Comparison of FPGA and ASIC Implementation of a Linear Congruence Solver

Jifi Bucek, Pavel Kubalik, Rébert Lorencz, Tomas Zahradnicky
Faculty of Information Technology
Czech Technical University in Prague
Thdkurova 9, 160 00 Prague, Czech Republic
email: { bucekj| xkubalik | lorencz | zahradt } @fit.cvut.cz

Abstract—Residual processor (RP) is a dedicated hardware
for solution of sets of linear congruences. RPs are parts of a
larger modular system for error-free solution of linear equa-
tions in residue arithmetic. We present new FPGA and ASIC
RP implementations, focusing mainly on their memory units
being a bottleneck of the calculation and therefore determining
the efficiency of the system. First, we choose an FPGA to easily
test the functionality of our implementation, then we do the
same in ASIC, and finally we compare both implementations
together. The experimental FPGA results are obtained for
Xilinx Virtex 6, while the ASIC results are obtained from
Synopsys tools with a 130 nm standard cell library. Results
also present a maximum matrix dimension fitting directly into
the FPGA and achieved speed as a function of the dimension.

Keywords-system of linear equations; residue number sys-
tem; error-free computation; FPGA; ASIC

I. INTRODUCTION

Solving systems of linear equations is one of the most fre-
quent tasks in scientific computation. Traditionally, solution
of such systems is carried out in floating point arithmetic
bringing its associated rounding errors. Although there are
algorithms minimizing the impact of rounding errors upon
the solution, in some cases this does not need to be enough.
An error-free solution of linear systems is often needed in
case of large, dense, and possibly ill-conditioned systems,
where needless rounding errors can result in longer run
times, or even swamp the solution completely. One of the
methods to go around rounding errors is to perform an error-
free computation by means of residue arithmetic — Residue
Number System (RNS).

RNS permits us to represent long integers as indepen-
dent combinations of small integers based on the Chinese
Remainder Theorem. It requires a simple arithmetic unit
without any rounding and normalization logic that would be
needed for floating point calculation. These properties offer
natural parallelism, lead to a simpler hardware, and reduce
chip size when compared to a traditional floating point unit
implemented in hardware.

RNS is used in areas of digital image processing [1],
digital signal processing [2], and in public-key [3] and
elliptic curve [4] cryptography. RNS is also used to simulate
multiple precision arithmetic and for error-free solution of
linear systems [5].

MODULAR SYSTEM

CENTRAL

HOST
SYSTEM CONTROL
o m

BUS

Figure 1. Architecture of the Modular System [7]

Our previous work [6] presents an FPGA implementation
of a residual processor (RP) being a dedicated hardware
for solution of sets of linear congruences. In this paper, we
implement RP in ASIC and compare the achieved time and
area complexity to its FPGS implementation.

Papers [7] and [8] design a hardware RNS linear equation
solver — Modular System (MS) — whose implementation
was very difficult at that time. With current technologies,
it is possible to implement the system, either using FPGAs
offering a straightforward implementation with reconfigura-
tion possibilities, or in ASIC to achieve higher speeds and
possibly a lower price, when produced in larger quantities.

After an extensive redesign in [6] to use block RAM
cells found in most recent FPGAs, we implemented the
architecture in ASIC using a 130 nm technology with
standard cells and compiled memory modules. We also
redesigned the addressing and pivoting logic to support
efficient implementation of the elimination algorithm used.

After a brief introduction of the MS architecture perform-
ing solution of sets of linear equations (SLE)s Ax = b, the
paper focuses on the memory architecture of RPs inside MS.
Next, there follow FPGA and ASIC implementation results
for various problem sizes, their analyses, and evaluations.
Finally, the paper is concluded with FPGA and ASIC RP
implementation properties.

II. ARCHITECTURE OF THE MODULAR SYSTEM

Paper [8] describes the method, the algorithm, and the cor-
responding parallel hardware architecture of the MS (Fig. 1).
Evaluation in each modulus is performed independently of
the others with the addition carry-free, subtraction borrow-
free across the individual moduli, and thus the computation
can occur safely in parallel. Once the computation is done,
the result is transformed back into the rational number set
either with the Chinese Remainder Theorem or the Mixed
Radix Conversion.

Step Row
counter counter a a, a
ay a» Ann
Pivot
index
vector
a, a, a,
PO, SI, SO, Sl,
Pivot Zero |
found [detect
ST
CONTROL
oNIT 0B
o8, | DBour
Figure 2. Architecture of the Residual Processor

The error-free solution of an SLE with operations per-
formed in residue arithmetic is implemented in this special
MS. The MS typically has a parallel SIMD architecture
consisting of a control unit and several processing units —
RPs denoted as RPy, RPy, ..., RP, interconnected with a
BUS (see Fig. 1).

