================================================================
reLOC 0.09-vegas : Multirobot Solution solver
(C) Copyright 2011-2013 Pavel Surynek
----------------------------------------------------------------
Reading graph...
1,0
8,0
2,1
9,1
3,2
10,2
4,3
11,3
5,4
12,4
6,5
13,5
7,6
14,6
9,8
16,8
10,9
17,9
11,10
18,10
12,11
19,11
13,12
20,12
14,13
21,13
15,14
22,14
17,16
24,16
18,17
25,17
19,18
26,18
20,19
27,19
21,20
28,20
22,21
29,21
23,22
30,22
25,24
32,24
26,25
33,25
27,26
34,26
28,27
35,27
29,28
36,28
30,29
37,29
31,30
38,30
33,32
40,32
34,33
41,33
35,34
42,34
36,35
43,35
37,36
44,36
38,37
45,37
39,38
46,38
41,40
48,40
42,41
49,41
43,42
50,42
44,43
51,43
45,44
52,44
46,45
53,45
47,46
54,46
49,48
56,48
50,49
57,49
51,50
58,50
52,51
59,51
53,52
60,52
54,53
61,53
55,54
62,54
15,7
23,15
31,23
39,31
47,39
55,47
63,55
57,56
58,57
59,58
60,59
61,60
62,61
63,62
Reading initial arrangement...
Reading goal arrangement...
Undirected graph: (|V|=64 |E|=112) [
    Vertex: (id = 0) {1 8 }
    Vertex: (id = 1) {0 2 9 }
    Vertex: (id = 2) {1 3 10 }
    Vertex: (id = 3) {2 4 11 }
    Vertex: (id = 4) {3 5 12 }
    Vertex: (id = 5) {4 6 13 }
    Vertex: (id = 6) {5 7 14 }
    Vertex: (id = 7) {6 15 }
    Vertex: (id = 8) {0 9 16 }
    Vertex: (id = 9) {1 8 10 17 }
    Vertex: (id = 10) {2 9 11 18 }
    Vertex: (id = 11) {3 10 12 19 }
    Vertex: (id = 12) {4 11 13 20 }
    Vertex: (id = 13) {5 12 14 21 }
    Vertex: (id = 14) {6 13 15 22 }
    Vertex: (id = 15) {14 7 23 }
    Vertex: (id = 16) {8 17 24 }
    Vertex: (id = 17) {9 16 18 25 }
    Vertex: (id = 18) {10 17 19 26 }
    Vertex: (id = 19) {11 18 20 27 }
    Vertex: (id = 20) {12 19 21 28 }
    Vertex: (id = 21) {13 20 22 29 }
    Vertex: (id = 22) {14 21 23 30 }
    Vertex: (id = 23) {22 15 31 }
    Vertex: (id = 24) {16 25 32 }
    Vertex: (id = 25) {17 24 26 33 }
    Vertex: (id = 26) {18 25 27 34 }
    Vertex: (id = 27) {19 26 28 35 }
    Vertex: (id = 28) {20 27 29 36 }
    Vertex: (id = 29) {21 28 30 37 }
    Vertex: (id = 30) {22 29 31 38 }
    Vertex: (id = 31) {30 23 39 }
    Vertex: (id = 32) {24 33 40 }
    Vertex: (id = 33) {25 32 34 41 }
    Vertex: (id = 34) {26 33 35 42 }
    Vertex: (id = 35) {27 34 36 43 }
    Vertex: (id = 36) {28 35 37 44 }
    Vertex: (id = 37) {29 36 38 45 }
    Vertex: (id = 38) {30 37 39 46 }
    Vertex: (id = 39) {38 31 47 }
    Vertex: (id = 40) {32 41 48 }
    Vertex: (id = 41) {33 40 42 49 }
    Vertex: (id = 42) {34 41 43 50 }
    Vertex: (id = 43) {35 42 44 51 }
    Vertex: (id = 44) {36 43 45 52 }
    Vertex: (id = 45) {37 44 46 53 }
    Vertex: (id = 46) {38 45 47 54 }
    Vertex: (id = 47) {46 39 55 }
    Vertex: (id = 48) {40 49 56 }
    Vertex: (id = 49) {41 48 50 57 }
    Vertex: (id = 50) {42 49 51 58 }
    Vertex: (id = 51) {43 50 52 59 }
    Vertex: (id = 52) {44 51 53 60 }
    Vertex: (id = 53) {45 52 54 61 }
