================================================================
reLOC 0.09-vegas : Multirobot Solution solver
(C) Copyright 2011-2013 Pavel Surynek
----------------------------------------------------------------
Reading graph...
1,0
6,0
2,1
7,1
3,2
8,2
4,3
9,3
5,4
10,4
7,6
12,6
8,7
13,7
9,8
14,8
10,9
15,9
11,10
16,10
13,12
18,12
14,13
19,13
15,14
20,14
16,15
21,15
17,16
22,16
19,18
24,18
20,19
25,19
21,20
26,20
22,21
27,21
23,22
28,22
25,24
30,24
26,25
31,25
27,26
32,26
28,27
33,27
29,28
34,28
11,5
17,11
23,17
29,23
35,29
31,30
32,31
33,32
34,33
35,34
Reading initial arrangement...
Reading goal arrangement...
Undirected graph: (|V|=36 |E|=60) [
    Vertex: (id = 0) {1 6 }
    Vertex: (id = 1) {0 2 7 }
    Vertex: (id = 2) {1 3 8 }
    Vertex: (id = 3) {2 4 9 }
    Vertex: (id = 4) {3 5 10 }
    Vertex: (id = 5) {4 11 }
    Vertex: (id = 6) {0 7 12 }
    Vertex: (id = 7) {1 6 8 13 }
    Vertex: (id = 8) {2 7 9 14 }
    Vertex: (id = 9) {3 8 10 15 }
    Vertex: (id = 10) {4 9 11 16 }
    Vertex: (id = 11) {10 5 17 }
    Vertex: (id = 12) {6 13 18 }
    Vertex: (id = 13) {7 12 14 19 }
    Vertex: (id = 14) {8 13 15 20 }
    Vertex: (id = 15) {9 14 16 21 }
    Vertex: (id = 16) {10 15 17 22 }
    Vertex: (id = 17) {16 11 23 }
    Vertex: (id = 18) {12 19 24 }
    Vertex: (id = 19) {13 18 20 25 }
    Vertex: (id = 20) {14 19 21 26 }
    Vertex: (id = 21) {15 20 22 27 }
    Vertex: (id = 22) {16 21 23 28 }
    Vertex: (id = 23) {22 17 29 }
    Vertex: (id = 24) {18 25 30 }
    Vertex: (id = 25) {19 24 26 31 }
    Vertex: (id = 26) {20 25 27 32 }
    Vertex: (id = 27) {21 26 28 33 }
    Vertex: (id = 28) {22 27 29 34 }
    Vertex: (id = 29) {28 23 35 }
    Vertex: (id = 30) {24 31 }
    Vertex: (id = 31) {25 30 32 }
    Vertex: (id = 32) {26 31 33 }
    Vertex: (id = 33) {27 32 34 }
    Vertex: (id = 34) {28 33 35 }
    Vertex: (id = 35) {29 34 }
    Edge  0: 1 <-> 0
    Edge  1: 6 <-> 0
    Edge  2: 2 <-> 1
    Edge  3: 7 <-> 1
    Edge  4: 3 <-> 2
    Edge  5: 8 <-> 2
    Edge  6: 4 <-> 3
    Edge  7: 9 <-> 3
    Edge  8: 5 <-> 4
    Edge  9: 10 <-> 4
    Edge  10: 7 <-> 6
    Edge  11: 12 <-> 6
    Edge  12: 8 <-> 7
    Edge  13: 13 <-> 7
    Edge  14: 9 <-> 8
    Edge  15: 14 <-> 8
    Edge  16: 10 <-> 9
    Edge  17: 15 <-> 9
    Edge  18: 11 <-> 10
    Edge  19: 16 <-> 10
    Edge  20: 13 <-> 12
    Edge  21: 18 <-> 12
    Edge  22: 14 <-> 13
    Edge  23: 19 <-> 13
    Edge  24: 15 <-> 14
    Edge  25: 20 <-> 14
    Edge  26: 16 <-> 15
    Edge  27: 21 <-> 15
    Edge  28: 17 <-> 16
    Edge  29: 22 <-> 16
    Edge  30: 19 <-> 18