III. RESIDUAL PROCESSOR ARCHITECTURE

The architecture of the residual processor RPy, is depicted
at Fig. 2 and consists of Memory, Arithmetic Units AUs,
AUs, ..., AU, ;2 and the Control unit.

The memory contains residues of matrix A and vector
x elements. The storage of values of a row of the matrix
from AU registers is performed bitwise via Serial Inputs
SIy, SIy, ..., SI,4+1. Loading of values of rows of Memory
to AUs is done via Serial Outputs SOz, SOs, ..., SO,4.
The bits of element values of the first matrix column are read
by the Control unit via the parallel bus PO;. All AUs and
the Control unit are interconnected via Internal Data Buses
IDB;, and IDB,,. The above RP, architecture can solve
systems of linear congruences (SLC)s Ax; = b (mod my).
RPs together with the Control unit of the MS also support all
conversion operations from integer to RNS and vice versa.
The INV and DET units compute the modular multiplicative
inverse and the determinant of A, respectively.

All SLCs in MS are solved with the Gauss-Jordan elimina-
tion with Rutishauser modification [8] (GJR), which is espe-
cially suitable for hardware implementation. The elimination
process in RNS is specific in a way that it has to perform a
so called “nonzero residue pivoting” that was introduced in
[7]. Pivoting and massive data access constitute a bottleneck,
and therefore the memory architecture design is critical and
is dealt with in the next section.

The Rutishauser modification of Gauss-Jordan elimination
implies that the column data is shifted by one column to the
left during each elimination step. The shift is accomplished
by the AUs and the memory interconnection design in
Fig. 2. In addition, the first column of the SLC matrix

contains values of the elements intensively used during the
elimination process and for this reason the output from the
first column needs to be parallel (these values are used in
the INV and DET units). The values in the first column
determine the first multiplication operand in the entire row
being processed, both in pivot elimination and row reduction.
The other columns a;s to a;y, 41 inclusive are used as the sec-
ond multiplication operand, and also for addition operations.
Assuming serial-parallel (shift-add) multiplication, we need
to read individual bits of these values, thus requiring serial
access only.

A. Memory Architecture in FPGA and ASIC

In order for a value to be accepted as a pivot,
i) it must be nonzero, ii) the row has not contained a pivot
yet, and iii) no pivot has yet been found for this elimination
step. The pivot is always in the first column of the matrix.
Search for a pivot is done sequentially; however, this search
can be easily performed concurrently with write operations
to the memory. The search is performed while the matrix
is loaded or updated during computation. In most cases, the
pivot is passed to the inversion unit (INV) long before its
inverse is needed.

Once the pivot is found, its row index must be stored in a
pivot index vector at the address of the current elimination
step. The pivot row must be flagged in order to skip it during
the pivot search performed in subsequent elimination steps.
If no pivot was found, the matrix is singular in this modulus.

The elimination is performed by rows. The architecture
must support addressing of the pivot row first; then sequen-
tially reduce memory matrix rows, with an exception of the
pivot row which must be skipped. The first value in each
row must be read in parallel. This value is either the pivot,
which is inverted, or a value from a different row, which is
negated.

The remaining values in each row are read bit-serial (but
all values concurrently) from the MSb first. This ensures
the correct order for left-shift modular multiplication and
addition, and follows from the design depicted at Fig. 2.

Upon completion of the elimination process, the solution
vector appears in the first column. The order of its elements
corresponds to the pivot row indices and may need to be
reordered. The result is therefore read out in correct order
by addressing through the pivot index vector.

B. Arithmetic Units, Modular Inverse and Controller

The Arithmetic Units AUy, AUs, ..., AU, 45 and AUp
design is modified from the original circuit in [8] by
using strictly synchronous design. It supports computation
of modulo operation on multi-word inputs, which is used
when loading a new matrix into the modular system. During
elimination, it computes modular multiplication and addition
operations. Multiplication operations are performed using a
shift-add algorithm with interleaved modulus subtraction.

Arithmetic Unit architecture

Figure 3.

The block diagram of the arithmetic unit is given in Fig.
3. The main part of the unit is the adder that performs
all addition and subtraction operations including elementary
additions during multiplication. The intermediate results are
stored in the A register. The B register serves as a temporary
storage for the values of the multiplied pivot row to be used
during row reduction.

For computing the modular inverse in the INV unit, the
left-shift modular inverse algorithm [9] is used.

The controller contains a finite state machine using a
memory-based transition and output functions. This allows
flexibility with regard to modification and future extensions.

