
ACID implementation in RDBMS

Michal Valenta

Department of Software Engineering
Faculty of Information Technology

Czech Technical University in Prague
c©Michal Valenta, 2011

DB2, 2011

https://users.fit.cvut.cz/ valenta/
(odkaz “Výuka na BIVŠ” )

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 1 / 27



State Diagram of Transaction

A

PC C

F AB

Active - starting state, data processing is in progress
Partially Commited - after the last operation of transaction, waiting
for journal to be written on disk
Commited - finished, content of journal buffer is in persistent
storage
Failed - it is not possible to continue with transaction processing,
ROLLBACK is initialized
ABorted - ROLLBACK finished, database is in the same state as it
was before the transaction started

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 3 / 27



ACID Properties

ACID Properties:
Atomicity - Transaction is either completely done or it is
completely rolled back.
Consistency - Transaction transforms database from one
consistent state to another consistent state.
I.e. transaction may be inconsistent during the processing.
Consistency is related to integrity constraints (IC)
Independence - Data changes done in one transaction are
not visible to the others unless it is commited (see levels of
isolation),
Durability - Changes made by finished transaction are
stored in a persistent storage (for the case of loss of
operational memory).

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 4 / 27



Begin and End of Transaction

End of transaction
Explicit

COMMIT
ROLLBACK

Implicit
end of session (depends on client – either commit or rollback).

Begin of transaction
End of previous transaction or starting a new session.

Careful for client, it may be in autocommit mode.

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 5 / 27



Database recovery (after a crash)

Uses transaction journal (log file).
There are “change vectors” in journal.

Operations used for recovery
- UNDO
- REDO

Information from journal are used only for crash recovery.
There are another data structures to provide ROLLBACK and read
consistency.

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 6 / 27



Database crashes – classification

Global errors - affect the whole instance
Instance failure (power outage for example). Loss of operational
memory.
System errors; affect some transactions, but not the whole
database (for example. deadlock, loss of connection between
client and server).
Media failure

Local errors (inside one transaction).
Logical errors, which can be repair by rollback operation on a
transaction (IC violated, divide by zero for example)

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 7 / 27



Recovery after system restart (Instance Failure)

synchronization marks
timestamps (in journal and database files headers); they are used to
locate the point (in journal) where to start with database recovery

Requirements:
Transactions which were not fully finished (commited) in time of
system failure, must be rolled back.
Transactions which were commited before system failure, but their
data still remained in database buffer cache (only redo log buffer
had already been stored on a persistent media (journal)) must be
played again and their data must be written into data files.

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 8 / 27



Recovery after system restart (Instance Failure)

Technically recover consists of two parts (stages)
1 Roll Forward – Redo (replay) all change vectors stored in journal

(records are stored in time order); Redo starts from chosen
synchronization mark and runs until the last written record in
journal. In fact, lost content of database buffer cache is
reconstructed during this stage.

2 Roll Back – Roll back of transactions which were not yet commited
in the time of system failure. Necessary rollback data (before
images) are included in change vectors in journal.

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 9 / 27



Media Failure Recovery

Suppose one or more database files are missing / damaged.
Recovery depends on database mode (archive/noarchive):

archive mode:
Restore missing file(s) from backup.
In archived logs locate timestamp where to start with recovery. All
range of archived logs is necessary.
Reply data changes until the end of logs (including online logs).
Same as Instance recovery.
The same method is used for PITR (Point In Time Recovery) only
recovery process stops at required point in history.

nonarchive mode:
We have not archived logs (nonarchive mode).
Either push the whole database back in time (time of the last full
backup).
Or forgot damaged data.

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 10 / 27



PostgreSQL - PITR Concept

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 11 / 27



Oracle and PostgreSQL

Remark: MySQL structure similar to PostgreSQL (without Schemes).

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 13 / 27



Oracle and PostgreSQL – key points

Oracle
database creation has a huge overhead, only few instances on
server
new application typically uses a new scheme and tablespace
(data separation)

PostgreSQL, MySQL
running cluster contains one cluster (operative) database
overhead for creation a new database in cluster is small
new database for new application

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 14 / 27



PostgreSQL Architecture

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 15 / 27



MySQL Architecture

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 16 / 27



Oracle Architecture

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 17 / 27



Oracle – DML processing

client send a DML statement (suppose UPDATE employees set
salary=salary*1.1 where department_id = 10;)

1 data to be changed are loaded into buffer cache (server process);
may be cache hit or start DBWR

2 apply exclusive locks on data to be changed (row-level locking)
3 alocate UNDO segment, copy old images of changing data into,

mark them by transaction ID
4 set new values for locked data in buffer cache
5 in redo log buffer create change vectors (containing new and old

values and transaction ID) for all affected rows

after finishing of DML:
changed data (and undo segments) still remains locked and are in
buffer cache (eventually they can be moved into appropriate data files
if buffer cache is needed for others transactions)

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 19 / 27



Oracle – COMMIT processing

1 create record in redo log buffer that transaction (identified by
transaction ID) did commit

2 LGWR process writes the whole content of redolog buffer into
journal (log file), typically using FSYNC or similar service; redo log
buffer is written sequentially and is shared by all concurrently
running sessions; it contains change vectors from both commited
and yet uncommited transactions

3 when content of redo log buffer is in disk, user obtains information
“transaction complete”; durability is now guaranteed

4 appropriate blocks in UNDO segments are allowed to be rewritten
5 exclusive locks on changing data are released

when instance crash appears in this time
Instance recovery from online logs (journals) is automatically done on
system restart. Already commited transactions are recovered from
logs, not commited transactions are rolled back. Atomicity and
Durability properties are implemented.

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 20 / 27



PostgreSQL DML processing

conceptually similar to Oracle, differences:
there are no UNDO segments, changing row is copied, original is
marked not to change (locked), new copy is also exclusively locked
physical structure: one table - one file unlike to Oracle
after commit or rollback either original or new row is marked as
free for rewriting
implication for data maintenance: necessity of VACUUM statement

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 21 / 27



MVCC - remarks

Both implementations (Oracle and PostgreSQL) can be regarded
as MVCC (Multi Version Concurrency Control) architecture.
In both cases it is possible to utilize systems to query data
changes of one row across several transactions.
Oracle already implemented this feature (in limited scope) in 10g
server and laters.

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 22 / 27



Isolation Levels

Independence property is affected by chosen level of isolation:
read uncommited
read commited
repeatable read
serializable

It is important to understand, that level of isolation affects concurrency.

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 24 / 27



Isolation levels in practice

Oracle and PostgreSQL did not support read uncommited
MySQL supports read uncommited in engine MyISAM
read commited is practically useful and widely used compromise
between data consistency and concurrency processing (usually it
is default)
repeatable read and serializable are possible for DBMS, but
usually are regarded as too blocking

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 25 / 27



Conclusion

importance of (transaction) journal (log files) for crash recovery,
atomicity and durability ACID properties
MVCC and appropriate locking management for implementation of
consistency and independence ACID properties

Michal Valenta (FIT ČVUT) ACID implementation in RDBMS DB2, 2011 27 / 27


	Review
	ACID - review
	Transaction begin and end
	Database (Transaction) Journal
	Database Crash and Recovery

	Particular RDBMS Engines
	Terminology
	architecture
	PostgreSQL Architecture
	MySQL Architecture
	Oracle Architecture

	DML Processing
	Isolation Levels and Concurrency
	Conclusion

