additional method of fault
detection has to be used to ensure complete

SEUs fault coverage and to increase
dependability parameters.

2. Basic On-Line Testing Criteria

There are three basic quantitative criteria in a
field of CED: fault security (FS), self-testing
(ST) and totally self-checking (TSC)
properties [7]. These three aspects have to be
used in an on-line testing field to evaluate the
level of safety of the designed or modeled
system.
To determine whether the circuit satisfies the
TSC property, the number of detectable faults
belonging to one of four classes A, B, C and D
[9] have to be calculated.
This fault classification can be used to
calculate how much the circuit satisfies the FS
or ST property and then calculate TSC
properties.
The parity predictor is used to generate the
proper output code of the circuit in our
research, Figure 1. These techniques ensure
a small area overhead and a higher SEUs fault
coverage but the SEUs fault coverage reached
is not 100% [10, 11, 12].
The circuit area overhead significantly
depends on parity codes used. If we use a
strong error detecting code, like a Hamming
code or Berger code, the FS parameter is
almost 100% but the area overhead is high [8,
13]. The logic synthesis method of the area
reduction for circuit described by multilevel
network is described in [14].
The following structures are vulnerable to
SEUs: multiplexer select lines, programmable
interconnect point states, buffer enables, LUT
values, and control bit values.

Combinational
circuit

Inputs

}
Parity

predictor

Checker

circuit
Outputs

code
word

Check
bits

Figure 1. Basic structure of TSC circuit

Any changes of a mux select lines,
programmable interconnect point states or
buffers lead to a significant circuit function
change but the function change is hardly
detected for SEUs impacted in LUTs [15]. The
probability of SEUs impacting routing
resources (mux select lines, programmable
interconnect point states and buffers) is about
78% and only about 15-21% for LUTs. It
means many SEUs leads to significant circuit
function change. But any change in LUTs is
hardly detected because of its small impact to
the realized function. In some cases these
faults may be undetected.
We have used the LUT upset failure in our
calculations. The only LUT upset assumption
giving to us the worst case for availability
values obtained for our benchmarks. It means
that the final results are worst in comparison
with method assuming all faults in FPGA. The
most faults belong to the routing resources
group. In this case we have assumed faults
occurring in routing resources, the
dependability parameters are higher then in a
case where only LUTs are calculated.
We want to obtain the worst case
of dependability parameters and due to this
fact our fault model accepts only changes in
LUTs memory. The FS property depends on
the class B (Detectable faults)[9]. A low
number of faults belong to class B leads to low
FS property. The FS values for MCNC and
ISCAS [15] benchmarks used to validate our
modified duplex system are shown in Table 1.
Here ”C” is benchmark circuit, ”IN” is number
of inputs, ”OUT” is number of outputs, ”AO” is
the area overhead, ”FS” is a probability, that a
fault is detected by code word and ”Ass” is a
steady-state availability.
We have used our simulator described in [16]
to obtain A, B, C, D classes and FS property.
This simulator has these features:
• The simulation is performed for circuits

described by a netlist format (EDIF).
• The stuck-at-1 and stuck-at-0 faults on

inputs and outputs of components are
considered.

• Combinational and sequential circuits are
supported.

This simulator supports circuits where inputs,
outputs and internal states (in the case of a

sequential circuit) are coded by even parity,
multiple parity and 1 out of N code. Multiple
code groups can be used to ensure TSC. The
simulator also supports Hamming like codes
and M out of N code.

Table 1. Single even parity – PLA

C IN OUT ORIG
[LUT]

AO
[%]

FS
[%]

alu1 12 8 8 688 100
apla 10 12 45 53 83
b11 8 31 38 8 75
br1 12 8 50 20 63
al2 16 47 52 12 94
alu2 10 8 30 140 92
alu3 10 8 28 121 90
s1488 14 25 312 13 86
s1494 14 25 317 13 86
s2081 18 9 24 125 96
s27 7 4 4 75 72
s298 17 20 39 49 91
s386 13 13 51 39 71

The FS property expresses the probability that
an existing fault is detected on a primary
output of the circuit. If the FS is fully satisfied
(to 100%) a fault occurring in a circuit is
always detected.

