================================================================
reLOC 0.09-vegas : Multirobot Solution solver
(C) Copyright 2011-2013 Pavel Surynek
----------------------------------------------------------------
Reading graph...
1,0
6,0
2,1
7,1
3,2
8,2
4,3
9,3
5,4
10,4
7,6
12,6
8,7
13,7
9,8
14,8
10,9
15,9
11,10
16,10
13,12
18,12
14,13
19,13
15,14
20,14
16,15
21,15
17,16
22,16
19,18
24,18
20,19
25,19
21,20
26,20
22,21
27,21
23,22
28,22
25,24
30,24
26,25
31,25
27,26
32,26
28,27
33,27
29,28
34,28
11,5
17,11
23,17
29,23
35,29
31,30
32,31
33,32
34,33
35,34
Reading initial arrangement...
Reading goal arrangement...
Undirected graph: (|V|=36 |E|=60) [
    Vertex: (id = 0) {1 6 }
    Vertex: (id = 1) {0 2 7 }
    Vertex: (id = 2) {1 3 8 }
    Vertex: (id = 3) {2 4 9 }
    Vertex: (id = 4) {3 5 10 }
    Vertex: (id = 5) {4 11 }
    Vertex: (id = 6) {0 7 12 }
    Vertex: (id = 7) {1 6 8 13 }
    Vertex: (id = 8) {2 7 9 14 }
    Vertex: (id = 9) {3 8 10 15 }
    Vertex: (id = 10) {4 9 11 16 }
    Vertex: (id = 11) {10 5 17 }
    Vertex: (id = 12) {6 13 18 }
    Vertex: (id = 13) {7 12 14 19 }
    Vertex: (id = 14) {8 13 15 20 }
    Vertex: (id = 15) {9 14 16 21 }
    Vertex: (id = 16) {10 15 17 22 }
    Vertex: (id = 17) {16 11 23 }
    Vertex: (id = 18) {12 19 24 }
    Vertex: (id = 19) {13 18 20 25 }
    Vertex: (id = 20) {14 19 21 26 }
    Vertex: (id = 21) {15 20 22 27 }
    Vertex: (id = 22) {16 21 23 28 }
    Vertex: (id = 23) {22 17 29 }
    Vertex: (id = 24) {18 25 30 }
    Vertex: (id = 25) {19 24 26 31 }
    Vertex: (id = 26) {20 25 27 32 }
    Vertex: (id = 27) {21 26 28 33 }
    Vertex: (id = 28) {22 27 29 34 }
    Vertex: (id = 29) {28 23 35 }
    Vertex: (id = 30) {24 31 }
    Vertex: (id = 31) {25 30 32 }
    Vertex: (id = 32) {26 31 33 }
    Vertex: (id = 33) {27 32 34 }
    Vertex: (id = 34) {28 33 35 }
    Vertex: (id = 35) {29 34 }
    Edge  0: 1 <-> 0
    Edge  1: 6 <-> 0
    Edge  2: 2 <-> 1
    Edge  3: 7 <-> 1
    Edge  4: 3 <-> 2
    Edge  5: 8 <-> 2
    Edge  6: 4 <-> 3
    Edge  7: 9 <-> 3
    Edge  8: 5 <-> 4
    Edge  9: 10 <-> 4
    Edge  10: 7 <-> 6
    Edge  11: 12 <-> 6
    Edge  12: 8 <-> 7
    Edge  13: 13 <-> 7
    Edge  14: 9 <-> 8
    Edge  15: 14 <-> 8
    Edge  16: 10 <-> 9
    Edge  17: 15 <-> 9
    Edge  18: 11 <-> 10
    Edge  19: 16 <-> 10
    Edge  20: 13 <-> 12
    Edge  21: 18 <-> 12
    Edge  22: 14 <-> 13
    Edge  23: 19 <-> 13
    Edge  24: 15 <-> 14
    Edge  25: 20 <-> 14
    Edge  26: 16 <-> 15
    Edge  27: 21 <-> 15
    Edge  28: 17 <-> 16
    Edge  29: 22 <-> 16
    Edge  30: 19 <-> 18
    Edge  31: 24 <-> 18
    Edge  32: 20 <-> 19
    Edge  33: 25 <-> 19
