
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science and Engineering

Master’s Thesis

Serial ATA core with cryptography support

Bc. Martin Chloupek

Supervisor: Ing. Pavel Kubalík, Ph.D.

Study Programme: Electrical Engineering and Information Technology

Field of Study: Computer Science and Engineering

May 22, 2009



iv

Aknowledgements
I would like to thank Ing. Pavel Kubalík, Ph.D. for his efforts he gave supervising this work
and special thanks to my family for their patience during my work as well.



v

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 22, 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Abstract

This work deals with design and implementation of a Serial ATA core with cryptography
support in HDL language. The core is implemented and tested on Xilinx Virtex-5 FXT
FPGA, Xilinx ML-507 development board. The system is controlled by using Ethernet
frames. Cryptographic AES-128 core is placed between Ethernet and SATA core, making
possible to crypt stream of transferred data. The design uses Xilinx Serial ATA PHY and
Xiling TEMAC hard cores. First part of this work deals with analysis of Serial ATA protocol
and cryptography as well, next part deals with overall system design, the last one describes
system implementation and testing.
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Chapter 1

Introduction

Today’s hard drives are the most common equipment for storing large amounts of data. They
have been here for quite a long time, starting with several megabytes, nowdays their capacity
is measured in terabytes. Their interfaces has been developing with their size. Nowdays we
can choose from several interfaces, beginning with Parallel ATA, Ultra Wide SCSI, Serial
ATA and Serial Attached SCSI (SAS).

In area of personal computers, laptops and low-end servers the Serial ATA interface and
protocol is the most used one. Because of its popularity, SATA now appears more and more
in systems on chip, embeedded systems and other areas where high capacity of non-volatile
memory is needed.

In area of FPGA and ASIC design, lot of companies like Mentor Graphics, Synopsys,
Altera, Xilinx, Aeuluros provide hard IP cores realizing physical layer of SATA. These com-
panies provide their designs in many nanometer technologies and also as burned hard cores
on FPGA chips.

While Xilinx company provides Serial ATA PHY core so I decided to implement another
layers of Serial ATA protocol. This could be very useful for other FPGA/ASIC application
development, where large amounts of data are generated or consumed. For example EDK
generated system with Linux operation system would use SATA core at most.

Hard drives often contain very private data. Because hard drives can be stolen, it is
necessary to encrypt data stored on hard drive. This Master’s Thesis also handles this
situation by using encryption/decryption core in dataflow process.

My task is to design and realize system in hardware that writes and reads data from
Serial ATA hard drive with possibility of encrypting and decrypting data stream. System
receives control and input data from gigabit Ethernet interface.

1



Chapter 2

Problem description, goal
specification

Target platform on which the system was developed and tested is Xilinx ML-507 development
board with Xilinx Virtex-5 XC5VFX70T FPGA chip in the center. This chip contains GTX
transceiver/receiver hard core, that is basically high speed serial to parallel converter with
additional protocol required features. The GTX core supports many serial communication
protocols like PCI express, fiber channel, XAUI, SATA generation one and two and others.
In this thesis the GTX core with SATA configuration is used. For fully working physical
layer of SATA protocol there is necessity of implementing control circuits for correct SATA
speed negotiation. Reference design is provided from Xilinx company, see [1].

Early versions of this core appeared also on older FPGA chips called Virtex-II, however
this version couldn’t be used with regular SATA hard drives due to lack off Out Of Band
signal support, that is necesary for Serial ATA to work.

The Virtex-5 FPGA contains among others also Tri-Mode Ethernet Mac (TEMAC)
hard core that implements MAC layer of Ethernet and therefore the development board
is equipped with chip that realizes Ethernet physical layer. It supports 10Mb, 100Mb and
1Gb Ethernet transfer rates, however only 1Gb configuration is used in this design due to
SATA rates that are 150MB for SATA generation 1 and 300MB for SATA generation 2.
Reference design, how to operate this core is available from Xilinx company.

Situation regarding IP cores which implement transport and link layers of SATA is very
various on the market. Company Synopsys in their product DesignWare Cores SATA AHCI
[9] provides among SATA transport and link layer implementation also AHCI interface, that
is used in operation systems like Microsoft Windows Vista and Linux. Company Nuvation
[10] also provides implementation of previously mentioned SATA layers with AHCI interface
for product of Altera company. Xilinx company also provides implementation for their
products. Detailed market survey can be found on site [7], but the analysis is paid. I
was not succesful in finding free/open-source implementation of transport and link layers of
SATA protocol.

After consulting with supervisor, we decided, that using of old ciphers like DES or Triple-
DES that are not so hard to implement is obsolete today. Today the most used symmetric

2



CHAPTER 2. PROBLEM DESCRIPTION, GOAL SPECIFICATION 3

block cipher is AES. AES was announced by National Institute of Standards and Technology
(NIST) as U.S. FIPS PUB 197 (FIPS 197) on November 26, 2001. AES is in my opinion
little bit harder to implement than ciphers previously mentioned, and because there are many
implementations on the web in hardware and software, we decided, that it would be best
to choose one of implementations freely available rather than implement one from scratch.
More details in this manner can be found in chapter Cryptographic analysis 3.2, where I
compare ciphers that I found and comment the implementation I use in this Master’s thesis
and also comment the decision making process.

My task is to design and implement system, which on one side receives control data,
transmits status data and receives/transmits payload data through 1Gb Ethernet interface,
then if desired encrypts/decrypts payload data using symmetric block cipher and on the
other side it communicates with SATA hard drive, where the payload data are written or
read. Other result of this thesis is SATA protocol analyzer using Chipscope Pro software
from Xilinx company.



Chapter 3

Analysis

This part of the thesis is devoted to analysis of SATA protocol in scope necessary for im-
plementation of desired system, then it focuses on analysis of available implementations of
AES cipher and decision which implementation is to be used in desired system.

3.1 Serial ATA protocol analysis

Serial ATA is high speed serial interface operating at 1.5Gb/s for SATA generation one and
at 3.0Gb/s for SATA generation 2. The SATA specification is developed and maintained by
the Serial ATA International Organization. The specificiation can be downloaded from [11].

Serial ATA protocol is divided into 5 layers, starting from the bottom Physical layer, Link
layer, Transport layer, Command layer and Application layer, as illustrated in following figure
3.1.

Application layer

Command layer

Transport layer

Link layer

Physical layer

Figure 3.1: serial ATA layers

4



CHAPTER 3. ANALYSIS 5

SATA main features:

• Serial Interface: The serial interface consists of two differential pairs for bi-directional
signaling. It may seem that the interface is full-duplex, but it is not, while on one
differential pair is transmitted data the other pair is used for status signaling.

• ATA Commands: The SATA protocol supports existing ATA commands, so on Com-
mand layer it is backward compatible with its predcessor Parallel ATA.

• Low Voltage Signaling: Signaling is performed at low differential voltage: 500mV peak-
to-peak, which is huge advantage when implemented in nowdays nanometer technolo-
gies.

• Hot Plug: Cables and connectors are designed to enable hot plug – when inserting cable,
first connected are ground pins, then power pins and at last differential signaling pairs.

• Native Command Queuing: Native Command Queuing permits drives to queue 32
commands and then execute them in the order that will result in best overall perfor-
mance.

3.1.1 Physical layer

This section describes the physical layer of Serial ATA. Serial ATA Physical layer is respon-
sible for parallel to serial conversion and vice versa, for detecting and transmitting OOB
signal and for 8b/10b coding and decoding. Signal are transmitted/received on differential
pairs using NRZ coding.

8b/10b coding is standard that trades-off two bits off overhead for improved reliabil-
ity. For SATA it also provides means of transmitting/receiving special characters called K
characters, that are used for control functions.