3. Proposed Structure

Our previous results show that to fully satisfy
TSC property (100%) is difficult, so we have
proposed a new structure based on two
FPGAs, see Figure 2.
Each FPGA has one primary input, one
primary output and two pairs of checking
signals OK/FAIL. The probability of the
information correctness depends on the FS
property. When the FS property is satisfied
only to 75%, the correctness of the checking
information is also 75%. It means that the
signal “OK” give a correct information for
75% of occurred errors (the same probabilities
for both signals “OK” and “FAIL”).
To increase the dependability parameters we
must add two comparators, one for each
FPGA. The comparator compares outputs of
both FPGAs. The fail signal is generated when
the output values are different. This
information is not sufficient to determine,

which TSC circuit is wrong. Additional
information to mark out the wrong circuit is
generated by the original TSC circuit. The
probability of the information correctness
depends on the FS property and in many cases
is higher than 75%. In a case when outputs are
different and one of the TSC circuits signalizes
fail function, the wrong FPGA is correctly
recognized. Correct outputs are processed by
the next circuit.

Primary
output 1

OK / FAIL

RECONFIG.
UNIT

FPGA 1

=TSC2

OK / FAIL

Primary
input

=

Primary
output 2FPGA 2

OK / FAIL

OK / FAIL

TSC1

Figure 2. Reconfigurable duplex system

The reconfiguration process is initiated after a
fault is detected. The reconfiguration solves
two problems: localization and correction of
the faulty part. The time needed to localize the
faulty part is not negligible and must be
included in the calculation of dependability
parameters. We only select the faulty FPGA
and we reconfigure it in our solution. It means
that we do not localize the faulty block inside
the compound design. The time to localize a
fault and to reconfigure the faulty part can be
similar to the time to reconfigure the whole
FPGA. The whole FPGA reconfiguration also
repairs the faults which occurred in an unused
logic. The reconfiguration process can be
initiated also when one of the two FPGAs
signalize the “FAIL” signal. This situation
occurs when a fault is detected by one of the
small TSC blocks inside the compound design.
The fault propagation to the primary outputs
may take a long time.
When the outputs are different, and both
circuits signalize a correct function, we must
stop the circuit function and the
reconfiguration process is initiated for both
FPGA circuits. When the reconfiguration

process is performed, states of both FPGAs are
synchronized. It means that our modified
duplex system can be used in an application
where the system reset synchronization is
possible.
Each FPGA contains a TSC circuit and
a comparator. The TSC circuit is composed of
small blocks where each block satisfies the
TSC property. The structure of the compound
design satisfying the TSC property is
described in [17].

4. Design methodology

The design methodology of TSC circuit
creation is described in Figure 3. To generate
the output parity bits, all the output values
have to be defined for each particular input
vector. Unfortunately, it is not so in the
benchmark definition files. Only several
output values are specified for each multi-
dimensional input vector, the rest are assigned
as don’t cares; they are left to be specified by
another term. Thus, to be able to compute the
parity bits, we have to split the intersecting
terms, so that all the terms in the truth table are
disjoint.
In the next step the original primary outputs
are replaced by parity bits. Two different error
codes were used to calculate output parity bits
(single even parity code and multiple parity
code), but our design methodology allows use
also Hamming like code or standard
duplication. Another tool was used in the case
where the original circuit was modified in
multilevel logic. This tool is described in [18].
Two circuits generated in the first step
(original circuit and parity circuit) are
processed separately to avoid sharing any part
of circuit. Every part can be minimized by the
BOOM [19] or Espresso tool [20]. The final
area overhead depends on the software that
was used in this step. Many tools were used to
reach a small area of the parity bits generator.
BOOM was used to minimize the final area. In
this step the area overhead is known, but we
can decide if the fault coverage is sufficient.
In the next step the “pla” format is converted
into the “bench” format. The “bench” format
was used due to the fact that the tool, which
generates the exhaustive test set uses this

format. An exhaustive test set has 2n patterns
and we used it to evaluate TSC goals.

