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Abstract: The paper focuses on the minimization of the area overhead of check bits
generator in the online BIST for circuits implemented in FPGAs. We have used error
detection codes (ED codes) to ensure the self-checking property. The newly proposed
simplification method consists of converting the duplicate circuit into a two-level
network, for which the check-bits are generated. Then the outputs of the circuit are
reduced to these check-bits only; the original outputs can be omitted. After that, a multi-
level network is synthesized for this circuit. This notion enables us to significantly reduce
the resulting logic. Copyright © 2004 DESDes'04
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1. INTRODUCTION

Nowadays when the circuit integration increases, the
importance of radiation impact on integrated circuits
grows even at the sea level. It can affect any circuit
used every day. Some machines, like the control
units in cars, can play an important role in places
such as tunnels, where a car fault can endanger
human lives. Other important areas are aviation,
medicine or space missions. All of these applications
and many others depend on a correct function of
circuits and one wrong result can lead to huge losses.

The FPGA circuits are more and more often used to
implement any function because of their prices and
capabilities to upgrade the function when a bug is
discovered. Next advantage is their possible dynamic
reconfiguration when a fault in the circuit is detected
and localized (XILINX 2003).

This paper is organized as follows. Section 2
describes related works. Section 3 introduces the
used fault model and proposes general methodology
for comparing the quality of used error detection
codes. Section 4 presents the experimental issues and
solutions of the parity bits generation for all used
benchmark tests. Our future work and conclusions
are presented in the Section 5.

2. RELATED WORKS

There are many papers focused on concurrent error
detection in a random logic circuit. The
combinational circuits are used as basic elements for
testing the proposed method ensuring totally self-
checking (TSC) properties. There are two basic

properties that must be taken into account and which
are contradictory: Fault coverage must be achieved as
high as possible - up to one hundred percent. The
error detecting codes are used to ensure TSC
properties. The maximal fault coverage must be
ensured for the whole design — for the redundant
parts too. All these on-line design methods increase
the area overhead of the designed circuit. Area
overhead is a second property forcing designers to
reach its minimum while saving the maximal fault
coverage. There is a relation between the area
overhead and the fault coverage. It can be shown that
higher fault coverage does not mean higher areca
overhead, in some cases (Kubalik, 2003).

The concurrent error detection (CED) design
methodology used to satisfy TSC property has a deep
impact to the fault coverage of circuits implemented
in FPGAs. Some results of the fault coverage for
circuits implemented in FPGAs are presented in
(Bolchini, 2002). Basic methods used for the fault
detection in logic circuits are based on the simple
duplication. This methodology allows to determine
the final area overhead before the duplication
generator is executed. The duplicate part can be
modified to avoid common-mode failures (CMFs).

Another approach can be used when a duplicate
circuit is modified to decrease the number of outputs
of a duplicate part (output parity bits are used instead
original outputs). The error codes can be used in this
case. Both of these techniques are compared in
(Mitra, 2000a, b). The area overhead plays an
important role in popularity of the method used for
ensuring the TSC property. Therefore special
schemes were designed for circuits with regular



structures, for example adders, multipliers or
memories.

There are two main reasons why the CED techniques
were not so popular: a very high area overhead and a
low disposition to temporary faults due to their large
feature sizes. Nowadays when the deep submicron
technology is widely wused, incorporating CED
techniques into circuits with an unknown structure is
more and more important. Some of the new design
methods try to reach smaller area overhead but they
achieve low fault detection. For example, only some
inputs may be used to ensure the partial self-checking
property of a multilevel logic, by using low-cost
parity error detecting codes (Mohanram, 2003).

Next different design methodology ensuring smaller
area overhead uses duplication of only some part of
the original circuit. This method is based on
reduction of the number of selected input
combinations (Drineas, 2003). Some articles describe
methods how to detect the faulty part of an FPGA
without stopping its function (Abramovici, 1999).
These methods test unused part of the FPGA. When
the test is performed, the tested part is exchanged
with the used part and the testing process is started
again for currently unused area. Here the BIST
techniques can be successfully exploited (Stroud,
2002).

3. TSC CIRCUIT DESIGN

We have used the structure shown in Fig. 1 as a basic
model of the totally self-checking (TSC) circuit. The
final scheme consists of four basic blocks: the
original combinational circuit, its duplicate, the
check bits generator and the checker. The checking
bits are generated from the primary inputs of the
original circuit. The primary outputs and the
checking bits are used as an encoded output. The
checker compares the check bits with the check bits
generated from the primary outputs of the original
circuit.
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Fig. 1. Structure of TSC circuit

To satisfy the self-checking property the checker
must have at least two outputs (Nicolaidis, 1998).
The first output is used for the regular operation and
the second for the error indication. This basic
structure ensures that a circuit can be totally self-
checking (TSC). Another condition that has to be

satisfied is that the basic structure has to be self-
testing and fault secure. The blocks “Duplicate
circuit” and “Code generator” can be minimized and,
after that, the resulting design of them together can
be smaller than the original tested circuit.