    Edge  31: 24 <-> 18
    Edge  32: 20 <-> 19
    Edge  33: 25 <-> 19
    Edge  34: 21 <-> 20
    Edge  35: 26 <-> 20
    Edge  36: 22 <-> 21
    Edge  37: 27 <-> 21
    Edge  38: 23 <-> 22
    Edge  39: 28 <-> 22
    Edge  40: 25 <-> 24
    Edge  41: 30 <-> 24
    Edge  42: 26 <-> 25
    Edge  43: 31 <-> 25
    Edge  44: 27 <-> 26
    Edge  45: 32 <-> 26
    Edge  46: 28 <-> 27
    Edge  47: 33 <-> 27
    Edge  48: 29 <-> 28
    Edge  49: 34 <-> 28
    Edge  50: 11 <-> 5
    Edge  51: 17 <-> 11
    Edge  52: 23 <-> 17
    Edge  53: 29 <-> 23
    Edge  54: 35 <-> 29
    Edge  55: 31 <-> 30
    Edge  56: 32 <-> 31
    Edge  57: 33 <-> 32
    Edge  58: 34 <-> 33
    Edge  59: 35 <-> 34
]
Robot arrangement: (|R| = 9, |V| = 36) [
     robot locations: {1#21 2#22 3#16 4#13 5#4 6#14 7#12 8#32 9#9 }
     vertex occupancy: {0#0 0#1 0#2 0#3 5#4 0#5 0#6 0#7 0#8 9#9 0#10 0#11 7#12 4#13 6#14 0#15 3#16 0#17 0#18 0#19 0#20 1#21 2#22 0#23 0#24 0#25 0#26 0#27 0#28 0#29 0#30 0#31 8#32 0#33 0#34 0#35 }
]
Robot arrangement: (|R| = -1, |V| = 0) [
     robot locations: {}
     vertex occupancy: {}
]
Robot goal: (|R| = 9, |V| = 36) [
    robot goals: {
        1#{20}
        2#{7}
        3#{11}
        4#{2}
        5#{27}
        6#{14}
        7#{17}
        8#{25}
        9#{8}
    }
    vertex compatibilities: {
        0@{}
        1@{}
        2@{4}
        3@{}
        4@{}
        5@{}
        6@{}
        7@{2}
        8@{9}
        9@{}
        10@{}
        11@{3}
        12@{}
        13@{}
        14@{6}
        15@{}
        16@{}
        17@{7}
        18@{}
        19@{}
        20@{1}
        21@{}
        22@{}
        23@{}
        24@{}
        25@{8}
        26@{}
        27@{5}
        28@{}
        29@{}
        30@{}
        31@{}
        32@{}
        33@{}
        34@{}
        35@{}
    }
]
Open/close/exp size (steps): 1/0/1 (2)
Open/close/exp size (steps): 13/3/13 (5)
Open/close/exp size (steps): 24/7/24 (9)
Open/close/exp size (steps): 34/12/34 (14)
Open/close/exp size (steps): 13/3/13 (20)
Open/close/exp size (steps): 22/7/22 (28)
Open/close/exp size (steps): 16/4/16 (38)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 1 and 2 collide.
Solution of group 1
Mulirobot solution: (|moves| = 5, paralellism = 1.000) [
    Step 0: 1#22->16 
    Step 1: 1#16->10 
    Step 2: 1#10->9 
    Step 3: 1#9->8 
    Step 4: 1#8->7 
]
Solution of group 2
Mulirobot solution: (|moves| = 2, paralellism = 1.000) [
    Step 0: 1#16->10 
    Step 1: 1#10->11 
]
Occupation table complementary for group 1
0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