OOB signals (Out Of Band) are special sequences of data bursts and idles, each of which
is differential signal level below 50mV (peak to peak). They are used for startup link speed
negotiation before the data transfer occurs. In SATA specification, there are defined 3 type
of OOB signal: COMINIT (sent by device), COMRESET (sent by host) and COMWAKE
(send by both host and device. They differ in time of idles, time off data bursts is always
the same. Following figure 3.3 illustrates these signals.

Figure 3.2: OOB signals - taken from [1]
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3.1.1.1 Startup link speed negotiation

Startup link negotiation is accomplished through OOB signaling. The sequence is as follows:

1. Host signals COMRESET.

2. Device detects completion of COMRESET .

3. Device signals COMINIT.

4. Host detects completion of COMINIT.

5. Host calibrates and then signals COMWAKE.

6. Device calibrates and then signals COMWAKE.

7. Device transmits continuous stream of ALIGN primitives at the device’s highest speed.

8. Host detect ALIGN primitives and in response start transmission of continuous ALIGN
primitives.

If the device doesn’t detect ALIGN primitives from host for 54.6us, it assumes that host
cannot communicate at that speed and tries sending ALIGN primitives at next lower speed.
This step continues until all speed are exhausted, if no response, device enters error state.

After the ALIGN primitives are successfully exchanged, host and device are synchronous,
and they exchange SYNC primitives entering link idle state. Following figure 3.3 depicts
Serial ATA speed negotiation startup sequence.

Figure 3.3: OOB startup link speed negotiation - taken from [6]
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3.1.1.2 Primitives

Serial ATA protocol is double word (32-bits) oriented. All transfers across serial ATA link
are aligned to double word boundary. Primitives are special double words that carry control
information, they consist of normal characters and special K character. Serial ATA speci-
fication defines 18 primitives, in scope of this thesis are relevant only 6 of them, which are
listed in following table 3.1.1.2. K character is always byte 0 of the primitive double word,
they are underlined in the hexadecimal representation in the primitive table 3.1.1.2.



CHAPTER 3. ANALYSIS 8

Primitive Value Name Description
ALIGN 7B4A4ABCh Physical layer

control
This primitive is always sent in pairs. Us-
ing this primitive, receiver detects dou-
ble word boundary in transmission. SATA
specification defines, that it is necesary to
retransmit ALIGN primitives pair every
256 double words are transmitted across
the link for keeping receiver and transmit-
ter synchronized.

CONT 9999AA7Ch Continue
repeating pre-
vious primitive

This primitive is used for repeated prim-
itive suppression, more details in section
3.1.2.5

EOF D5D5B57Ch End of frame This primitive marks the end of frame.
HOLD D5D5AA7Ch Hold data

transmission
This primitive is used for the payload data
flow control. It means, that the transmis-
sion buffer of transmitting node is empty.
It is also transmitted by receiving node
when receiving node buffer is full.

HOLDA 9595AA7Ch Hold acknowl-
edge

This primitive is used for the payload data
flow control. It is transmitted by transmit-
ting node to acknowledge, that receiving
node’s buffer is full.

R_ERR 5656B57Ch reception error This primitive informs transmitting node,
that receiving node received frame with er-
ror.

R_IP 5555B57Ch Reception in
progress

This primitive informs transmitting node,
that receiving node is receiving the pay-
load data.

R_OK 3535B57Ch reception with
no error

This primitive informs transmitting node,
that receiving node received frame with no
error.

R_RDY 4A4A957Ch Receiver ready This primitive informs transmitting node,
that receiving node is ready to receive
frame.

SOF 3737B57Ch Start of frame This primitive marks the start of frame.
SYNC B5B5957Ch Synchronization This primitive is used to signalize idle bus

state. It is also used for termination cur-
rent reception/transmission.

WTRM 5858B57Ch Wait for frame
termination

After transmission of EOF primitive, the
transmitting node transmits this primi-
tive, while waiting reception status from
receiving node.

X_RDY 5757B57Ch Transmission
data ready

This primitive informs receiving node,
that transmitting node is ready to send
frame.

Table 3.1: Primitives
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3.1.2 Link layer

The Link layer manages the frame transmission protocol. A major part of this protocol is
generating and decoding primitives and also data flow control.

When requested by the Transport layer to transmit a frame, the Link layer does following:

• Receives data from the Transport layer

• Calculates CRC and inserts calculated CRC value at the end of a frame before EOF
primitive

• Insert primitive SOF and EOF, to mark frame boundaries

• Provides frame flow control using HOLD and HOLDA primitives

• Scramblers data

• Reports status of frame transmission

When data is received from Physical layer, the Link layer does following:

• Acknowledges peer node that it is ready to receive frame

• Receives data from Physical layer

• Recognizes received primitives and removes them

• Unscrambles data

• Calculates CRC and compares to CRC received in frame

• Reports status of frame reception

When both host and device want to transmit a frame, the device has higher priority.

3.1.2.1 Frame transmission sequence

When requested by upper layer to transmit a frame, the sequence is following:

1. Transmitting node starts transmitting X_RDY primitive, indicating that it is ready
to transmit frame

2. Receiving node detects X_RDY primitive and if it is ready to receive frame, starts
transmitting R_RDY primitive, indicating that it is ready to receive frame

3. Transmitting node detects R_RDY primitive and starts data. One SOF primitive is
transmitted first followed by payload data burst.

4. Receiving node detects SOF primitive, starts receiving data and in response transmits
R_IP primitive, indicating that receive is in progress.
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5. Transmitting node transmits all frame data, followed by CRC value and EOF primitive
and immediately after that starts transmitting WTRM primitive, indicating that it is
waiting for frame reception status.

6. Receiving node receives payload data until EOF primitive is detected. After detecting
EOF primitive, receiving node checks received CRC value, which is the last double
word before EOF primitive, with calculated CRC value. If the received CRC value
is equal to calculated CRC value, receiving node starts transmitting R_OK primitive
indicating that it has received frame without errors. If the received CRC value is not
equal to calculated CRC value, receiving node starts transmitting R_ERR primitive
indicating that received frame is corrupted.

7. Transmitting node detects R_OK or R_ERR primitive, reports frame reception status
to upper layer and starts transmitting SYNC primitive.

8. Receiving node detects SYNC primitive and starts transmitting SYNC primitive in
response, placing the link in idle state.

9. Link is now in idle state and next tranSmission can start.

This transmission sequence is the same for device and host. If the frame carried control
information and the was received corrupted, the Link layer automatically retransmits the
frame. If the frame carried data to be written to disk or data read from disk it is up to
transport layer, what happens next.

3.1.2.2 Flow control

During the frame transmission, if the transmitting node’s transmit buffer is empty, the
transmitting transmits HOLD primitive instead of the data. After the transmitting node’s
buffer has some data to transmit, start transmitting the data instead of HOLD primitive.

During frame reception, if the receiving node’s receive buffer is nearly full, it starts trans-
mitting HOLD primitive. If the transmitting node detects HOLD primitive, it understands
that receiving node’s buffer is nearly full and starts transmitting HOLDA primitive instead
of the data. When the receiving node’s buffer has enough space for receptions, the re-
ceiving node stops transmitting HOLD primitive, transmitting node detects it at continues
transmitting the data instead of HOLDA primitive. Serial ATA specification defines, that
transmitting node has 20 double word cycles to start transmitting HOLDA primitive upon
reception HOLD primitive. This is called round trip delay time.