MCNC
benchmarks

& ISCAS

Synthesize VHDL
Synplify

original

Modification on
two level network /
multi level network

Synthesize VHDL
Leonardo Spectrum

Minimization
Boom / Espresso

Area
overhead

Split
intersecting

terms

Original
circuit

Single
parity

predictor

Multiple
parity

predictor

Haming like
code parity
predictor

Simple
duplication

Conversion
two level on
multi level
network

Minimization
Boom /

Espresso

PLA

BENCH

PLA

PLA Check bits
predictor

BENCH

Conversion
to VHDL

original Predictor

Generate
exhaustive

test set

SUEs fault
 injection &
Simulation

Fault
coverage

original Predictor

Test
set

EDIF

Modification on
multi level
network

Modification on
two level
 network

Figure 3. Design methodology flow

Another conversion tool is used to generate
two VHDL codes and the top level. Top level
is used for incorporating original and parity
circuit generator. In the next step the synthesis
process is performed by Synplicity Synplify
Pro tool. The constraints properties set during
the synthesis process express an area overhead
and a SEU fault coverage. If the maximal
frequency is too high, hidden faults occur
during the fault simulation. The hidden faults
are caused by the circuit duplication. The size
of the area overhead is obtained from the
synthesis process. The final netlist is generated
by the Leonardo Spectrum software. The fault
coverage was obtained by simulation using our
software [16].
To evaluate the area overhead and fault
coverage special tools had to be developed. In
addition to some commercial tools such as
Leonardo Spectrum and Synplify we have
used format converting tools, parity circuit
generator tools and simulation tools.
At first, the area minimization and term
splitting is preformed for original circuit by

BOOM [19]. Hamming code generator (or
single parity generator) is generated by the
second software. These two circuits are
minimized again with BOOM. Next two tools
convert the two-level format into a multi-level
format. The first one converts a “pla” file to
“bench” and the second one “bench” to VHDL.
The second software is used for generating the
final circuit in the ”bench” format due to its
further usage in exhaustive test set generator.
The format converting software and parity
generator software was written in Microsoft
Visual C++. The netlist fault simulator was
written in Java. The parser source code was
used to parse the netlist that is generated by
two commercial tools described above.

6. Results

The results obtained by our design
methodology for highly reliable system was
validated on MCNC and ISCAS [19]
benchmarks. Results are shown in table 2.
Here ”Circuit” is benchmark circuit, ”AO” is
the area overhead, ”PN” is the number of parity
nets, ”C” and ”D” is the number of undetected
faults, that are not detected by code word and
”Ass” is the steady-state availability

Table 2. Availability parameters

Circuit AO
[LUT]

P
N

AO
[%] C D Ass [%]

alu1 55 1 687 0 0 1
alu1 16 2 200 0 0 1
apla 24 1 53 1 109 0.9999912
apla 22 2 49 1 92 0.9999928
b11 3 1 8 42 59 0.9999938
b11 7 2 18 38 52 0.9999937
br1 10 1 20 47 154 0.9999883
br1 23 2 46 41 142 0.9999871
alu2 42 1 140 0 58 0.9999906
alu2 40 2 133 0 52 0.9999910
alu3 34 1 121 0 63 0.9999897
alu3 33 2 118 0 63 0.9999888

s1488 41 1 13 94 321 0.9999962
s1488 94 2 30 80 267 0.9999961
s386 20 1 39 15 176 0.9999878
s386 25 2 39 8 149 0.9999892

7. Conclusion and future work

Our modified duplex system based on two
FPGAs with high reliable system design
methodology has been presented. The design
methodology allows select proper code with
respect to the system requirements.
We can use four methods for the totally self
checking circuit design. The selected method
depends on the final area overhead and the
SEUs fault coverage. In a case, when the high
reliable system is required and area overhead
can be high, the duplication or Hamming like
code is better to use. These two methods
ensure that the fault security is fulfilled on
hundred percent and Ass parameter is equal to
hundred percent too.
In a case, when the low area overhead and a
high reliable system is required, the simple or
multiple parity predictor is better to use.
Our high reliable structure ensures that the
final system is better than a standard duplex
system with 0,999978248 of Ass [6].
Our future work will be dedicated to some
practical case studies (e.g., railway
applications). We will use a hardware fault
simulator and practical experiments based on
the ATMEL FPSLIC circuit.

8. Acknowledgement

This research has been supported in part by the
GA102/04/0737 grant and MSM6840770014
research program.