** Open/close/exp size (steps): 3/1/3 (2)
** Open/close/exp size (steps): 7/4/7 (5)
** Open/close/exp size (steps): 19/8/19 (9)
** Open/close/exp size (steps): 16/13/16 (14)
** Open/close/exp size (steps): 16/19/16 (20)
** Open/close/exp size (steps): 12/27/12 (28)
** Open/close/exp size (steps): 17/37/17 (38)
** Open/close/exp size (steps): 5/49/5 (50)
Occupation table complementary for group 2
0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

Unable to resolve collision between groups 1 and 2.
Merging groups 1 and 2.
Searching solution for merged group 1+2.
Open/close/exp size (steps): 29/8/29 (50)
Open/close/exp size (steps): 78/23/78 (65)
Open/close/exp size (steps): 113/41/113 (83)
Open/close/exp size (steps): 153/63/153 (105)
Open/close/exp size (steps): 193/90/193 (132)
Open/close/exp size (steps): 261/123/261 (165)
Open/close/exp size (steps): 343/163/343 (205)
Open/close/exp size (steps): 342/211/342 (253)
Open/close/exp size (steps): 404/269/404 (311)
Open/close/exp size (steps): 457/339/457 (381)
Open/close/exp size (steps): 464/423/464 (465)
Open/close/exp size (steps): 533/524/533 (566)
Open/close/exp size (steps): 666/646/666 (688)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 0 and 1 collide.
Solution of group 0
Mulirobot solution: (|moves| = 1, paralellism = 1.000) [
    Step 0: 1#21->20 
]
Solution of group 1
Mulirobot solution: (|moves| = 7, paralellism = 1.400) [
    Step 0: 1#22->21 2#16->10 
    Step 1: 1#21->15 2#10->11 
    Step 2: 1#15->9 
    Step 3: 1#9->8 
    Step 4: 1#8->7 
]
Occupation table complementary for group 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 1 1 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 1 1 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 1 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 2 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 1 1 0 0 2 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

Occupation table complementary for group 1
0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

** Open/close/exp size (steps): 22/7/22 (65)
** Open/close/exp size (steps): 62/25/62 (83)
** Open/close/exp size (steps): 91/47/91 (105)
** Open/close/exp size (steps): 132/74/132 (132)
** Open/close/exp size (steps): 184/107/184 (165)
** Open/close/exp size (steps): 198/147/198 (205)
** Open/close/exp size (steps): 223/195/223 (253)
** Open/close/exp size (steps): 244/253/244 (311)
** Open/close/exp size (steps): 222/323/222 (381)
** Open/close/exp size (steps): 251/407/251 (465)
** Open/close/exp size (steps): 223/508/223 (566)
** Open/close/exp size (steps): 275/630/275 (688)
** Open/close/exp size (steps): 334/777/334 (835)
** Open/close/exp size (steps): 263/954/263 (1012)
** Open/close/exp size (steps): 285/1167/285 (1225)
** Open/close/exp size (steps): 268/1423/268 (1481)
** Open/close/exp size (steps): 391/1731/391 (1789)
** Open/close/exp size (steps): 340/2101/340 (2159)
** Open/close/exp size (steps): 154/2545/154 (2603)
** Open/close/exp size (steps): 52/3078/52 (3136)
Unable to resolve collision between groups 0 and 1.
Merging groups 0 and 1.
Searching solution for merged group 0+1.
Open/close/exp size (steps): 237/69/237 (835)
Open/close/exp size (steps): 447/246/447 (1012)
Open/close/exp size (steps): 597/459/597 (1225)
Open/close/exp size (steps): 838/715/838 (1481)
Open/close/exp size (steps): 1693/1023/1693 (1789)
Open/close/exp size (steps): 2506/1393/2506 (2159)
Open/close/exp size (steps): 3837/1837/3837 (2603)
Open/close/exp size (steps): 4899/2370/4899 (3136)
Open/close/exp size (steps): 5197/3010/5197 (3776)
Open/close/exp size (steps): 5084/3778/5084 (4544)
Open/close/exp size (steps): 4650/4700/4650 (5466)
Open/close/exp size (steps): 7169/5807/7169 (6573)
Open/close/exp size (steps): 9902/7136/9902 (7902)
Open/close/exp size (steps): 11741/8731/11741 (9497)
Open/close/exp size (steps): 13673/10645/13673 (11411)
Open/close/exp size (steps): 11949/12942/11949 (13708)
Open/close/exp size (steps): 9192/15699/9192 (16465)
Open/close/exp size (steps): 12827/19008/12827 (19774)
Open/close/exp size (steps): 13680/22979/13680 (23745)
Open/close/exp size (steps): 21916/27745/21916 (28511)
Open/close/exp size (steps): 32224/33465/32224 (34231)
Open/close/exp size (steps): 37024/40329/37024 (41095)
Open/close/exp size (steps): 32502/48566/32502 (49332)
Open/close/exp size (steps): 26815/58451/26815 (59217)
Open/close/exp size (steps): 26124/70313/26124 (71079)
Open/close/exp size (steps): 34367/84548/34367 (85314)
Open/close/exp size (steps): 52830/101630/52830 (102396)
Open/close/exp size (steps): 69668/122129/69668 (122895)
Open/close/exp size (steps): 98333/146728/98333 (147494)
Open/close/exp size (steps): 74062/176247/74062 (177013)
Open/close/exp size (steps): 63824/211670/63824 (212436)
Open/close/exp size (steps): 60351/254178/60351 (254944)
Open/close/exp size (steps): 58426/305188/58426 (305954)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 0 and 2 collide.
Solution of group 0
Mulirobot solution: (|moves| = 8, paralellism = 1.333) [
    Step 0: 1#21->20 
    Step 1: 2#22->21 
    Step 2: 2#21->15 
    Step 3: 2#15->9 3#16->10 
    Step 4: 2#9->8 3#10->11 
    Step 5: 2#8->7 
]
Solution of group 2
Mulirobot solution: (|moves| = 1, paralellism = 1.000) [
    Step 0: 1#9->8 
]
Occupation table complementary for group 0
0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