3.1.2.3 CRC

The Serial ATA protocol uses 32 bit Cyclic Redundancy Code for verifying frame integrity.
The calculated CRC value is inserted at the end of frame payload data right before EOF
primitive. The CRC is calculated on double word quantities and is calculated according to
following 32-bitgenerator polynomial:

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

The CRC value is initialized with a value 52325232h
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3.1.2.4 Data scrambling

All data transferred across the SATA link must be scramble due to EMI emissions. Scram-
bling and unscrambling is accomplished by XORing the data, to be transmitted/received
with an output of a linear feedback shift register (LSFR). The shift register shall implement
the following polynomial:

G(x) = x16 + x15 + x13 + x4 + 1

The LSFR is initialized with value FFFFh. Primitives are not scrambled. CRC value is
scrambled.

3.1.2.5 Repeated primitives suppression

Because repeated primitives can cause high EMI emissions, Serial ATA protocol defines
manner how to suppress these emissions. After transmission of two identical primitives,
CONT primitive follows and the output is generated from scrambling LSFR. Scrambling
LSFR is the same LSFR used for data scrambling, so there need to be 2 scramblers in the
design, one for data scrambling and another for scrambling output after CONT primitive.
Example sequence with CONT primitive illustrates following figure 3.4.

Figure 3.4: Repeated primitive suppression example

3.1.3 Transport layer

Requests to send may come from Command layer or Application layer. In either case, the
Transport layer is responsible for creating Frame Information Structures (FIS) and manages
transmissions of these Frame Information Structures by controlling Link layer. Serial ATA
specification defines several types of them, the following table 3.1.3 displays their name,
hexadecimal type value, direction and size. FIS type specifies FIS length.

In scope of this thesis are only important Register, PIO Setup and Data Frame Informa-
tion Structures.

Serial ATA protocol is on Command layer backward compatible with parallel ATA. Par-
allel ATA uses a set of registers for control and data exchange. In Serial ATA a copy of the
legacy ATA registers is called "shadow registers" and they are kept in Host Bus Adapter.
Application layer software access these shadow registers and Serial ATA Transport layer then
transfers content of these register using Frame Information Structures to hard drive where
the real registers take place.
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FIS name Type value Direction Size
Register FIS - Host to Device 27h Host to Device 5 double words
Register FIS - Device to Host 34h Device to Host 5 double words

Set device Bits A1h Device to Host 2 double words
PIO Setup FIS 5Fh Device to Host 5 double words

DMA Activate FIS 39h Device to Host 1 double word
DMA Setup FIS 41h Bidirectional 7 double words

Data FIS 46h Bidirectional max 2049 double words
BIST Activate FIS 58h Bidirectional 3 double words

Table 3.2: Frame Information Structure types

Double word Byte 3 Byte 2 Byte 1 Byte 0
0 Features Command CRR FIS Type
1 Device LBA high LBA mid LBA low
2 Features (exp) LBA high (exp) LBA mid (exp) LBA low (exp)
3 Control Reserved Sector Count (exp) Sector Count
4 Reserved Reserved Reserved Reserved

Table 3.3: Register FIS - Host to Device format

3.1.3.1 Register FIS - Host to Device

Register FIS - Host to Device transfers Host Bus Adapters shadow registers to registers in
device. Table 3.1.3.1 depicts format of this FIS.

Brief description:

• Command filed specifies the ATA command to be executed.

• Bit 7 of CRR register specifies if the FIS transfer is triggered by change of Command
register (bit is set) or Control register (bit is cleared).

• LBA registers are used for 48-bit addressing scheme of disk sectors.

• Sector count registers specify how many sector are to be transferred or received.

Meaning of these registers vary according to which ATA command is used. ATA specifi-
cation [12] explains meaning of these registers for each command.

3.1.3.2 Register FIS - Device to Host

Register FIS - Device to Host transfers content of hard drive registers to Host Bus Adapters
shadow registers. Table 3.1.3.1 depicts format of this FIS.

Meaning of these registers vary according to which ATA command is used. ATA specifi-
cation [12] explains meaning of these registers for each command.
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Double word Byte 3 Byte 2 Byte 1 Byte 0
0 Error Status RIR FIS Type
1 Device LBA high LBA mid LBA low
2 Reserved LBA high (exp) LBA mid (exp) LBA low (exp)
3 Reserved Reserved Sector count (exp) Sector Count
4 Reserved Reserved Reserved Reserved

Table 3.4: Register FIS - Device to Host format

3.1.3.3 PIO Setup FIS

This FIS is delivered from a SATA device to host during execution of Programmed IO (PIO)
command. Table 3.1.3.3 depicts format of this FIS.

Double word Byte 3 Byte 2 Byte 1 Byte 0
0 Error Status RIDR FIS Type
1 Device LBA high LBA mid LBA low
2 Reserved LBA high (exp) LBA mid (exp) LBA low (exp)
3 E_Status Reserved Sector count (exp) Sector Count
4 Reserved Reserved Transfer Count (exp) Transfer Count

Table 3.5: PIO Setup FIS format

3.1.3.4 DATA FIS

This FIS is delivered either from Host to Device or from Device to Host. It carries the data
to be read from disc or the data to be written to disc. Minimum size of data payload is one
double word, maximum size 2048 double words. Usually the data payload size in bytes is
multiply of 512 bytes (default sector size). Table 3.1.3.4 depicts format of this FIS.

Double word Byte 3 Byte 2 Byte 1 Byte 0
0 Reserved Reserved Reserved FIS Type

1 ... (N-1) N double words of data ( minimum is
one double word, maximum is 2048 dou-
ble words)

Table 3.6: Data FIS format

3.1.4 Command layer

As I mentioned in previous section, Serial ATA protocol is on Command layer backward
compatible with parallel ATA. Specification ATA/ATAPI-7 [12] – the seventh revision of
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the ATA standard released in 2003 defines these commands. Meaning of control and status
registers vary according to which commands are used. In this thesis, I use these commands:

• IDENTIFY DEVICE - in response to this command, device returns 512 bytes of infor-
mation describing device capabilities, additional protocol support, device serial number
string, manufacture string and etc.

• READ NATIVE MAX ADDRESS EXT - in response to this command, device returns
maximum sector address using 48-bit addressing scheme.

• READ SECTOR(S) EXT - this command is used for writing one or more sectors using
48-bit addressing scheme.

• WRITE SECTOR(S) EXT - this command is used for reading one or more sectors
using 48-bit addressing scheme.

These commands except READ NATIVE MAX ADDRESS EXT follow PIO command data
protocol. READ NATIVE MAX ADDRESS EXT command follows non-data command
protocol.

3.1.4.1 Non-data command protocol

This command protocol is used for commands, where no data is being transferred. This
command follows this sequence:

• Host transmits command using Register FIS - Host to Device. If during reception an
illegal transition occurs, the device send SYNC primitive to abort the transfer.

• Device process command.

• Device transmits Register FIS - Device to Host containing command results.

Figure 3.5 depicts this protocol.

3.1.4.2 PIO command data protocol

This command protocol differs if the payload data are transferred to device or from device:

• PIO Data-IN - data is transferred from device to host

• PIO Data-OUT - data is transferred from device to host
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SATA Host SATA Device

Host ready 
to transmit 
command

Device receives 
command

Host receives
command

Device transmits
command response

Device processes
command

Host to Device
register FIS

Device to Host
register FIS

Figure 3.5: Non-data command protocol

PIO Data-IN protocol

This command protocol follows this sequence:

• Host transmits Register FIS - Host to Device.

• Device reads data from disc.

• Device transmits PIO Setup FIS with initial and end status.

• Data is transferred from device to host using Data FIS.

• If the device detects an error, it reports the error to the Host using Register FIS -
Device to Host.

Figure 3.6 depicts this protocol.

PIO Data-OUT protocol

This command protocol follows this sequence:

• Host transmits Register FIS - Host to Device.

• Device seeks write location on disk.

• Device is ready to accept data and transmits PIO Setup FIS.