C. FPGA and ASIC Implementation

The memory architecture as a critical part of the RP
can be divided into two parts: the pivoting unit and data
memory containing the matrix. The pivoting unit is always
implemented using on-chip logic and memory blocks in
FPGA or ASIC. The data memory can be implemented
internally using block RAM components, or externally e.g.
by a DDR SDRAM. The main implementation differences
are in their parameters such as memory capacity, throughput,
and latency. On one hand, the internal implementation with
FPGA memory has small capacity and low latency, while on
the other hand the external memory provides large capacity
but also a high latency.

In order to compare the implementations in FPGA and
ASIC, we used internal memory in both cases. For a given
FPGA type, we can estimate the size of the largest matrix
that fits on chip according to maximum size of the block
RAM. In ASIC, we do not have such hard limits, but we
can observe the occupied chip area as a function of the
internal memory capacity. In both cases, we analyze the
maximum frequency of the design after implementation (or,
in the case of ASIC, after synthesis). Our tested memory
architecture consists of two parts: i) the internal memory, and
ii) a pivoting control logic to support addressing during the
calculation in the RP. The design of our memory architecture
is shown in Fig. 2.

The memory matrix consists of the first column a;; and
the remaining columns a;2 t0 @; 1. All columns share a
common address. During pivot search, the address is taken

Table I
IMPLEMENTATION RESULTS FOR THE FPGA RESIDUAL PROCESSOR
ARCHITECTURE (FPGA 1S XILINX XC6VSX475T).

n Area Utilization Time
BRAM|Mem [sl]|Au [s1]|Cntl [sl][All [s]|All [MHz]
100| 103 480 | 2889 | 77 |4223 166

300| 303 1269 | 8920 | 87 [12117 142
700 | 701 2821 |21438| 73 [29560 79
1000] 1001 | 4068 [30095| 73 |42368 76

from the Row counter and if the pivot is found in the current
row, the address is written into the Pivot index vector at the
address of current elimination step, and the Pivot flag for the
address of the current row is set. At the same time, the pivot
address is stored in the Pivot index register for comparison
during the next elimination step.

IV. EXPERIMENTAL RESULTS

All experiments were conducted on an RP architecture
consisting of data memory, Pivot index, Pivot flags, counters,
arithmetic units, an inversion unit, and control units. The fi-
nal design was written in VHDL. The maximum matrix
dimension n and the word length e are configurable at
synthesis time using generics, while matrix dimension n,
modulus, and the matrix data are set at runtime.

The design was simulated, synthesized and implemented
(only for FPGA) (mapped, placed, and routed). The exper-
iments were performed on 1 RP (with a single modulus),
including the input data modulo reduction and matrix elim-
ination. A transformation into the rational numbers set was
not performed. The experiments were performed separately
for FPGA and ASIC.

After verification of a simulation correctness we started an
implementation in FPGA. The Xilinx FPGA platform was
selected for all FPGA tests in Xilinx ISE. We selected the
FPGA with the highest block RAM memory capacity in the
Virtex 6 family i.e xc6vsx475t-2-ff1156. The results of our
experiments are shown in Table I.

The n column denotes the matrix dimension. In the area
utilization part the “All” and “BRAM” columns are the num-
ber of slices and Block RAMs for whole residual processor
implementation. The “Mem”, “Au” and “Control” columns
show the number of slices used only for the memory, AUs
and for the controller. The “Time” column contains the
maximum frequency obtained from the implementation.

For ASIC we performed only the synthesis. Since block
RAMs were not in the ASIC library as standard cells, we
generated them with a special memory generator tool that
comes with the library.

Synopsys Design Compiler was used for all ASIC tests
with a 130 nm technology library. The results of our
experiments are shown in Table II. The table headings
are similar to Table I, but area figures are given in mm?.
The maximum frequency is obtained from synthesis.

Table II
SYNTHESIS RESULTS FOR THE ASIC RESIDUAL PROCESSOR
ARCHITECTURE (130 NM LIBRARY).

n Area Utilization Time
Mem [mm?Z][Au [mm?][Control [sl]]]All [mm?Z][All [MHz]
100 2,22 0,82 0,015 3,08 380

300 14,02 2,22 0,016 16,57 348
700 52,41 5,09 0,017 58,16 309
1000 93,53 7,34 0,017 101,74 310

The number of clock cycles needed for load and elimi-
nation process can be calculated by (1) and (2), where n is
matrix size, with z bits per word and ¢ input words.

load(n, z,q) = ((((2(n+1))+(14+2422))q)+7)n+1, (1)
elim(n, z) = ((z + (42 — 2))n + 3)n + 14.)