3.1 Adopted fault model

In all of our experiments FPGA circuits are used. The
circuit implemented in an FPGA consists of
individual memory elements (LUTs - look up tables).
In Fig. 2 we can see 3 gates mapped into a LUT.
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Fig. 2. Fault model

The original circuit has two inner nets. The original
set of the test vectors covers all the stuck-at faults
occurring in these inner nets. For the LUT these test
vectors are redundant. For circuits realized by LUTs
the change (a defect) in the memory leads to a single
event upset (SEU) at the primary output of the LUT.
Therefore we can use the stuck-at fault model in our
experiments to detect SEU, while some of the
detected faults will be redundant.

The used fault model is described by a simple
example in Fig. 3. We have used only one LUT, for
the simplicity. The LUT realizes a circuit containing
3 gates. Primary inputs 10 to I3 are the same as the
address inputs for the LUT. When this address is
selected, its content is propagated to the output.

We assume the following situation: The content of
this LUT can be changed, e.g., by an electromagnetic
interference, cross-talk or alpha particles. The
appropriate memory cell is set to one and the wrong
value is propagated to the output. It means that the
realized function is changed and output behaves as a
single event upset. By this example we can say that a
change of any LUT cell leads to a stuck-at fault on
the output. This fault is observed only if the faulty
cell is selected. This applies to circuits constructed
from elementary gates as well. Some fault can be
masked and does not necessarily lead to an erroneous
output. Due to the fact that some faults are masked,
the possibility of their occurrence may be situated in
time when logic is used. For example if one bit of a
LUT is changed, the erroneous output will appear,
while the appropriate bit in the LUT is selected by
the address decoder.



Single event upset
Fig. 3. Fault Model - Example

3.2 Principle of Hamming code generator

There are many possibilities how to generate the
checking bits. A single even parity code is the
simplest code that may be used to get a code word at
the output of the combinational circuit. This parity
generator performs XOR over all primary outputs. In
most cases single even parity code is not appropriate
to ensure the TSC goal.

Another error code is a Hamming code that is in
essence based on single parity code (multi parity
code). The Hamming code is defined by its
generating matrix. For simplicity we use the matrix
containing the unity sub-matrix at the left side. The
generating matrix of the Hamming code (15, 11) is
shown in Fig. 4. The values a;; have to be defined.
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Fig. 4. Generating matrix for Hamming code (15, 11)

When more complex Hamming code is used, more
values have to be defined. The number of outputs o;
used for checking bits determines the appropriate
code. E.g. the circuit alul (see MCNC) that has 8
outputs requires at least the Hamming code (15, 11).
In this case we use 8 data bits and 4 checking bits.
The definition of the values a; is also important.
Now we present a method how to generate values a;y.
Let us mention the Hamming code (15, 11) that has 4
checking bits. In our case (alul) we have only 8 bits.
The reduced Hamming matrix must be used.

After the reduction the sub-matrix has only 8 rows
and 4 columns. We can define 8 of 4-bit vectors or 4
of 8-bit vectors. The second case will be used here.
The method searching for erroneous output is similar
to the binary search method. The first vector is
composed of log. 1s only. And the last vector is
composed of log. 1s on the odd places and log. Os on
the even places. Every vector except the first one
contains the same number of 1s and the same number
of 0s. An example of the possible content of the right
side sub-matrix is shown in Fig. 5.
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Fig. 5. Generating right side of matrix

The number of vectors in the set is the same as the
number of rows in the appropriate Hamming matrix.
How to generate parity output for checking bit xy is
described by equation 1

XK= a]kO]@ Ark 02@ ) AmkOm, (1)

where 0...0,, are the primary outputs of the original
circuit.

3.3 Two ways of area overhead minimization

The newly proposed simplification method consists
in converting the duplicate circuit into a two-level
network, for which the check-bits are generated.
Then the outputs of the circuit are reduced to these
check-bits only; the original outputs can be omitted.
After that, a multi-level network is synthesized for
this circuit. This notion enables us to significantly
reduce the resulting logic.

The benchmarks, which are used in this paper, are
described by a two-level network in order to compute
the quality of the code. Two ways to generate check
bits were used to compare the possibilities of
reducing the check bits generator. The first way is
based on a modification of the circuit described by a
two-level network. The area of the check bits
generator contributes significantly to the total area of
the TSC circuit. As an example we consider a circuit
with 3 inputs (c, b and a) and 2 outputs (f and e). The
check bits generator uses the odd parity code to
generate check bits. In our example we have only one
check bit x.