• Data is transferred from host to device using Data FIS.

• Drive reports write status to host using Register FIS - Device to Host

Figure 3.7 depicts this protocol.
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Figure 3.6: PIO Data-IN protocol
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3.2 Analysis of cryptographic cores

As I mentioned in previous chapters, I decided to use symmetric block cipher AES with
128 bits key length, and not to implement AES from scratch, but to use an implementation
freely available. In this chapter I describe the reasons for this decision and I also describe
implementations of AES that I found, and decision which one I use.

The first question is: Symmetric block cipher or symmetric stream cipher? While the
payload data are written/read on hard drive where it is stored in blocks called sectors which
are usually 512 bytes length (in ATAPI-7 [12] there is command for changing sector length),
it seems that block cipher is the right choice. Stream cipher could be theoretically also used,
when each sector would represent one stream. Ciphering whole disk with stream cipher
as one stream is impossible, because operation system reads/writes sectors from random
addresses, stream cipher would need to read all preceding sectors to have right context for
ciphering particular sector. Another issue is, that stream ciphers are designed to cipher
stream, when we use one sector as a stream and same encryption key for each sector, stream
ciphers would be very vulnerable to attack, because the cracker would have in his hands a
lot of small streams, knowing that each stream has the same ciphering key. These are the
reasons, why I decided to use symmetric block cipher.

Another question is: Why AES? According to source [15]

• AES – (Advanced Encryption Standard) – Created by US government for ciphering
their documents. Block length is 128 bits and key length 128, 192 or 256 bits. Has not
been cracked yet.

• DES – It was developed in 70 and is considered as insecure because the key is only 56
bits length. It is possible to crack this cipher in one day by brute-force attack using
today’s personal computer.

• Triple DES – Successor of DES, key length is 168 bits, it is more secure than DES but
is very slow.

• IDEA - Block length is 64 bit and key length is 128 bits. It is generally considered as
the most secure. Patented till 2010 – 2011.

• RC2 - (Rivest Cipher 2) Block is 64-bit length, key has variable length. Secret of RSA,
SDI.

I decide to use AES because it is fast and secure. Another reason is that the stan-
dardization process of AES cipher took 5-year, fifteen competing designs were presented and
evaluated before Rijnndel was selected as the most suitable. AES was announced as standard
by National Institute of Standards and Technology (NIST) as U.S. FIPS PUB 197 (FIPS
197) on November 26.

Very detailed comparison of symmetric ciphers can reader find at [16].
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3.2.1 Comparison of available implementations

3.2.1.1 AES (Rijndael) IP Core

Source [13]:
Description from authors:

• 16 byte block size

• 16 byte key size

• separate cipher (encrypt) block

• separate inverted cipher (decrypt) block

• incorporated key expansion module

• written in verilog

• Authors believe that this core is fully complies to FIPS-197.

My observation:

• +fast - takes 10 cycles for encryption/decryption

• +encryption key is entered same tame as data

• +128 bit interface

• -only 128 bit key length supported

3.2.1.2 128/192 AES

Source [2]:
Description from authors:

• SystemC and Verilog code provided

• Verified using TLM(Transaction Level Modeling Style)

• Encoder and decoder in the same block

• 128 bits low area implementation, takes about 500 cycles to encrypt/decrypt a block.

• 192 bits low area implementation, takes about 280 cycles to encrypt/decrypt a block.

• They don’t use memories to store the S-box and have many other architectural im-
provements to reduce the area consumption. Implements the encoder and decoder
in the same block. The cores were written in SystemC RTL, and verified using
TLM(Transaction Level Modeling Style). Verilog synthesizable code is also provided.

My observation:

• very slow

• no documentation at all provided
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3.2.1.3 AES core modules

Source [3]:
Description from authors:

• AES encoder 128/192/256 bit

• AES decoder 128/192/256 bit

My observation:

• 8 bit interface

• very bad documentation

• not clear how fast encoder and decoder works

3.2.1.4 AES128

Source [4]:
Description from authors:

• Input and key length of 128 bits.

• Operation in ECB mode.

• Performance adheres to FIPS-197.

• Core with high speed and low latency.

• RTL and TB in VHDL.

My observation:

• same module for encoder and decoder

• not very good documentation

• needs 13 cycles for crypt

When I was choosing which implementation to use my first choice was AES core modules
because it supports all possible AES key sizes. In later research, I changed my opinion,
because the core has 8 bit interface, the documentation is very bad, there is not cellar,
how fast does the core work. I decided to use AES (Rijndael) IP Core, because it has very
good documentation, 128-bit interface, has separate encryption and decryption block and it
takes 10 cycles for encryption/decryption. Another reason was, that the core has very clear
implementation, which I consider very good for the future development. The reason why
128-bit interface suits me better is that the interface to Ethernet core is 8 bits wide (can
be changed to 10) and operates at 125Mhz frequency, so while converting data from 8-bit
interface to 128-bit interface, which takes 16 clock cycles, the previous block of data could
be encrypted in 10 cycles and in the result, there would be no pause in input stream.
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3.3 Reference design for Serial ATA Physical layer

Xilinx company provides reference design, how to operate RocketIO GTP core for serial tat
functions. Reference’s design block level schematic depicts figure 3.8. This design contains
two major blocks, OOB control block and Speed Negotiation Control (SNC) block. OOB
Control block handles control of OOB signals during startup speed negotiation sequence a
signals to SNC block, that the host and device have locked. Speed Negotiation Control block
dynamically reconfigures GTP phase locked loop and by that changes speed between SATA
generation 1 and 2.

This design uses Virtex-5 LXT FPGA while I chose Virtex-5 FXT FPGA for my disposal.
The LXT FPGA contains RocketIO GTP core, while FXT FPGA contains RocketIO GTX
core. The GTX version of RocketIO is upgraded version of GTP RocketIO core. Maximum
datapath width for RocketIO GTP core is 16 bits and for Rocket GTX core is 32 bits. The
internal datapath widths also differ, while GTP version’s width is 10 bits, GTX version’s
width is 20 bits. Due to these differences the clocking also differs.

I used 32 bit wide datapath from RocketIO GTX core in my design so I had to completely
rewrite OOB control block. I also had to change DCM configuration and clock paths. I use
the Speed Negotiation Control block without modifications.

3.4 Example design for TEMAC core

Xilinx company provides for its Tri-Mode Ethernet MAC core (TEMAC) an example design,
which is very easy to understand and to use. The example design is ended by address swap
module which receives Ethernet frame from receive FIFO then swaps destination and source
MAC addresses and then sends the modified frame to transmit FIFO. The design needs two
clock sources, 200Mhz clock for IDELAY primitive and 125Mhz for rest of the design. All
that is needed for making the example design to work is modifying the user constrains file.
However that is not all. There is not brought-out reset signal for physical interface. Without
this signal, the example design does not work. Figurin this out took me quite a long while.
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Figure 3.8: Serial ATA Physical Link Initialization with the GTP Transceiver of Virtex-5
LXT FPGAs block schematic - taken from [1].



Chapter 4

Design proposal

In this chapter I describe the overall system design. The most important blocks of this design
are described in detail in next chapter. At the end of this chapter, reader can find which
development tools I used.