    Edge  34: 21 <-> 20
    Edge  35: 26 <-> 20
    Edge  36: 22 <-> 21
    Edge  37: 27 <-> 21
    Edge  38: 23 <-> 22
    Edge  39: 28 <-> 22
    Edge  40: 25 <-> 24
    Edge  41: 30 <-> 24
    Edge  42: 26 <-> 25
    Edge  43: 31 <-> 25
    Edge  44: 27 <-> 26
    Edge  45: 32 <-> 26
    Edge  46: 28 <-> 27
    Edge  47: 33 <-> 27
    Edge  48: 29 <-> 28
    Edge  49: 34 <-> 28
    Edge  50: 11 <-> 5
    Edge  51: 17 <-> 11
    Edge  52: 23 <-> 17
    Edge  53: 29 <-> 23
    Edge  54: 35 <-> 29
    Edge  55: 31 <-> 30
    Edge  56: 32 <-> 31
    Edge  57: 33 <-> 32
    Edge  58: 34 <-> 33
    Edge  59: 35 <-> 34
]
Robot arrangement: (|R| = 8, |V| = 36) [
     robot locations: {1#13 2#5 3#29 4#26 5#0 6#1 7#28 8#32 }
     vertex occupancy: {5#0 6#1 0#2 0#3 0#4 2#5 0#6 0#7 0#8 0#9 0#10 0#11 0#12 1#13 0#14 0#15 0#16 0#17 0#18 0#19 0#20 0#21 0#22 0#23 0#24 0#25 4#26 0#27 7#28 3#29 0#30 0#31 8#32 0#33 0#34 0#35 }
]
Robot arrangement: (|R| = -1, |V| = 0) [
     robot locations: {}
     vertex occupancy: {}
]
Robot goal: (|R| = 8, |V| = 36) [
    robot goals: {
        1#{22}
        2#{19}
        3#{5}
        4#{13}
        5#{15}
        6#{23}
        7#{27}
        8#{29}
    }
    vertex compatibilities: {
        0@{}
        1@{}
        2@{}
        3@{}
        4@{}
        5@{3}
        6@{}
        7@{}
        8@{}
        9@{}
        10@{}
        11@{}
        12@{}
        13@{4}
        14@{}
        15@{5}
        16@{}
        17@{}
        18@{}
        19@{2}
        20@{}
        21@{}
        22@{1}
        23@{6}
        24@{}
        25@{}
        26@{}
        27@{7}
        28@{}
        29@{8}
        30@{}
        31@{}
        32@{}
        33@{}
        34@{}
        35@{}
    }
]
Open/close/exp size (steps): 5/1/5 (2)
Open/close/exp size (steps): 17/4/17 (5)
Open/close/exp size (steps): 3/1/3 (9)
Open/close/exp size (steps): 15/6/15 (14)
Open/close/exp size (steps): 27/12/27 (20)
Open/close/exp size (steps): 42/20/42 (28)
Open/close/exp size (steps): 10/3/10 (38)
Open/close/exp size (steps): 18/7/18 (50)
Open/close/exp size (steps): 28/9/28 (65)
Open/close/exp size (steps): 1/0/1 (83)
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 0 and 3 collide.
Solution of group 0
Mulirobot solution: (|moves| = 4, paralellism = 1.000) [
    Step 0: 1#13->14 
    Step 1: 1#14->15 
    Step 2: 1#15->16 
    Step 3: 1#16->22 
]
Solution of group 3
Mulirobot solution: (|moves| = 3, paralellism = 1.000) [
    Step 0: 1#26->20 
    Step 1: 1#20->14 
    Step 2: 1#14->13 
]
Occupation table complementary for group 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 