    Vertex: (id = 54) {46 53 55 62 }
    Vertex: (id = 55) {54 47 63 }
    Vertex: (id = 56) {48 57 }
    Vertex: (id = 57) {49 56 58 }
    Vertex: (id = 58) {50 57 59 }
    Vertex: (id = 59) {51 58 60 }
    Vertex: (id = 60) {52 59 61 }
    Vertex: (id = 61) {53 60 62 }
    Vertex: (id = 62) {54 61 63 }
    Vertex: (id = 63) {55 62 }
    Edge  0: 1 <-> 0
    Edge  1: 8 <-> 0
    Edge  2: 2 <-> 1
    Edge  3: 9 <-> 1
    Edge  4: 3 <-> 2
    Edge  5: 10 <-> 2
    Edge  6: 4 <-> 3
    Edge  7: 11 <-> 3
    Edge  8: 5 <-> 4
    Edge  9: 12 <-> 4
    Edge  10: 6 <-> 5
    Edge  11: 13 <-> 5
    Edge  12: 7 <-> 6
    Edge  13: 14 <-> 6
    Edge  14: 9 <-> 8
    Edge  15: 16 <-> 8
    Edge  16: 10 <-> 9
    Edge  17: 17 <-> 9
    Edge  18: 11 <-> 10
    Edge  19: 18 <-> 10
    Edge  20: 12 <-> 11
    Edge  21: 19 <-> 11
    Edge  22: 13 <-> 12
    Edge  23: 20 <-> 12
    Edge  24: 14 <-> 13
    Edge  25: 21 <-> 13
    Edge  26: 15 <-> 14
    Edge  27: 22 <-> 14
    Edge  28: 17 <-> 16
    Edge  29: 24 <-> 16
    Edge  30: 18 <-> 17
    Edge  31: 25 <-> 17
    Edge  32: 19 <-> 18
    Edge  33: 26 <-> 18
    Edge  34: 20 <-> 19
    Edge  35: 27 <-> 19
    Edge  36: 21 <-> 20
    Edge  37: 28 <-> 20
    Edge  38: 22 <-> 21
    Edge  39: 29 <-> 21
    Edge  40: 23 <-> 22
    Edge  41: 30 <-> 22
    Edge  42: 25 <-> 24
    Edge  43: 32 <-> 24
    Edge  44: 26 <-> 25
    Edge  45: 33 <-> 25
    Edge  46: 27 <-> 26
    Edge  47: 34 <-> 26
    Edge  48: 28 <-> 27
    Edge  49: 35 <-> 27
    Edge  50: 29 <-> 28
    Edge  51: 36 <-> 28
    Edge  52: 30 <-> 29
    Edge  53: 37 <-> 29
    Edge  54: 31 <-> 30
    Edge  55: 38 <-> 30
    Edge  56: 33 <-> 32
    Edge  57: 40 <-> 32
    Edge  58: 34 <-> 33
    Edge  59: 41 <-> 33
    Edge  60: 35 <-> 34
    Edge  61: 42 <-> 34
    Edge  62: 36 <-> 35
    Edge  63: 43 <-> 35
    Edge  64: 37 <-> 36
    Edge  65: 44 <-> 36
    Edge  66: 38 <-> 37
    Edge  67: 45 <-> 37
    Edge  68: 39 <-> 38
    Edge  69: 46 <-> 38
    Edge  70: 41 <-> 40
    Edge  71: 48 <-> 40
    Edge  72: 42 <-> 41
    Edge  73: 49 <-> 41
    Edge  74: 43 <-> 42
    Edge  75: 50 <-> 42
    Edge  76: 44 <-> 43
    Edge  77: 51 <-> 43
    Edge  78: 45 <-> 44
    Edge  79: 52 <-> 44
    Edge  80: 46 <-> 45
    Edge  81: 53 <-> 45
    Edge  82: 47 <-> 46
    Edge  83: 54 <-> 46
    Edge  84: 49 <-> 48
    Edge  85: 56 <-> 48
    Edge  86: 50 <-> 49
    Edge  87: 57 <-> 49
    Edge  88: 51 <-> 50
    Edge  89: 58 <-> 50
    Edge  90: 52 <-> 51
    Edge  91: 59 <-> 51
    Edge  92: 53 <-> 52
    Edge  93: 60 <-> 52
    Edge  94: 54 <-> 53
    Edge  95: 61 <-> 53
    Edge  96: 55 <-> 54
    Edge  97: 62 <-> 54
    Edge  98: 15 <-> 7
    Edge  99: 23 <-> 15
    Edge  100: 31 <-> 23
    Edge  101: 39 <-> 31
    Edge  102: 47 <-> 39
    Edge  103: 55 <-> 47
    Edge  104: 63 <-> 55
    Edge  105: 57 <-> 56
    Edge  106: 58 <-> 57