4.1 Overall system design

The system consists of three major parts that are sata core, eth core and sata_to_eth_mem
entity. The following figure 4.1 depicts the top level entity. The sata core entity manages
Serial ATA operations, eth core manages Ethernet operations and sata_to_eth_mem entity
is the junction point between them. Both sata core and eth core have their own clock domain.
Eth core runs on 125Mhz clock and sata core runs either on 37.5Mhz clock for Serial ATA
generation 1 speed or on 75Mhz clock for Serial ATA generation 2 speed. The main datapath
width for eth core is 8 bits and for sata core is 32 bits.
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Figure 4.1: Top level block diagram
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Sata_to_eth_mem entity consists of 4 dual port random access memories and of flip-
flops for clock domain crossing. These random access memories act as buffers for data
transfer. Two buffers are devoted to command transfer, one for command to be transmitted
on sata interface (Register FIS - Host to Device) and the other one for command response
from SATA interface (Register FIS – Device to Host, PIO Setup FIS). Another two much
larger buffers are devoted to payload data transfer, one for data to be transmitted on SATA
interface and the other for data received on SATA interface. These buffer pairs can be joined
so there will be only command buffer and data buffer, however I find solution with 4 buffer
better for future core development and debugging.

4.1.1 ETH core

Eth core consist of two major components, that are command_layer entity and eth0_core-
_locallink entity. Eth0_core_locallink entity is the component generated by Core Generator
that instantiates Tri-Mode Ethernet MAC core. I describe Core Generator configuration for
generating TEMAC core used in this thesis in appendix B. This entity is ended by receive
and transmit FIFO.

Command_layer entity on side communicates with SATA core through sata_to_eth_mem
entity and on the others side it receives and transmit frames to sata_to_eth_mem entity
through sata_to_eth_mem entity’s receive and transmit FIFO. It extracts from received
frame control command and data to be executed in SATA core, stores them in buffers, starts
SATA core FSM, wait until the desired action is executed and then transmits the results in
form of Ethernet frame. This entity is also equipped with timeout for SATA operations and
due to higher clock frequency than in SATA core, this is where encryption and decryption
of payload data takes place.

4.1.2 SATA core

Sata core consists of two major components that are sata_transport entity and speed-
_neg_control_tile entity. Speed_neg_control_tile entity contains startup link speed ne-
gotiation FSM and also OOB control FSM. Sata_transport entity is the implementations
of SATA Link and Transport layers. It consists of sata_core_cntrl, sata_rxtransport and
sata_txtransport entities. Sata_rxtransport entity handles frame reception, sata_txtransport
handles frame transmission and sata_core_controller control controls both of them. This is
described in more detail in next chapter.

4.1.3 Ethernet communication protocol

This section describes system’s communication interface with Command and Apllication
layers of Serial ATA protocol. The system communicates with outer world through Etherenet
frames. Table 4.1.3 describes format of frames that the system accepts. Table 4.1.3 defines
format of Ethernet frames transmitted by the system to outer world. Commands that are
accepted and executed by the system are described in table 4.1.3, statuses of commands
execution are described in table 4.1.3. If the requested command does not operate with
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command buffer and data buffer, there must not be command buffer size field and command
buffer content and data buffer content. If the requested command does not operate with
command buffer and operates with data buffer, there must not be command buffer size field
and command buffer content, the received frame contains after requested command value
content of data buffer. If the requested command operates with command buffer and does
not operate with data buffer, there must not be command buffer content in received frame.
Same rules apply to frames, that are transmitted from the system.

Byte Description
0 - 5 Destination MAC address (Standard Eth-

ernet frame head).
6 - 11 Source MAC address (Standard Ethernet

frame head).
12 - 13 Protocol ID value. I use value FFFFh.

(Standard Ethernet frame head)
14 Requested command value, defined in ta-

ble 4.1.3.
15 CMDBS Size of command buffer in double

words. Minimum size is 1 and maximum
size is 31.

16 - ( CMDBS * 4 - 1) Command buffer content
(16 + CMDBS * 4) - (
16 + CMDBS * 4 + 516)

Data buffer content. This is 4 bytes of
Data FIS head and 512 bytes of data to
be written to hard drive(1 sector)

Table 4.1: Received Ethernet frame format

4.2 Development tools

During development of this system I used following programs and tools:

• Xilinx ISE Design Suite 10.1

• Mentor Graphics Modelsim SE 6.5a

• Wireshark 1.0.8

• Colasoft Packet Builder 1.0

• GCC + GLIBC on linux operation
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Byte Description
0 - 5 Destination MAC address (Standard Eth-

ernet frame head).
6 - 11 Source MAC address (Standard Ethernet

frame head).
12 - 13 Protocol ID value. I use value FFFFh.

(Standard Ethernet frame head)
14 Executed command status value, defined

in table 4.1.3.
15 CMDBS Size of command buffer in double

words, that has been received on SATA in-
terface. Minimum size is 1 and maximum
size is 31.

16 - (CMDBS * 4 - 1) Command buffer content received on
SATA interface

(16 + CMDBS * 4) - (16
+ CMDBS * 4 + 516)

Data buffer content. This is 4 bytes of
Data FIS head and 512 bytes of data that
were read from hard drive(1 sector)

Table 4.2: Transmitted Ethernet frame format
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Command name Value Description
RESET 1h This command resets the whole Serial

ATA part of the system.
WrKEY 2h This command writes the 128-bit length

AES encryption/decryption key. After re-
ceiving this command, the system remem-
bers the key until this command is received
again or the system is reseted.

RdCmdDataNEX Ah This command just transmits on Ethernet
interface content of receive command and
data buffers. No SATA action is executed.
I used this command for debugging, be-
cause it contains responses of previously
executed SATA commands.

WrCmdRdCmd Bh This command realizes SATA Non-data
command protocol. It transmits content of
command buffer that has been extracted
from received Ethernet frame on SATA
interface, waits until command response
is received on SATA interface, and then
transmits the response on Ethernet inter-
face.

WrCmd 3h This command transmits content of com-
mand buffer that has been extracted from
received Ethernet frame on SATA inter-
face and waits until transmitted.

RdCmd 8h This command waits until PIO Setup FIS
or Register FIS - Device to Host is received
on SATA interface and then transmits its
content on SATA interface.

WrData Ch This command extracts the payload data
from received Ethernet frame and then
transmits them on SATA interface through
Data FIS.

WrDataCrypt Dh This command encrypts the data ex-
tracted from Ethernet frame and then
transmits them on SATA interface through
Data FIS.

RrData Eh This command waits for reception of Data
FIS and then transmits its content on Eth-
ernet interface.

RdDataDecrypt Fh This command waits for reception of Data
FIS, decrypts its content and then trans-
mits decrypted data on Ethernet interface.

Table 4.3: Commands
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Command response value Description
1h Command executed normally.
Fh Command execution failed.

Main timeout expired.

Table 4.4: Command response values
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Implementation

5.1 Command layer

Receiving and transmitting Ethernet frames handles command_layer entity. The following
figure 5.1 illustrates command_layer entity and its components.
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Figure 5.1: Command layer

The command_layer_controller entity is a FSM that controls command_layer_rxtx_dp
(receive from Ethernet, transmit on SATA datapath) and command_layer_txrx_dp (receive

28
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from SATA, transmit on Ethernet datapath) entities. These entities are depicted in figures
5.2 and 5.3.

The command_layer_comm_controller entity is a FSM that is responsible for hand-
shake across clock domain. It start SATA FSM and waits until the requested operation is
completed. It also contains timeout counter, so if the SATA operation does not finish until
the timeout expires, the status value FFh is reported in response Ethernet frame.

When the frame is received, following happens:

• Frame destination MAC address is extracted and stored in register.

• Frame source MAC address is extracted and stored in register.

• Protocol ID values are checked, if they don’t match value FFFFh the operations are
aborted and the state machine waits for another frame.

• Requested command value is extracted and stored in register.