** Open/close/exp size (steps): 4/1/4 (2)
** Open/close/exp size (steps): 5/4/5 (5)
Alternative solution of group 0
Mulirobot solution: (|moves| = 4, paralellism = 0.800) [
    Step 0: 1#13->19 
    Step 1: 
    Step 2: 1#19->20 
    Step 3: 1#20->21 
    Step 4: 1#21->22 
]
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collision between groups 0 and 3 resolved.
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 1 and 3 collide.
Solution of group 1
Mulirobot solution: (|moves| = 7, paralellism = 1.000) [
    Step 0: 1#5->4 
    Step 1: 1#4->3 
    Step 2: 1#3->2 
    Step 3: 1#2->1 
    Step 4: 1#1->7 
    Step 5: 1#7->13 
    Step 6: 1#13->19 
]
Solution of group 3
Mulirobot solution: (|moves| = 3, paralellism = 1.000) [
    Step 0: 1#26->20 
    Step 1: 1#20->14 
    Step 2: 1#14->13 
]
Occupation table complementary for group 1
1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 

** Open/close/exp size (steps): 4/2/4 (9)
** Open/close/exp size (steps): 6/7/6 (14)
** Open/close/exp size (steps): 3/13/3 (20)
** Open/close/exp size (steps): 1/21/1 (28)
Occupation table complementary for group 3
1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 

Unable to resolve collision between groups 1 and 3.
Merging groups 1 and 3.
Searching solution for merged group 1+3.
Open/close/exp size (steps): 38/14/38 (105)
Open/close/exp size (steps): 99/41/99 (132)
Open/close/exp size (steps): 155/74/155 (165)
Open/close/exp size (steps): 227/114/227 (205)
Open/close/exp size (steps): 301/162/301 (253)
Open/close/exp size (steps): 395/220/395 (311)
Open/close/exp size (steps): 471/290/471 (381)
Open/close/exp size (steps): 526/374/526 (465)
Open/close/exp size (steps): 538/475/538 (566)
Open/close/exp size (steps): 594/597/594 (688)
Open/close/exp size (steps): 634/744/634 (835)
Open/close/exp size (steps): 757/921/757 (1012)
Open/close/exp size (steps): 838/1134/838 (1225)
Open/close/exp size (steps): 1010/1390/1010 (1481)
Open/close/exp size (steps): 1200/1698/1200 (1789)
Open/close/exp size (steps): 1579/2068/1579 (2159)
Open/close/exp size (steps): 1568/2512/1568 (2603)
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 1 and 3 collide.
Solution of group 1
Mulirobot solution: (|moves| = 10, paralellism = 1.429) [
    Step 0: 1#5->4 2#26->20 
    Step 1: 1#4->3 2#20->14 
    Step 2: 1#3->2 2#14->13 
    Step 3: 1#2->8 
    Step 4: 1#8->14 
    Step 5: 1#14->20 
    Step 6: 1#20->19 
]
Solution of group 3
Mulirobot solution: (|moves| = 4, paralellism = 1.000) [
    Step 0: 1#32->26 
    Step 1: 1#26->27 
    Step 2: 1#27->28 
    Step 3: 1#28->29 
]
Occupation table complementary for group 1
1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 

Occupation table complementary for group 3
1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 0 0 0 0 0 
0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 1 1 1 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 1 0 2 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 

Alternative solution of group 3
Mulirobot solution: (|moves| = 4, paralellism = 1.000) [
    Step 0: 1#32->33 
    Step 1: 1#33->34 
    Step 2: 1#34->28 
    Step 3: 1#28->29 
]
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collision between groups 1 and 3 resolved.
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 1 and 4 collide.
Solution of group 1
Mulirobot solution: (|moves| = 10, paralellism = 1.429) [
    Step 0: 1#5->4 2#26->20 
    Step 1: 1#4->3 2#20->14 
    Step 2: 1#3->2 2#14->13 
    Step 3: 1#2->8 
    Step 4: 1#8->14 
    Step 5: 1#14->20 
    Step 6: 1#20->19 
]
Solution of group 4
Mulirobot solution: (|moves| = 5, paralellism = 1.000) [
    Step 0: 1#0->1 
    Step 1: 1#1->2 
    Step 2: 1#2->3 
    Step 3: 1#3->9 
    Step 4: 1#9->15 
]
Occupation table complementary for group 1
1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 