    Edge  107: 59 <-> 58
    Edge  108: 60 <-> 59
    Edge  109: 61 <-> 60
    Edge  110: 62 <-> 61
    Edge  111: 63 <-> 62
]
Robot arrangement: (|R| = 20, |V| = 64) [
     robot locations: {1#37 2#33 3#38 4#47 5#2 6#61 7#20 8#3 9#5 10#19 11#17 12#21 13#39 14#22 15#40 16#58 17#45 18#16 19#50 20#28 }
     vertex occupancy: {0#0 0#1 5#2 8#3 0#4 9#5 0#6 0#7 0#8 0#9 0#10 0#11 0#12 0#13 0#14 0#15 18#16 11#17 0#18 10#19 7#20 12#21 14#22 0#23 0#24 0#25 0#26 0#27 20#28 0#29 0#30 0#31 0#32 2#33 0#34 0#35 0#36 1#37 3#38 13#39 15#40 0#41 0#42 0#43 0#44 17#45 0#46 4#47 0#48 0#49 19#50 0#51 0#52 0#53 0#54 0#55 0#56 0#57 16#58 0#59 0#60 6#61 0#62 0#63 }
]
Robot arrangement: (|R| = -1, |V| = 0) [
     robot locations: {}
     vertex occupancy: {}
]
Robot goal: (|R| = 20, |V| = 64) [
    robot goals: {
        1#{24}
        2#{19}
        3#{26}
        4#{25}
        5#{29}
        6#{8}
        7#{18}
        8#{12}
        9#{4}
        10#{21}
        11#{63}
        12#{45}
        13#{54}
        14#{11}
        15#{22}
        16#{48}
        17#{2}
        18#{36}
        19#{7}
        20#{35}
    }
    vertex compatibilities: {
        0@{}
        1@{}
        2@{17}
        3@{}
        4@{9}
        5@{}
        6@{}
        7@{19}
        8@{6}
        9@{}
        10@{}
        11@{14}
        12@{8}
        13@{}
        14@{}
        15@{}
        16@{}
        17@{}
        18@{7}
        19@{2}
        20@{}
        21@{10}
        22@{15}
        23@{}
        24@{1}
        25@{4}
        26@{3}
        27@{}
        28@{}
        29@{5}
        30@{}
        31@{}
        32@{}
        33@{}
        34@{}
        35@{20}
        36@{18}
        37@{}
        38@{}
        39@{}
        40@{}
        41@{}
        42@{}
        43@{}
        44@{}
        45@{12}
        46@{}
        47@{}
        48@{16}
        49@{}
        50@{}
        51@{}
        52@{}
        53@{}
        54@{13}
        55@{}
        56@{}
        57@{}
        58@{}
        59@{}
        60@{}
        61@{}
        62@{}
        63@{11}
    }
]
Open/close/exp size (steps): 5/1/5 (2)
Open/close/exp size (steps): 17/4/17 (5)
Open/close/exp size (steps): 23/8/23 (9)
Open/close/exp size (steps): 1/0/1 (14)
Open/close/exp size (steps): 20/6/20 (20)
Open/close/exp size (steps): 20/6/20 (28)
Open/close/exp size (steps): 18/6/18 (38)
Open/close/exp size (steps): 45/18/45 (50)
Open/close/exp size (steps): 18/5/18 (65)
Open/close/exp size (steps): 11/3/11 (83)
Open/close/exp size (steps): 61/25/61 (105)
Open/close/exp size (steps): 100/52/100 (132)
Open/close/exp size (steps): 35/11/35 (165)
Open/close/exp size (steps): 105/51/105 (205)
Open/close/exp size (steps): 44/18/44 (253)
Open/close/exp size (steps): 68/31/68 (311)
Open/close/exp size (steps): 103/49/103 (381)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 0 and 2 collide.