• If the requested command includes transfer of command buffer size and command buffer
data, these data are extracted from received frame and stored in RAM. The same hap-
pens if the requested command includes data buffer content. If the requested command
also involves data buffer encryption, the data are transferred to RAM through AES
encryption core. The encryption core accepts 128bit length block and produces en-
crypted block in same length. The encryption process takes 10 clock cycles. Because 8
bits of data are received from FIFO at a time, the shift register needs 16 clock cycles
for building 128 bit length block, so while the shift register is building the 128 bit
length block, previous block of data is being encrypted. This means that the difference
in time between receiving the payload data and just storing in RAM and receiving the
payload data, encrypting them a then storing in RAM is insignificant.

• The SATA operation is started through command_layer_comm_controller entity and
the FSM waits until it finishes or timeout expires.

When SATA operation has completed, the following happens:

• Received frame source MAC address is sent as destination MAC address of transmitted
frame.

• Received frame destination MAC address is sent as source MAC address of transmitted
frame.

• Protocol ID value FFFFh is sent.

• Executed SATA operation status value is sent.

• If the requested command includes transfer of command buffer size and command buffer
data that were received on SATA interface, these data are transferred from RAM to
Ethernet transmit FIFO. The same happens if the requested command includes transfer
of data buffer received on SATA interface. If the requested command also involves data
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buffer decryption, the data are transferred from RAM to AES decryption core. The
decryption core accepts 128bit length block of encrypted data and produces decrypted
block in same length. The decryption process takes 10 clock cycles. Because Ethernet
transmit FIFO accepts 8 bits of data at a time, the shift register needs 16 clock cycles for
shifting 128 bit length block to 8 bit length data, so while the shift register is shifting,
the next 128 bit length block is being decrypted. This means that the difference in time
between data movement from RAM to Ethernet transmit FIFO and data movement
from RAM to Ethernet transmit FIFO with decryption process is insignificant.

• If the requested command does not include in response any data, pad bytes and EOF
are sent, else just EOF is sent.
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5.2 SATA Link and Transport layers

Entity sata_transport and its components implement Link and Transport layers of Serial
ATA protocol. Figure 5.4 depicts block diagram of this entity. This entity also contains
ChipScope Pro Integrated Logic Analyzer core and ChipScope Pro Integrated Controller.
More details about debugging and verification using ChipScope Pro can reader find in next
chapter.

sata_transport

SATA_txtransport

SATA_rxtransport

SATA_core
controller

ChipScope
cores

Figure 5.4: SATA Transport and Link layers

Sata_core_contoller is the main FSM of the Serial ATA part of the design. It receives
requests from command_layer_comm_controller entity that is placed in the Ethernet part
of the design. According to reqeusted command (command definitions are in table 4.1.3)
the FSM controls sata_rx_transport a sata_tx_transport entities. Following figure 5.5
illustrates the block level diagram of sata_rx_transport entity and figure 5.7 illustartes the
block level diagram of sata_tx_transport. Graphical representation of sata_core_contoller
FSM can reader find in document sata_core_contoller.pdf on appended CD.

After reset the sata_core_contoller’s FSM waits for link to become ready. OOB control
FSM after successful startup link speed negotiation signalizes that link is ready. When the
link becomes ready, sata_core_contoller waits for reception of first Register FIS - Device
to Host, which contains device signature. Then the FSM signalizes that Transport layer is
ready meaning that it is ready to process commands.
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Sata_rx_transport entity consists of rx_transport_controller, rx_transport_dp and
sata_rxtransport_WE components. Rx_transport_controller is a FSM, that is respon-
sible for frame reception. Graphical representation of rx_transport_controller FSM can
reader find in document sata_rxtransport_controller.pdf on appended CD. Scheme of rx-
_transport_dp is depicted in figure 5.6. Entity sata_rxtransport_WE is responsible for
recognizing if the received frame is Data FIS or non Data FIS. It sets accordingly write
enable signals.

sata_rxtransport

rx_transport_dp

rx_transport_controller

SATA_rx
transport

WE

Figure 5.5: SATA rxtransport
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Figure 5.6: SATA rxtransport datapath
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Sata_tx_transport entity consists of tx_transport_controller, tx_transport_dp and
sata_align_controller components. Entity tx_transport_controller is a FSM that is re-
sponsible for frame transmission. Graphical representation of tx_transport_controller FSM
can reader find in document sata_rxtransport_controller.pdf in appended CD. Scheme of
tx_transport_dp is depicted in figure 5.8. Entity sata_align_controller informs the FSM
that it is time to transmit ALIGN primitive pair. It is just simple counter modulo 256,
when overflow happens, appropriate signal is activated and it is activated until the FSM
acknowledges ALIGN primitive pair transmission.

The state machines tx_transport_controller and rx_transport_controller communicate
with each other. When rx_transport_controller FSM is receiving frame, the tx_transport-
_controller FSM is sending primitives according to rx_transport_controller requests. When
tx_transport_controller FSM is transmitting frame, it receives primitives through rx_trans-
port_controller FSM. Rx_transport_controller FSM implements repeated primitive sup-
pression technique.

sata_txtransport

tx_transport_dp

tx_transport_controller SATA_align
controller

Figure 5.7: SATA txtransport
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5.2.1 CRC and Scrambler implementation

The Serial ATA specification provides example implementations of CRC and Scrambler in
C source code. I implemented CRC and Scrambler entities according to these source codes.
I also tried to use Xilinx CRC core and was unsuccessful. The Xilinx CRC core provides
inverted and byte reversed output. The startup value of CRC was all right but when first
data came the output was wrong. In my opinion, there may be possible bug in Xilinx CRC
implementation because in other older FPGA circuits the core was soft and in Virtex-5
FPGA the core is hard.

5.3 Clock domain crossing

As I mentioned in previous chapter, both sata_core and eth_core entities have their own
clock domain. Eth_core runs on 125Mhz clock and sata_core runs either on 37.5Mhz clock
for Serial ATA generation 1 speed or on 75Mhz clock for Serial ATA generation 2 speed. Clock
domain crossing is implemented in entity Sata_to_eth_mem, which consists of 4 dual port
random access memories and of flip-flops for control signal transfer. These flip-flops are
implemented as described in figure 5.9.

eth_clock

sata_clock

data out
to

sata_core

data in
from

sata_core

data in
from

eth_core

data out
to

eth_core

CLOCK DOMAIN CROSS

Figure 5.9: Clock domain crossing
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5.4 Implementation problems and blind ways

I experienced lot of hard times making this design to work. First trouble I encountered with
RocketIO GTX core configuration. Xilinx company provides in its Core generator template
configuration of RocketIO GTX core for Serial ATA operations. While the core supports
many other protocols except SATA, there are many parameters. In the provided template
for SATA, there is set the value of SATA TX COM Sequence Bursts to 15. This value is
wrong, it is supposed to be 5. This value is correctly set in the reference design [1], however
it is folded in mist of other parameters, that the template sets correctly, so it is overlooked
very easily. This mistake took me really lot of time.

Another trouble I encountered was making the TEMAC core to work. It looks easy,
you just have to modify the User Constraints File and the example design that comes with
TEMAC core should work. I don’t know why but the provided example design does not
bring-out a reset signal for physical interface. Without this signal, the example design does
not work.

The Serial ATA specification suggests when ALIGN primitive pair is retransmitted, the
suppressed primitive that is currently on the link, should be brought out and then again
CONT primitive followed by output of scrambler, so the state of the bus will be visible
for logical analyzer. When I implemented this feature I did a huge mistake. When the
sata_rx_transport entity is receiving a frame, the sata_tx_transport is just transmitting
primitives like R_RDY, R_IP, but the tx_transport’s FSM is in state, when SYNC primitive
was transmitted last, followed by CONT primitive and then the output of scrambler, so when
was a time to retransmit ALIGN primitive pair, the FSM transmitted ALIGN primitive pair,
followed by two SYNC primitives and CONT primitive and this aborted frame reception.