** Open/close/exp size (steps): 7/5/7 (38)
** Open/close/exp size (steps): 18/17/18 (50)
** Open/close/exp size (steps): 42/32/42 (65)
** Open/close/exp size (steps): 60/50/60 (83)
** Open/close/exp size (steps): 58/72/58 (105)
** Open/close/exp size (steps): 71/99/71 (132)
** Open/close/exp size (steps): 74/132/74 (165)
** Open/close/exp size (steps): 87/172/87 (205)
** Open/close/exp size (steps): 138/220/138 (253)
** Open/close/exp size (steps): 168/278/168 (311)
** Open/close/exp size (steps): 163/348/163 (381)
** Open/close/exp size (steps): 154/432/154 (465)
** Open/close/exp size (steps): 237/533/237 (566)
** Open/close/exp size (steps): 234/655/234 (688)
** Open/close/exp size (steps): 314/802/314 (835)
** Open/close/exp size (steps): 301/979/301 (1012)
** Open/close/exp size (steps): 318/1192/318 (1225)
** Open/close/exp size (steps): 268/1448/268 (1481)
** Open/close/exp size (steps): 283/1756/283 (1789)
** Open/close/exp size (steps): 97/2126/97 (2159)
Occupation table complementary for group 4
0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 0 1 0 0 0 
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 1 0 1 0 0 0 0 0 0 1 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 

Unable to resolve collision between groups 1 and 4.
Merging groups 1 and 4.
Searching solution for merged group 1+4.
Open/close/exp size (steps): 376/285/376 (3136)
Open/close/exp size (steps): 878/925/878 (3776)
Open/close/exp size (steps): 1490/1693/1490 (4544)
Open/close/exp size (steps): 3121/2615/3121 (5466)
Open/close/exp size (steps): 4366/3722/4366 (6573)
Open/close/exp size (steps): 4086/5051/4086 (7902)
Open/close/exp size (steps): 5252/6646/5252 (9497)
Open/close/exp size (steps): 8788/8560/8788 (11411)
Open/close/exp size (steps): 10843/10857/10843 (13708)
Open/close/exp size (steps): 13833/13614/13833 (16465)
Open/close/exp size (steps): 12517/16923/12517 (19774)
Open/close/exp size (steps): 10690/20894/10690 (23745)
Open/close/exp size (steps): 10864/25660/10864 (28511)
Open/close/exp size (steps): 14699/31380/14699 (34231)
Open/close/exp size (steps): 20329/38244/20329 (41095)
Open/close/exp size (steps): 22378/46481/22378 (49332)
Open/close/exp size (steps): 25541/56366/25541 (59217)
Open/close/exp size (steps): 33739/68228/33739 (71079)
Open/close/exp size (steps): 31812/82463/31812 (85314)
Open/close/exp size (steps): 59289/99545/59289 (102396)
Open/close/exp size (steps): 62188/120044/62188 (122895)
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 3 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 3 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 3 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 3 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 3 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 3 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 3 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 3 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 1 and 5 collide.
Solution of group 1
Mulirobot solution: (|moves| = 15, paralellism = 2.143) [
    Step 0: 1#5->4 2#26->20 
    Step 1: 1#4->3 2#20->14 3#0->1 
    Step 2: 1#3->9 2#14->13 3#1->2 
    Step 3: 1#9->8 3#2->3 
    Step 4: 1#8->14 3#3->9 
    Step 5: 1#14->20 3#9->15 
    Step 6: 1#20->19 
]
Solution of group 5
Mulirobot solution: (|moves| = 7, paralellism = 1.000) [
    Step 0: 1#1->2 
    Step 1: 1#2->3 
    Step 2: 1#3->4 
    Step 3: 1#4->5 
    Step 4: 1#5->11 
    Step 5: 1#11->17 
    Step 6: 1#17->23 
]
Occupation table complementary for group 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 