Our example is shown in Table 1. The output x was
calculated from the outputs e and f. At this time we
have to generate the minimal form of the equation.
We can achieve the minimal form using methods like
the Karnaugh map or Quine-McCluskey. After the
minimization we obtain three equations, one per
every output (f, e and x), where x means an odd
parity of the outputs f and e. If we want to know if
the odd parity covers all faults in our example of
simple combinational circuit, we have to generate the
minimal test set and simulate all faults on every net
in this circuit.



Table. 1. Example of parity generator

cba fe x

000 01 O

001 10 0

010 10 O

011 10 0

100 01 0

101 01 O

110 11 1

111 00 1

The final equations are:

e=bcta(b+tc) 2)
f=ab+c(a+b) 3)
X =bc )

The second way is based on a modification of multi-
level network. The parity bits are added as a tree
composed of XOR gates. The maximal area of the
parity generator can be calculated as a sum of the
original circuit and the size of the XOR tree.

3.4 Software for experimental evaluation

Fig. 6. describes how the test is performed for every
detecting code. We have used the MCNC
benchmarks (see MCNC) in our experiments. These
benchmarks are described by a truth table. To
generate the output parity bits, all the output values
have to be defined for each particular input vector.
Unfortunately, it is not so in the benchmark
definition files. Only several output values are
specified for each multi-dimensional input vector, the
rest are assigned as don’t cares; they are left to be
specified by another term. Thus, to be able to
compute the parity bits, we have to split the
intersecting terms, so that all the terms in the truth
table are disjoint.

In the next step the original primary outputs are
replaced by parity bits. Two different error codes
were used to calculate output parity bits (single even
parity code and Hamming code). Another tool was
used in the case where the original circuit was
modified in multilevel logic. This tool is described in
(Kubalik, 2003). Two circuits generated in the first
step (original circuit and parity circuit) are processed
separately to avoid sharing any part of circuit. Every
part is minimized by the Espresso tool (Brayton,
1984). The final area overhead depends on the
software that was used in this step. Many tools were
used to reach a small area of the parity bits generator.
Only Espresso was used to minimize the final area.
In this step the area overhead is known, but we can
decide if the fault coverage is sufficient.

In the next step the “pla” format is converted into the
“bench” format. The “bench” format was used due to
the fact that the tool, which generates the exhaustive

test set uses this format. An exhaustive test set has 2"
patterns and we used it to evaluate TSC goals.
Another conversion tool is used to generate two
VHDL codes and the top level. Top level is used for
incorporating original and parity circuit generator. In
the next step the synthesis process is performed by
Synplify Pro. The constraints properties set during
the synthesis process express an area overhead and a
fault coverage. If the maximal frequency is too high,
hidden faults occur during the fault simulation. The
hidden faults are caused by the circuit duplication.
The size of the area overhead is obtained from the
synthesis process. The final netlist is generated by the
Leonardo Spectrum software. The fault coverage was
obtained by simulation using our software.
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Fig. 6. Design scheduling of self-checking circuit
3.5 Software solution description

To evaluate the area overhead and fault coverage
special tools had to be developed. In addition to some
commercial tools such as Leonardo Spectrum and
Synplify we have used format converting tools,
ATPG (Automatic Test Pattern Generator) tools,
parity circuit generator tools and simulation tools.

At first, the area minimization and term splitting is
preformed for original circuit by BOOM (Hlavicka,
2001). Hamming code generator (or single parity
generator) is generated by the second software. These
two circuits are minimized again with Espresso. Next
two tools convert the two-level format into a
multi-level format. The first one converts a “pla” file
to “bench” and the second one “bench” to VHDL.
The second software is used for generating the final
circuit in the “bench” format due to their further
usage in exhaustive test set generator. The format
converting software and parity generator software
was written in Microsoft Visual C++. The netlist
fault simulator was written in Java. The parser source



code was used for parsing the netlist that is generated
by two commercial tools described above.

4 EXPERIMENTAL RESULTS

The combinational MCNC benchmarks (MCNC)
were used for all the experiments. These benchmarks
are based on real circuits used in large designs. Due
to the fact that the whole circuit will be used for
reconfiguration in FPGA, only small circuits were
used. Real designs having a large structure must by
partitioned into several smaller parts. For large
circuits the process of the area minimization and fault
simulation takes a long time. This disadvantage
prevents us to examine more methods of designing
the check bits generator.