I also made some mistakes with my initial designs. My original thoughts were that
the frame reception would be always enabled, and the PIO data protocol would be fully
implemented in hardware. As I realized later, it was not possible in the scope of this thesis
because I needed to examine the ATA command protocol in real. The ATA protocol is
quite old and is designed to work with parallel interface. There is a bit mess in it and some
relations between ATA protocol and Serial ATA protocol were not completely clear to me.
I tried to implement PIO data transfer protocol fully in hardware, while the PIO Setup FIS
would not be visible to the user, I realized later that there can status in PIO Setup FIS that
will cause abortion of the transfer. This would require a lot of additional work that is in my
opinion out of scope of this thesis.



CHAPTER 5. IMPLEMENTATION 39

5.5 FPGA resources used

Virtex-5 FXT utilization summary with ChipScope cores:

Number of BSCANs 1 out of 4 25%
Number of BUFDSs 1 out of 8 12%
Number of BUFGs 8 out of 32 25%

Number of LOCed BUFGs 1 out of 8 12%

Number of BUFGCTRLs 2 out of 32 6%
Number of DCM_ADVs 1 out of 12 8%
Number of GTX_DUALs 1 out of 8 12%

Number of LOCed GTX_DUALs 1 out of 1 100%

Number of IDELAYCTRLs 2 out of 22 9%
Number of ILOGICs 10 out of 800 1%
Number of External IOBs 76 out of 640 11%

Number of LOCed IOBs 37 out of 76 48%

Number of IODELAYs 11 out of 800 1%
Number of External IPADs 4 out of 690 1%

Number of LOCed IPADs 4 out of 4 100%

Number of OLOGICs 16 out of 800 2%
Number of External OPADs 2 out of 32 6%

Number of LOCed OPADs 2 out of 2 100%

Number of RAMB18X2s 11 out of 148 7%
Number of RAMB18X2SDPs 2 out of 148 1%
Number of RAMB36_EXPs 17 out of 148 11%
Number of TEMACs 1 out of 2 50%
Number of Slice Registers 4287 out of 44800 9%

Number used as Flip Flops 4287
Number used as Latches 0
Number used as LatchThrus 0

Number of Slice LUTS 4855 out of 44800 10%
Number of Slice LUT-Flip Flop pairs 6576 out of 44800 14%
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Virtex-5 FXT utilization summary without ChipScope cores:

Device Utilization Summary:

Number of BUFDSs 1 out of 8 12%
Number of BUFGs 7 out of 32 21%

Number of LOCed BUFGs 1 out of 7 14%

Number of BUFGCTRLs 2 out of 32 6%
Number of DCM_ADVs 1 out of 12 8%
Number of GTX_DUALs 1 out of 8 12%

Number of LOCed GTX_DUALs 1 out of 1 100%

Number of IDELAYCTRLs 2 out of 22 9%
Number of ILOGICs 10 out of 800 1%
Number of External IOBs 76 out of 640 11%

Number of LOCed IOBs 37 out of 76 48%

Number of IODELAYs 11 out of 800 1%
Number of External IPADs 4 out of 690 1%

Number of LOCed IPADs 4 out of 4 100%

Number of OLOGICs 16 out of 800 2%
Number of External OPADs 2 out of 32 6%

Number of LOCed OPADs 2 out of 2 100%

Number of RAMB18X2s 11 out of 148 7%
Number of RAMB18X2SDPs 2 out of 148 1%
Number of RAMB36_EXPs 4 out of 148 2%
Number of TEMACs 1 out of 2 50%
Number of Slice Registers 3081 out of 44800 6%

Number used as Flip Flops 3081
Number used as Latches 0
Number used as LatchThrus 0

Number of Slice LUTS 3998 out of 44800 8%
Number of Slice LUT-Flip Flop pairs 5038 out of 44800 11%
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Testing

6.1 Testbenchs

I performed numerous behavioral and timing simulations, however I did not simulate the
system as one unit while I was unsuccessful obtaining hard drive model. I simulated sep-
arately Serial ATA part of the system and Ethernet part of the system. My testbenches
provide only stimuli, I verified the results by viewing content of random access memories. I
did not simulate the entities that were provided in Xilinx reference designs. The testbench
files are provided on appended CD.

6.1.1 Simulation of command_layer entity and its components

Testbench command_layer_tb.vhd tests command_layer entity and its components. It
provides stimuli in form how Ethernet receive FIFO does. Sata_to_eth_mem entity is
replaced by entity command_layer_memloop which merges receive and transmit buffers
(command and data) into loop buffer (command and data). Stimuli are commented in
testbench file. The following figure 6.1 depicts fragment of simulation.

Figure 6.1: Fragment of command_layer entity simulation
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6.1.2 Simulation of sata_transport entity and its components

Testbench sata_transport_tb.vhd tests stat_transport entity and its components. The in-
coming data from SATA Physical layer are simulated using entity sata_test_data. This
entity contains 4 SATA frames. One of them is response from hard drive to ATA com-
mand IDENTIFY DEVICE captured by ChipScope. Sata_to_eth_mem entity is replaced
by entity sata_test_mem, which is the same as entity command_layer_memloop that is
described in previous section.

I also created many other testbenchs that tested smaller parts of the design, but they
are now obsolete, because these parts rapidly changed during system development. These
testbenchs are also included on appended CD due to future design development.

6.2 Chipscope testing

I placed ChipScope Pro Integrated Logic Analyzer core and ChipScope Pro Integrated
Controller core in the sata_transport. The Integrated Logic Analyzer core monitors al-
most all inputs, outputs and significant internal signal of sata_transport entity. States of
sata_core_contoller, tx_transport_controller and rx_transport_controller state machines
are monitored as well. The following figure 6.2 views captured frame transmission cap-
tured by ChipScope Pro software. ChipScope project files are included on appended CD in
directory chipscope.

Figure 6.2: Debugging and protocol analysis with ChipScope Pro software

6.3 Test programs

I created a small library and few test programs, that are:
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• reset - This program issues command that resets the whole Serial ATA part of the
system.

• writekey - This program writes 128 bit length AES encryption/decryption key. The
encryption key is located in file sata_to_eth.h on appended CD.

• identifydevice - This program issues ATA command IDENTIFY DEVICE and displays
the output

• read_native_max_address_ext - This program issues ATA command READ NATIVE
MAX ADDRESS EXT and displays the output.

• read_sector_ext - This program issues ATA command READ SECTOR EXT and
displays the output.

• read_sector_ext_crypt - This program issues ATA command READ SECTOR EXT,
instructs the hardware to decrypt the data and displays the output.

• write_sector_ext - This program issues ATA command WRITE SECTOR EXT.

• write_sector_ext_crypt - This program issues ATA commandWRITE SECTOR EXT
and instructs the hardware to encrypt the data.

These test computer programm are intended for testing the hardware. Parameters are
stored in source code file sata_to_eth.h. Programs write_sector_ext and write_sector_ext-
_crypt use as a sector content increment sequence starting from 0 and ending with 255.
This sequence is repeated twice. These programs are included on appended CD in directory
testapp.