** Open/close/exp size (steps): 58/61/58 (2603)
** Open/close/exp size (steps): 894/594/894 (3136)
** Open/close/exp size (steps): 1644/1234/1644 (3776)
** Open/close/exp size (steps): 2767/2002/2767 (4544)
** Open/close/exp size (steps): 2877/2924/2877 (5466)
** Open/close/exp size (steps): 3550/4031/3550 (6573)
** Open/close/exp size (steps): 3097/5360/3097 (7902)
** Open/close/exp size (steps): 5672/6955/5672 (9497)
** Open/close/exp size (steps): 6238/8869/6238 (11411)
** Open/close/exp size (steps): 7303/11166/7303 (13708)
** Open/close/exp size (steps): 8555/13923/8555 (16465)
** Open/close/exp size (steps): 9165/17232/9165 (19774)
** Open/close/exp size (steps): 13372/21203/13372 (23745)
** Open/close/exp size (steps): 16126/25969/16126 (28511)
Alternative solution of group 1
Mulirobot solution: (|moves| = 15, paralellism = 2.143) [
    Step 0: 1#5->4 2#26->20 
    Step 1: 1#4->10 2#20->14 3#0->1 
    Step 2: 1#10->9 2#14->13 3#1->2 
    Step 3: 1#9->8 3#2->3 
    Step 4: 1#8->14 3#3->9 
    Step 5: 1#14->20 3#9->15 
    Step 6: 1#20->19 
]
3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 3 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 3 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 3 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collision between groups 1 and 5 resolved.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 2 and 5 collide.
Solution of group 2
Mulirobot solution: (|moves| = 4, paralellism = 1.000) [
    Step 0: 1#29->23 
    Step 1: 1#23->17 
    Step 2: 1#17->11 
    Step 3: 1#11->5 
]
Solution of group 5
Mulirobot solution: (|moves| = 7, paralellism = 1.000) [
    Step 0: 1#1->2 
    Step 1: 1#2->3 
    Step 2: 1#3->4 
    Step 3: 1#4->5 
    Step 4: 1#5->11 
    Step 5: 1#11->17 
    Step 6: 1#17->23 
]
Occupation table complementary for group 2
3 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 0 0 0 
3 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 
0 3 0 1 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 
0 0 3 0 1 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
0 0 0 3 0 1 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 3 0 1 0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 

Alternative solution of group 2
Mulirobot solution: (|moves| = 6, paralellism = 1.000) [
    Step 0: 1#29->23 
    Step 1: 1#23->17 
    Step 2: 1#17->11 
    Step 3: 1#11->10 
    Step 4: 1#10->4 
    Step 5: 1#4->5 
]
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Collision between groups 2 and 5 resolved.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Computed optimal makespan:7
Makespan optimal solution:
Mulirobot solution: (|moves| = 37, paralellism = 5.286) [
    Step 0: 1#13->19 2#5->4 4#26->20 3#29->23 8#32->33 7#28->27 6#1->2 
    Step 1: 2#4->10 4#20->14 5#0->1 3#23->17 8#33->34 6#2->3 
    Step 2: 1#19->20 2#10->9 4#14->13 5#1->2 3#17->11 8#34->28 6#3->4 
    Step 3: 1#20->21 2#9->8 5#2->3 3#11->10 8#28->29 6#4->5 
    Step 4: 1#21->22 2#8->14 5#3->9 3#10->4 6#5->11 
    Step 5: 2#14->20 5#9->15 3#4->5 6#11->17 
    Step 6: 2#20->19 6#17->23 
]
Multirobot solution analysis: (
    total makespan           = 7
    total distance           = 31
    total trajectory         = 37
    average parallelism      = 5.286
    average distance         = 3.875
    average trajectory       = 4.625
    parallelism distribution  = [ 0 1 0 1 1 2 2 ]
    distance distribution     = [ 1 0 1 2 1 0 2 ]
    trajectory distribution   = [ 1 0 1 2 1 1 2 ]
)
Phase statistics (current phase = 'root_phase') [
        Phase (name = 'root_phase') [
            Total SAT solver calls         = 0
            Satisfiable SAT solver calls   = 0
            Unsatisfiable SAT solver calls = 0
            Indeterminate SAT solver calls = 0
            Move executions                = 37
            Produced CNF variables         = 0
            Produced CNF clauses           = 0
            Search steps                   = 0
            Wall clock TIME (seconds)      = 0.002
            CPU/machine TIME (seconds)     = 0.000
        ]
        Sub-phases {
            Phase (name = 'independent_solving') [
                Total SAT solver calls         = 0
                Satisfiable SAT solver calls   = 0
                Unsatisfiable SAT solver calls = 0
                Indeterminate SAT solver calls = 0
                Move executions                = 509550
                Produced CNF variables         = 0
                Produced CNF clauses           = 0
                Search steps                   = 0
                Wall clock TIME (seconds)      = 3.274
                CPU/machine TIME (seconds)     = 3.270
            ]
        }
]
----------------------------------------------------------------