Solution of group 0
Mulirobot solution: (|moves| = 6, paralellism = 1.000) [
    Step 0: 1#37->29 
    Step 1: 1#29->28 
    Step 2: 1#28->27 
    Step 3: 1#27->26 
    Step 4: 1#26->25 
    Step 5: 1#25->24 
]
Solution of group 2
Mulirobot solution: (|moves| = 5, paralellism = 1.000) [
    Step 0: 1#38->30 
    Step 1: 1#30->29 
    Step 2: 1#29->28 
    Step 3: 1#28->27 
    Step 4: 1#27->26 
]
Occupation table complementary for group 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Occupation table complementary for group 2
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Unable to resolve collision between groups 0 and 2.
Merging groups 0 and 2.
Searching solution for merged group 0+2.
Open/close/exp size (steps): 186/64/186 (465)
Open/close/exp size (steps): 419/165/419 (566)
Open/close/exp size (steps): 648/287/648 (688)
Open/close/exp size (steps): 877/434/877 (835)
Open/close/exp size (steps): 1185/611/1185 (1012)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 0 and 2 collide.
Solution of group 0
Mulirobot solution: (|moves| = 11, paralellism = 1.833) [
    Step 0: 1#37->36 2#38->30 
    Step 1: 1#36->35 2#30->29 
    Step 2: 1#35->34 2#29->28 
    Step 3: 1#34->33 2#28->27 
    Step 4: 1#33->25 2#27->26 
    Step 5: 1#25->24 
]
Solution of group 2
Mulirobot solution: (|moves| = 2, paralellism = 1.000) [
    Step 0: 1#28->27 
    Step 1: 1#27->35 
]
Occupation table complementary for group 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Occupation table complementary for group 2
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 2 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 2 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 2 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 2 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 2 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 2 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

** Open/close/exp size (steps): 2/1/2 (2)
Unable to resolve collision between groups 0 and 2.
Merging groups 0 and 2.
Searching solution for merged group 0+2.
Open/close/exp size (steps): 194/57/194 (1225)
Open/close/exp size (steps): 967/313/967 (1481)
Open/close/exp size (steps): 1530/621/1530 (1789)
Open/close/exp size (steps): 2172/991/2172 (2159)
Open/close/exp size (steps): 2975/1435/2975 (2603)
Open/close/exp size (steps): 4141/1968/4141 (3136)
Open/close/exp size (steps): 5456/2608/5456 (3776)
Open/close/exp size (steps): 8337/3376/8337 (4544)
Open/close/exp size (steps): 11791/4298/11791 (5466)
Open/close/exp size (steps): 12761/5405/12761 (6573)
Open/close/exp size (steps): 12292/6734/12292 (7902)
Open/close/exp size (steps): 13371/8329/13371 (9497)
Open/close/exp size (steps): 16082/10243/16082 (11411)
Open/close/exp size (steps): 15613/12540/15613 (13708)
Open/close/exp size (steps): 14655/15297/14655 (16465)
Open/close/exp size (steps): 16526/18606/16526 (19774)
Open/close/exp size (steps): 22277/22577/22277 (23745)
Open/close/exp size (steps): 30150/27343/30150 (28511)
Open/close/exp size (steps): 48752/33063/48752 (34231)
Open/close/exp size (steps): 43605/39927/43605 (41095)
Open/close/exp size (steps): 63075/48164/63075 (49332)
Open/close/exp size (steps): 68528/58049/68528 (59217)
Open/close/exp size (steps): 62478/69911/62478 (71079)
Open/close/exp size (steps): 62163/84146/62163 (85314)
Open/close/exp size (steps): 76734/101228/76734 (102396)
Open/close/exp size (steps): 101945/121727/101945 (122895)
Open/close/exp size (steps): 137567/146326/137567 (147494)
Open/close/exp size (steps): 195539/175845/195539 (177013)
Open/close/exp size (steps): 164357/211268/164357 (212436)
Open/close/exp size (steps): 213881/253776/213881 (254944)
Open/close/exp size (steps): 183354/304786/183354 (305954)
Open/close/exp size (steps): 138459/365998/138459 (367166)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 0 and 2 collide.