I also created a script test.sh that issues these programs in following sequence:

reset
writekey
identifydevice
read_native_max_address_ext
write_sector_ext
read_sector_ext
read_sector_ext_crypt
write_sector_ext_crypt
read_sector_ext
read_sector_ext_crypt

The output of this sequence is also included on appended CD in file test.log.
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Example output of read_native_max_address_ext test program

Frame recived Lenght: 84

Frame status: OK status: 1

Register FIS - Device To Host

Error: 0x0
Status: 0x50 BSY: 0 DRDY: 1 DF: 0 ERR:0

Control register update, rir: 0x40
FIS type: 0x34
Device: 0x0
LBA high: 0x93
LBA mid: 0x90
LBA low: 0xaf
LBA high extended: 0x0
LBA mid extended: 0x0
LBA low extended: 0x2e
Sector count extended: 0x0
Sector count: 0x0

Example output of identifydevice test program

Frame recived Lenght: 531

Frame status: OK status: 1
DATABUFF
, fis: 0x0 0x0 0x0 0x46

Addr: 0 0x3f 0xff 0x42 0x7a
Addr: 1 0x0 0x10 0xc8 0x37
Addr: 2 0x0 0x0 0x0 0x0
Addr: 3 0x0 0x0 0x0 0x3f
Addr: 4 0x0 0x0 0x0 0x0
Addr: 5 0x20 0x20 0x20 0x20
Addr: 6 0x44 0x2d 0x20 0x57
Addr: 7 0x41 0x4e 0x57 0x43
Addr: 8 0x35 0x34 0x55 0x31
Addr: 9 0x37 0x31 0x32 0x31
Addr: 10 0x80 0x0 0x0 0x0
Addr: 11 0x30 0x37 0x0 0x32
Addr: 12 0x32 0x45 0x2e 0x30
Addr: 13 0x57 0x44 0x30 0x37
Addr: 14 0x57 0x44 0x43 0x20
Addr: 15 0x30 0x30 0x34 0x30
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Addr: 16 0x2d 0x30 0x4b 0x53
Addr: 17 0x4e 0x42 0x30 0x4d
Addr: 18 0x20 0x20 0x30 0x20
Addr: 19 0x20 0x20 0x20 0x20
Addr: 20 0x20 0x20 0x20 0x20

!! OUTPUT OMITTED !!

Addr: 126 0x0 0x0 0x0 0x0
Addr: 127 0x1f 0xa5 0x0 0x0

Serial number: " WD-WCANU1542171"
Firmware revision: "07.02E07"
Model number: "WDC WD4000KS-00MNB0 "
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Conclusion

I managed to fulfill the Master thesis statement completely.

The result of this thesis is a working system that on one hand receives and transmits
Ethernet frames and on the other hand reads and writes data on hard drive. The system
contain AES cryptographic core that makes possible to encrypt or decrypt the data. The
system has been tested with real hard drive.

The Ethernet side of this system was not contained in the Master Thesis statement,
but it was necessary for testing and debugging. I had several possibilities how to generate
and collect testing data, while Serial RS232 interface is too slow, EDK generated system is
quite common in other Master thesis. I found Ethernet interface the most interesting and
the system can be cut in the half and then after few modifications used in EDK generated
system.

I managed to implement Serial ATA Link layer fully in the hardware, while part of the
Transport layer is implemented in the software. This is also big advantage because lot of
other Serial ATA protocol features that are out of scope of this thesis can be observed and
tested by just making few modifications to software instead of writing complicated hardware.
I also needed to observe some of protocol’s behavior while it was not very clear to me just
by reading the Serial ATA specification.

I used one of freely available implementations of AES cipher instead of making one from
scratch due to in my opinion I would not make a better one and also development and testing
the other parts of the system was very time consuming.

Other result of this work is Serial ATA protocol analyzer using Xilinx ChipScope Pro
software.

There may be many possibilities for future development and usage of results of this Master
thesis. Transport and Command layers can be fully implemented in hardware. The system
can be incorporated in EDK generated system. The junction point of this system, random
access memory, can be replaced by FIFO. The error management could be improved.
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Appendix A

Configuring RocketIO GTX for SATA
functions

The following figures describe Xilinx Core Generator configuration for generating RocketIO
GTX core used in this design.
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Figure A.1: Configuring RocketIO GTX for SATA functions - Step 1
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Figure A.2: Configuring RocketIO GTX for SATA functions - Step 2
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Figure A.3: Configuring RocketIO GTX for SATA functions - Step 3
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Figure A.4: Configuring RocketIO GTX for SATA functions - Step 4
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Figure A.5: Configuring RocketIO GTX for SATA functions - Step 5
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Figure A.6: Configuring RocketIO GTX for SATA functions - Step 6
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Figure A.7: Configuring RocketIO GTX for SATA functions - Step 7
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Figure A.8: Configuring RocketIO GTX for SATA functions - Step 8
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Figure A.9: Configuring RocketIO GTX for SATA functions - Step 9
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Figure A.10: Configuring RocketIO GTX for SATA functions - Step 10
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Figure A.11: Configuring RocketIO GTX for SATA functions - Step 11
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Figure A.12: Configuring RocketIO GTX for SATA functions - Step 12



Appendix B

Generating Tri-Mode Ethernet MAC
core

The following figures describe how to configure Xilinx Core Generator for generating Tri-
Mode Ethernet MAC core used in this design.
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Figure B.1: Generating Tri-Mode Ethernet MAC core - Step 1
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Figure B.2: Generating Tri-Mode Ethernet MAC core - Step 2
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Figure B.3: Generating Tri-Mode Ethernet MAC core - Step 3



Appendix C

ML507 board jumper configuration

In this chapter I describe Xilinx ML507 development board jumper configuration used in
this design.

Jumper Setting
J9 Jumper between pins 1 & 2

and between pins 3 & 4
J14 ON
J17 Jumper between pins 1 & 2
J20 Double Jumper between pins

1 & 2
J21 Jumper between pins 1 & 2
J22 Jumper between pins 1 & 2
J23 Jumper between pins 1 & 2
J24 OFF
J54 ON
J56 ON
J62 Jumper between pins 1 & 2
J63 Jumper between pins 1 & 2
J81 Jumper between pins 1 & 2
J82 ON

Table C.1: Xilinx ML507 development board jumper configuration
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Appendix D

Operating ML507 board running this
design

This chapter describes how to operate Xilinx ML507 development board running this design.
Serial ATA hard drive generation 1 or needs to be plugged into SATA HOST 1 connector.
Ethernet twisted pair cable category 5E or better needs to by plugged into RJ45 connector
of the board. On the other end of the Ethernet cable there should be PC or similar running
one of the test applications that are also product of this thesis. The board running the
design is controlled by two inputs, CPU RST for reseting the Serial ATA part of the design
and DIP SW 8 for reseting the Ethernet part of the design. Ethernet has its own hard wired
status light-emitting diodes. Serial ATA core uses GPIO light-emitting diodes for displaying
its status, that are described in following table D.

LED Description
GPIO LED 0 RocketIO GTX’s PLL locked
GPIO LED 1 Speed negotiation DCM

locked
GPIO LED 2 SATA Link layer ready
GPIO LED 3 SATA Transport layer ready
GPIO LED 6 SATA Generation 1 speed
GPIO LED 7 SATA Generation 2 speed

Table D.1: Serial ATA core status light-emitting diodes
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Appendix E

Abbreviations list

• AES Advanced Encryption Standard

• FPGA Field-Programmable Gate Array

• ASIC Application-Specific Integrated Circuit

• FSM Finite State Machine

• SATA Serial Advanced Technology Attachment

• FIS Frame Information Structure

• HDL Hardware Description Language

• SOF Start Of Frame

• EOF End Of Frame

• CRC Cyclic Redundancy Check

• EDK Embedded Development Kit

• SAS Serial Attached SCSI
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Appendix F

Content of enclosed CD

CD_root/
|-- bit
|-- chipscope
|-- doc
|-- src
‘-- testapp

• Directory bit contains configuration bitsream for Virtex-5 FXT FPGA.

• Directory chipscope contains Chipscope Pro project files.

• Directory doc contains this thesis in PDF format and also graphical representation of
some state machines.

• Directory src contains HDL source code files and testbenchs.

• Directory testapp contains compiled binaries and C source codes of test applications.
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