** Open/close/exp size (steps): 352/509/352 (3776)
** Open/close/exp size (steps): 1771/1277/1771 (4544)
** Open/close/exp size (steps): 1600/2199/1600 (5466)
** Open/close/exp size (steps): 3115/3306/3115 (6573)
** Open/close/exp size (steps): 3851/4635/3851 (7902)
** Open/close/exp size (steps): 3790/6230/3790 (9497)
** Open/close/exp size (steps): 4230/8144/4230 (11411)
** Open/close/exp size (steps): 6577/10441/6577 (13708)
** Open/close/exp size (steps): 8326/13198/8326 (16465)
** Open/close/exp size (steps): 6217/16507/6217 (19774)
** Open/close/exp size (steps): 8474/20478/8474 (23745)
** Open/close/exp size (steps): 10397/25244/10397 (28511)
** Open/close/exp size (steps): 12807/30964/12807 (34231)
** Open/close/exp size (steps): 18904/37828/18904 (41095)
** Open/close/exp size (steps): 13173/46065/13173 (49332)
** Open/close/exp size (steps): 15404/55950/15404 (59217)
Alternative solution of group 0
Mulirobot solution: (|moves| = 10, paralellism = 1.667) [
    Step 0: 1#21->27 3#16->10 
    Step 1: 2#22->21 3#10->11 
    Step 2: 2#21->20 
    Step 3: 1#27->26 2#20->19 
    Step 4: 2#19->13 
    Step 5: 1#26->20 2#13->7 
]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collision between groups 0 and 2 resolved.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 2 and 5 collide.
Solution of group 2
Mulirobot solution: (|moves| = 1, paralellism = 1.000) [
    Step 0: 1#9->8 
]
Solution of group 5
Mulirobot solution: (|moves| = 2, paralellism = 1.000) [
    Step 0: 1#14->8 
    Step 1: 1#8->14 
]
Occupation table complementary for group 2
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 1 1 0 3 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 1 0 3 0 0 1 0 0 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 3 0 0 1 1 0 0 0 0 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 3 0 0 1 0 1 0 0 2 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 3 0 2 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 2 0 0 0 3 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

Alternative solution of group 2
Mulirobot solution: (|moves| = 5, paralellism = 1.000) [
    Step 0: 1#9->15 
    Step 1: 1#15->16 
    Step 2: 1#16->10 
    Step 3: 1#10->9 
    Step 4: 1#9->8 
]
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collision between groups 2 and 5 resolved.
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 3 and 6 collide.
Solution of group 3
Mulirobot solution: (|moves| = 3, paralellism = 1.000) [
    Step 0: 1#13->7 
    Step 1: 1#7->1 
    Step 2: 1#1->2 
]
Solution of group 6
Mulirobot solution: (|moves| = 5, paralellism = 1.000) [
    Step 0: 1#12->13 
    Step 1: 1#13->14 
    Step 2: 1#14->15 
    Step 3: 1#15->16 
    Step 4: 1#16->17 
]
Occupation table complementary for group 3
0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 1 0 3 0 0 1 0 1 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 3 0 0 1 0 1 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 3 0 0 1 1 0 0 0 0 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 3 0 0 1 0 1 0 0 2 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 3 0 2 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 1 0 0 3 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