To calculate the elimination time (Tej;,) We assume, that
the data are already loaded and stored in memory and
elimination process is in run. The load part takes only a
small part of all entire SLC solution time. For example,
for an n = 100 matrix, the loading process takes only
12.7 %, while for n = 1000 it takes only 11.7 %. As we
can calculate, the elimination time for a 100 column matrix
is 7ms for FPGA and 3 ms for ASIC. For a 1000 column
matrix, the elimination time is 1552ms for FPGA and
380 ms for ASIC.

When we run the same task on a CPU solving an SLC of
dimensions 100, 500, and 1000, it takes approximately 3 ms,
424 ms, and 3.37s, respectively calculated on Intel T9400
CPU running at 2.53 GHz with a 6144 KB cache. This shows
that for n = 1000, our design is approximately 5 times faster.

The results show that our residual processor architecture
allows for a maximum matrix size of approximately 1000
rows by 1001 columns with a word size of 24 bits in the
chosen FPGA type. Even with the maximum tested matrix
dimension of 1000, which uses more than 90% of the
available block RAM, only approximately 60 % of all FPGA
available slices are used.

The clock period increases with an increasing matrix
dimension. Static time analysis shows that the main parts
of the delay in the circuit are in addressing, control and
inner data bus signals. The fanout of signals significantly
increases when the size of matrix increases.

V. CONCLUSION

We have designed a Residual Processor (RP) architecture
performing a solution of a set of linear congruences. RP was
designed with a focus on its effective implementation in
FPGA and ASIC for various problem sizes with a special
attention to the memory architecture.

All important parts of the RP architecture were im-
plemented and tested in Xilinx Virtex 6 FPGA with the
largest RAM size available. The ASIC synthesis process
was performed to compare our solution with both types of

implementation. The results indicate that our RP architecture
allows for a maximum matrix size of approximately 1000
rows by 1001 columns with a 24-bit word size in the
chosen FPGA type. The maximum tested matrix dimension
of 1000 uses more than 90 % of the available block RAM
and approximately 60 % of all available slices in the FPGA
while being approximately 5 times faster than a software
implementation running on a CPU. In a case, when we use
ASIC with a 130 nm technology, the elimination time is
4 times faster than in FPGA for a 1000 rows matrix.

Future work will focus on a new RP architecture with an
external memory and a limited number of AUs.

ACKNOWLEDGMENT

This research was supported by the Czech Science Foun-
dation project no. P103/12/2377.

REFERENCES

[1] D. Taleshmekaeil and A. Mousavi, “The use of residue number
system for improving the digital image processing,” in Signal
Processing (ICSP), 2010 IEEE 10th International Conference
on, oct. 2010, pp. 775-780.

[2] A. Mirshekari and M. Mosleh, “Hardware implementation of
a fast FIR filter with residue number system,” in Industrial
Mechatronics and Automation (ICIMA), 2010 2nd Interna-
tional Conference on, vol. 2, may 2010, pp. 312 -315.

[3] J.-C. Bajard and L. Imbert, “A full RNS implementation of
RSA,” Computers, IEEE Transactions on, vol. 53, no. 6, pp.
769 774, june 2004.

[4] T. Giineysu and C. Paar, “Ultra high performance ECC
over NIST primes on commercial FPGAS,” in Proceeding
sof the 10th international workshop on Cryptographic
Hardware and Embedded Systems, ser. CHES *08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 62-78. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-85053-3-5

[5] R. T. Gregory and E. V. Krishnamurthy, Methods and Appli-
cation of Error-free Computation. Springer Verlag, 1984.

[6] J. Bucek, P. Kubalik, R. Lérencz, and T. Zahradnicky, “Dedi-
cated Hardware Implementation of a Linear Congruence Solver
in FPGA,” in The 19th IEEE International Conference on
Electronics, Circuits, and Systems, ICECS 2012. Monterey:
IEEE Circuits and Systems Society, 2012, pp. 689-692.

[7]1 R. Lérencz and M. Morh4¢, “A modular system for solving
linear equations exactly, i. architecture and numerical algo-
rithms,” Computers and Artificial Intelligence, vol. 11, no. 4,
pp. 351-361, 1992.

[8] M. Morhac¢ and R. Lérencz, “A modular system for solving
linear equations exactly, ii. hardware realization,” Computers
and Artificial Intelligence, vol. 11, no. 5, pp. 497-507, 1992.

[9] R. Lérencz, “New Algorithm for Classical Modular Inverse,” in
Cryptographic Hardware and Embedded Systems CHES 2002.
New York: Springer, 2002, pp. 57-70.