Solution of group 0
Mulirobot solution: (|moves| = 13, paralellism = 2.167) [
    Step 0: 1#37->29 3#28->27 
    Step 1: 1#29->28 2#38->30 3#27->35 
    Step 2: 1#28->27 2#30->29 
    Step 3: 1#27->26 2#29->28 
    Step 4: 1#26->25 2#28->27 
    Step 5: 1#25->24 2#27->26 
]
Solution of group 2
Mulirobot solution: (|moves| = 11, paralellism = 1.000) [
    Step 0: 1#50->42 
    Step 1: 1#42->34 
    Step 2: 1#34->26 
    Step 3: 1#26->18 
    Step 4: 1#18->10 
    Step 5: 1#10->2 
    Step 6: 1#2->3 
    Step 7: 1#3->4 
    Step 8: 1#4->5 
    Step 9: 1#5->6 
    Step 10: 1#6->7 
]
Occupation table complementary for group 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Occupation table complementary for group 2
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 3 0 0 0 0 1 0 0 0 1 2 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 3 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 2 0 0 0 0 3 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 2 1 0 0 0 0 3 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 2 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 2 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 2 1 0 1 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 0 0 0 3 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 2 0 0 1 0 0 0 0 0 3 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 2 0 0 1 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 2 0 0 1 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 1 1 2 0 0 1 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Unable to resolve collision between groups 0 and 2.
Merging groups 0 and 2.
Searching solution for merged group 0+2.
Open/close/exp size (steps): 75638/50074/75638 (440621)
Open/close/exp size (steps): 382940/138220/382940 (528767)
Open/close/exp size (steps): 555457/243996/555457 (634543)
Open/close/exp size (steps): 527874/370928/527874 (761475)
Open/close/exp size (steps): 423568/523247/423568 (913794)
Open/close/exp size (steps): 282505/706030/282505 (1096577)
Open/close/exp size (steps): 692869/925370/692869 (1315917)
Open/close/exp size (steps): 1151821/1188578/1151821 (1579125)
Cannot decide existence of solution..
Multirobot solution analysis: (
    total makespan           = 0
    total distance           = 0
    total trajectory         = 0
    average parallelism      = -nan
    average distance         = 0.000
    average trajectory       = 0.000
    parallelism distribution  = [ ]
    distance distribution     = [ 19 ]
    trajectory distribution   = [ ]
)
Phase statistics (current phase = 'root_phase') [
        Phase (name = 'root_phase') [
            Total SAT solver calls         = 0
            Satisfiable SAT solver calls   = 0
            Unsatisfiable SAT solver calls = 0
            Indeterminate SAT solver calls = 0
            Move executions                = 0
            Produced CNF variables         = 0
            Produced CNF clauses           = 0
            Search steps                   = 0
            Wall clock TIME (seconds)      = 6.199
            CPU/machine TIME (seconds)     = 6.200
        ]
        Sub-phases {
            Phase (name = 'independent_solving') [
                Total SAT solver calls         = 0
                Satisfiable SAT solver calls   = 0
                Unsatisfiable SAT solver calls = 0
                Indeterminate SAT solver calls = 0
                Move executions                = 6469280
                Produced CNF variables         = 0
                Produced CNF clauses           = 0
                Search steps                   = 0
                Wall clock TIME (seconds)      = 64.014
                CPU/machine TIME (seconds)     = 64.010
            ]
        }
]
----------------------------------------------------------------