Occupation table complementary for group 6
0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 1 1 0 3 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 1 0 3 0 0 1 0 1 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 1 3 0 0 1 1 0 0 0 0 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 1 0 3 0 0 1 0 0 0 0 2 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 3 0 2 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 2 1 0 0 3 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

Unable to resolve collision between groups 3 and 6.
Merging groups 3 and 6.
Searching solution for merged group 3+6.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 3 and 4 collide.
Solution of group 3
Mulirobot solution: (|moves| = 8, paralellism = 1.333) [
    Step 0: 1#13->7 
    Step 1: 1#7->1 2#12->13 
    Step 2: 1#1->2 2#13->14 
    Step 3: 2#14->15 
    Step 4: 2#15->16 
    Step 5: 2#16->17 
]
Solution of group 4
Mulirobot solution: (|moves| = 5, paralellism = 1.000) [
    Step 0: 1#4->3 
    Step 1: 1#3->9 
    Step 2: 1#9->15 
    Step 3: 1#15->21 
    Step 4: 1#21->27 
]
Occupation table complementary for group 3
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 1 0 3 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 3 0 0 1 0 1 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 3 0 0 1 1 0 0 0 0 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 3 0 0 1 0 0 0 0 2 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 3 0 2 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 1 0 0 3 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 

Occupation table complementary for group 4
0 0 0 0 0 0 0 0 0 1 0 0 2 1 1 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 1 0 3 0 2 0 0 1 0 0 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 3 0 2 1 0 1 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 1 3 0 0 1 0 0 0 0 0 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 1 0 3 0 0 1 2 0 0 0 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 3 0 2 1 0 2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 2 1 0 0 3 0 0 1 0 0 2 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Unable to resolve collision between groups 3 and 4.
Merging groups 3 and 4.
Searching solution for merged group 3+4.
Open/close/exp size (steps): 23089/57683/23089 (367166)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 0 and 3 collide.
Solution of group 0
Mulirobot solution: (|moves| = 10, paralellism = 1.667) [
    Step 0: 1#21->27 3#16->10 
    Step 1: 2#22->21 3#10->11 
    Step 2: 2#21->20 
    Step 3: 1#27->26 2#20->19 
    Step 4: 2#19->13 
    Step 5: 1#26->20 2#13->7 
]
Solution of group 3
Mulirobot solution: (|moves| = 13, paralellism = 2.167) [
    Step 0: 1#13->7 
    Step 1: 1#7->1 2#4->10 3#12->13 
    Step 2: 1#1->2 2#10->16 3#13->14 
    Step 3: 2#16->22 3#14->15 
    Step 4: 2#22->21 3#15->16 
    Step 5: 2#21->27 3#16->17 
]
Occupation table complementary for group 0
0 0 0 0 2 0 0 0 0 1 0 0 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 2 0 0 1 1 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 2 0 0 3 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 3 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 3 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 

** Open/close/exp size (steps): 1318/1949/1318 (71079)
** Open/close/exp size (steps): 7243/16184/7243 (85314)
Alternative solution of group 0
Mulirobot solution: (|moves| = 10, paralellism = 1.667) [
    Step 0: 1#21->27 3#16->17 
    Step 1: 2#22->21 3#17->11 
    Step 2: 2#21->20 
    Step 3: 2#20->19 
    Step 4: 1#27->26 2#19->13 
    Step 5: 1#26->20 2#13->7 
]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collision between groups 0 and 3 resolved.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 2 and 3 collide.
Solution of group 2
Mulirobot solution: (|moves| = 5, paralellism = 1.000) [
    Step 0: 1#9->15 
    Step 1: 1#15->16 
    Step 2: 1#16->10 
    Step 3: 1#10->9 
    Step 4: 1#9->8 
]
Solution of group 3
Mulirobot solution: (|moves| = 13, paralellism = 2.167) [
    Step 0: 1#13->7 
    Step 1: 1#7->1 2#4->10 3#12->13 
    Step 2: 1#1->2 2#10->16 3#13->14 
    Step 3: 2#16->22 3#14->15 
    Step 4: 2#22->21 3#15->16 
    Step 5: 2#21->27 3#16->17 
]
Occupation table complementary for group 2
0 0 0 0 2 0 0 0 0 0 0 0 3 1 1 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 2 0 0 1 1 0 0 0 3 0 0 0 0 3 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 2 3 0 3 1 0 0 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 3 0 0 1 0 2 0 0 0 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 3 0 0 1 3 0 0 0 2 0 0 2 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 3 0 2 1 0 3 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 2 0 0 0 3 0 0 1 0 0 3 0 0 1 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 