References

[1] Dobiáš, R., Kubátova, H.:“FPGA Based
Design of Raiway's Interlocking Equipment”,
DSD2004, In Proceedings of EUROMICRO
Symposium on Digital System Design,
Piscataway: IEEE, 2004, pp. 467-473.
[2] Sterpone, L., Violante, M.: “A design flow
for protecting FPGA-based systems against
single event upsets“, DFT2005, 20th IEEE
International Symposium on Defect and Fault
Tolerance in VLSI Systems, 2005, pp. 436 –
444.
[3] QuickLogic Corporation.: “Single Event
Upsets in FPGAs”, 2003,
www.quicklogic.com

[4] Bellato, M., Bernardi, P., Bortalato, D.,
Candelaro, A., Ceschia, M., Paccagnella, A.,
Rebaudego, M., Sonza Reorda, M., Violante,
M., Zambolin, P.: “Evaluating the effects of
SEUs affecting the configuration memory of
an SRAM-based FPGA”, Design Automation
Event for Electronic System in Europe 2004,
2004, pp. 584-589.
[5] Normand, E.: “Single Event Upset at
Ground Level”. IEEE Transactions on Nuclear
Science, vol. 43, 1996, pp. 2742-2750.
[6] Dobiáš, R., Kubalík, P., Kubátová, H.:
“Dependability Computations for Fault-
Tolerant System Based on FPGA”,
ICECS2005, In Proceedings of the 12th
International Conference on Electronics,
Circuits and Systems, IEEE Circuits and
Systems Society, 2005, vol. 1, pp. 377-380.
[7] Pradhan, D., K.: ”Fault-Tolerant Computer
System Design”, Prentice-Hall, Inc., New
Jersey, 1996.
[8] Kubalík, P., Fiser, P., Kubátová, H.:
“Minimization of the Hamming Code
Generator in Self Checking Circuits”,
DESDes'04, Proceedings of the International
Workshop on Discrete-Event System Design,
Zielona Gora: University of Zielona Gora,
2004, pp. 161-166.
[9] Kafka L., Kubalík P., Kubátová H., Novák
O.: “Fault Classification for Self-checking
Circuits Implemented in FPGA”,
DDECS2005, Proceedings of IEEE Design
and Diagnostics of Electronic Circuits and
Systems Workshop, Sopron University of
Western Hungary, 2005, pp. 228-231.
[10] Drineas, P., Makris, Y.: “Concurrent
Fault Detection in Random Combinational
Logic”, ISQED2003, Proceedings of the IEEE
International Symposium on Quality
Electronic Design, 2003, pp. 425-430.
[11] Mitra, S., McCluskey, E., J.: “Which
Concurrent Error Detection Scheme To
Choose?”, Proc. International Test Conf. 2000,
pp. 985-994.
[12] Mohanram, K., Sogomonyan, E. S.,
Gössel, M., Touba, N. A.: “Synthesis of Low-
Cost Parity-Based Partially Self-Cheking
Circuits”, IOLTS2003, Proceeding of the 9th
IEEE International On-Line Testing
Symposium 2003, pp. 35.
[13] Bolchini, C., Salice, F., and Sciuto, D.:
”Designing Self-Checking FPGAs through

Error Detection Codes”, 17th IEEE
International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT’02),
Canada, pp. 60.
[14] Touba, N. A., McCluskey, E. J.:”Logic
Synthesis Techniques for Reduced Area
Implementation of Multilevel Circuits with
Concurrent Error Detection”, Proc. of
ACM/IEEE International Conference on
Computer-Aided Design (ICCAD), 1994, pp.
651-654.
[15] Graham, P., Caffrey, M., Zimmerman, J.,
Sundararajan, P., Johnson, E., Patterson,
C.:”Consequences and Categories of SRAM
FPGA Configuration SEUs”, MAPLD2003,
Military and Aerospace Programmable Logic
Devices International Conference, Washington
DC, Paper C6.
[16] Kafka, L.: “Design of TSC circuits
implemented in FPGA”, CTU FEE, 2004.
[17] Kubalik, P., Kubatova, H.: “High Reliable
FPGA Based System Design Methodology”,
DSD 2004, Work in Progress Session of 30th,
Universitat Linz, 2004, pp. 30-31.
[18] Kubalík, P., Kubátová, H.:“Design of Self
Checking Circuits Based on FPGA“, In: Proc.
of 15th International Conf. on
Microelectronics, Cairo, Cairo University,
2003, pp. 378-381.
[19] Hlavička, J., Fišer, P.: “BOOM - a
Heuristic Boolean Minimizer”, ICCAD2001,
Proc. International Conference on Computer-
Aided Design, San Jose, California (USA),
2001, pp. 439-442.
[20] Brayton, R. K. et al. :”Logic minimization
algorithms for VLSI synthesis”, Kluwer
Academic Publishers, Boston, MA, 1984, pp.
192.