Table 2 Description of tested benchmarks

Circuit Inputs Outputs
alul 12 8
apla 10 12
b1l 8 31
brl 12 8
al2 16 47
alu2 10 8
alu3 10 8
cl7 5 2

The evaluated area and fault coverage depend on the
circuit properties such as number of inputs, outputs
and gates. Experimental results show that a more
important property is the structure of the used circuit.
Two basic properties are described in Table 2.
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Fig. 7. Two different flows of creating parity
generator

In the first set of experiments our goal was to obtain
a hundred percent fault coverage, while we measured
the area overhead. In this case the maximum of the
parity bits was used.

This task was divided into two experiments (Fig. 7).
In the first experiment the two-level network was
being modified (Fig. 7a). The results are shown in
Table 3.

Table 3 Hamming code — PLA

Circuit Parity Original Parity Overhead Fault

nets [LUT] [LUT] [%] coverage

alul 4 8 84 1050 100
apla 5 45 105 233 100
bll 6 38 38 100 100
brl 4 50 59 118 97,8
al2 7 51 54 106 100
alu2 4 30 127 423 100
alu3 4 28 94 336 100
cl7 2 2 3 150 100

Table 4 Hamming code — XOR

Circuit Parity Original Parity Overhead Fault

nets [LUT] [LUT] [%] coverage
alul 4 8 13 163 100
apla 5 45 114 253 100
bll 6 38 73 192 100
brl 4 50 85 170 98,3
al2 7 52 109 210 100
alu2 4 30 52 173 100
alu3 4 28 44 157 100
cl7 2 2 3 150 100

The 100% fault coverage was fulfilled in 7 cases.
The area overhead in many cases exceeds 100%. It
means that the cost of a hundred percent fault
coverage is too high. In these cases the TSC goal is
satisfied. Then, we have used an old method where
the original circuit in multi-level network is being
modified by additional XOR logic (Fig. 7b).
(Kubalik, 2003).

The results obtained from this experiment are shown
in Table 4. A 100% fault coverage condition was
fulfilled in the same cases as in the first experiment
but the overhead is in some cases smaller. In the
second set of experiments we have tried to obtain a
small area overhead and the fault coverage was
measured. In this case the minimum of the parity bits
is used (single even parity).

The experiments are divided into two groups a) b),
Fig. 7. The procedure is the same as described above.
In the first experiment the two-level network of the
original circuit was modified (Fig. 7a). The results
are shown in Table 5. The 100% fault coverage is
reached in two cases, however an area overhead is
smaller in five cases. In the last experiment we have
modified the circuit described by a multilevel
network (Fig. 7b). In many cases the area overhead is



higher than 100%, however, the fault coverage did
not increase, Table 6.

Table 5. Single even parity - PLA

Circuit Parity Original Parity Overhead Fault

nets [LUT] [LUT] [%] coverage

alul 1 8 271 3388 100
apla 1 46 23 50 82,6
bl1 1 37 3 8 77,3
brl 1 54 10 19 62,1
al2 1 52 4 8 91,9
alu2 1 29 47 162 92,5
alu3 1 26 32 123 92
cl7 1 2 2 100 100

Table 6. Single even parity - XOR

Circuit Parity Original Parity Overhead Fault

nets [LUT] [LUT] [%] coverage
alul 1 8 10 125 100
apla 1 46 56 122 88,2
bll 1 37 36 97 86,2
brl 1 54 61 113 78,9
al2 1 52 23 44 93,5
alu2 1 29 44 152 91,1
alu3 1 26 39 150 91,6
cl7 1 2 2 100 100

5. CONCLUSION AND FUTURE WORK

All of our experiments say that TSC goals can be
reached for the whole design, including the checking
parts. It is achieved by using more redundant outputs
generated by special codes. The final area overhead
significantly depends on the number of inputs and
outputs, parity bits and the structure of a tested
benchmark. In cases where one parity bit is used, the
final area overhead is smaller than 100%, but TSC
goals are not fulfilled. In cases where TSC goals are
met the area overhead is greater then 100%.

All of our experiments apply to combinational
circuits only. But many circuits in real designs are
composed of sequential parts, too. However such
circuits can be divided into simple combinational
parts separated by flip-flops. The finite state machine
can be divided into two parts: the first part covers
combinational logic from inputs to flip-flops (with
feedback), the second one covers the combinational
logic from flip-flops to outputs (with the nets that are
connected directly from the input to the output).
Therefore the restriction to the combinational circuits
does not reduce the quality of our methods and
experimental results. In the future we have to
discover more precise relations between real FPGA
defects and the wused fault models. Also the

appropriate decomposition of the designed circuit is
under our intensive research.
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