Alternative solution of group 2
Mulirobot solution: (|moves| = 3, paralellism = 1.000) [
    Step 0: 1#9->3 
    Step 1: 1#3->9 
    Step 2: 1#9->8 
]
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collision between groups 2 and 3 resolved.
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 2 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 2 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

Groups 3 and 4 collide.
Solution of group 3
Mulirobot solution: (|moves| = 13, paralellism = 2.167) [
    Step 0: 1#13->7 
    Step 1: 1#7->1 2#4->10 3#12->13 
    Step 2: 1#1->2 2#10->16 3#13->14 
    Step 3: 2#16->22 3#14->15 
    Step 4: 2#22->21 3#15->16 
    Step 5: 2#21->27 3#16->17 
]
Solution of group 4
Mulirobot solution: (|moves| = 2, paralellism = 1.000) [
    Step 0: 1#14->8 
    Step 1: 1#8->14 
]
Occupation table complementary for group 3
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 3 0 0 1 0 0 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 3 0 0 1 0 0 0 0 0 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 3 0 0 1 0 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 3 0 2 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 1 0 0 3 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

** Open/close/exp size (steps): 2908/8531/2908 (102396)
** Open/close/exp size (steps): 3054/29030/3054 (122895)
** Open/close/exp size (steps): 5505/53629/5505 (147494)
** Open/close/exp size (steps): 5591/83148/5591 (177013)
Occupation table complementary for group 4
0 0 0 0 2 0 0 0 0 1 0 0 3 1 0 0 3 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 1 2 0 0 1 0 0 0 0 3 0 0 0 0 3 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 1 2 3 0 3 0 0 0 0 0 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 3 0 0 3 0 2 0 0 0 2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 3 0 0 0 3 0 0 0 2 0 0 2 0 0 1 0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 3 0 2 0 0 3 0 0 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 2 1 0 0 3 0 0 0 0 0 3 0 0 1 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 

Unable to resolve collision between groups 3 and 4.
Merging groups 3 and 4.
Searching solution for merged group 3+4.
Open/close/exp size (steps): 22494/18060/22494 (440621)
Open/close/exp size (steps): 75430/106206/75430 (528767)
Open/close/exp size (steps): 191811/211982/191811 (634543)
Open/close/exp size (steps): 242746/338914/242746 (761475)
Open/close/exp size (steps): 285356/491233/285356 (913794)
Open/close/exp size (steps): 656953/674016/656953 (1096577)
Open/close/exp size (steps): 473378/893356/473378 (1315917)
Open/close/exp size (steps): 338308/1156564/338308 (1579125)
Open/close/exp size (steps): 276022/1472414/276022 (1894975)
Open/close/exp size (steps): 1028152/1851434/1028152 (2273995)
Cannot decide existence of solution..
Multirobot solution analysis: (
    total makespan           = 0
    total distance           = 0
    total trajectory         = 0
    average parallelism      = -nan
    average distance         = 0.000
    average trajectory       = 0.000
    parallelism distribution  = [ ]
    distance distribution     = [ 8 ]
    trajectory distribution   = [ ]
)
Phase statistics (current phase = 'root_phase') [
        Phase (name = 'root_phase') [
            Total SAT solver calls         = 0
            Satisfiable SAT solver calls   = 0
            Unsatisfiable SAT solver calls = 0
            Indeterminate SAT solver calls = 0
            Move executions                = 0
            Produced CNF variables         = 0
            Produced CNF clauses           = 0
            Search steps                   = 0
            Wall clock TIME (seconds)      = 6.181
            CPU/machine TIME (seconds)     = 6.180
        ]
        Sub-phases {
            Phase (name = 'independent_solving') [
                Total SAT solver calls         = 0
                Satisfiable SAT solver calls   = 0
                Unsatisfiable SAT solver calls = 0
                Indeterminate SAT solver calls = 0
                Move executions                = 7479405
                Produced CNF variables         = 0
                Produced CNF clauses           = 0
                Search steps                   = 0
                Wall clock TIME (seconds)      = 64.022
                CPU/machine TIME (seconds)     = 64.010
            ]
        }
]
----------------------------------------------------------------