================================================================
reLOC 0.09-vegas : Multirobot Solution solver
(C) Copyright 2011-2013 Pavel Surynek
----------------------------------------------------------------
Reading graph...
1,0
6,0
2,1
7,1
3,2
8,2
4,3
9,3
5,4
10,4
7,6
12,6
8,7
13,7
9,8
14,8
10,9
15,9
11,10
16,10
13,12
18,12
14,13
19,13
15,14
20,14
16,15
21,15
17,16
22,16
19,18
24,18
20,19
25,19
21,20
26,20
22,21
27,21
23,22
28,22
25,24
30,24
26,25
31,25
27,26
32,26
28,27
33,27
29,28
34,28
11,5
17,11
23,17
29,23
35,29
31,30
32,31
33,32
34,33
35,34
Reading initial arrangement...
Reading goal arrangement...
Undirected graph: (|V|=36 |E|=60) [
    Vertex: (id = 0) {1 6 }
    Vertex: (id = 1) {0 2 7 }
    Vertex: (id = 2) {1 3 8 }
    Vertex: (id = 3) {2 4 9 }
    Vertex: (id = 4) {3 5 10 }
    Vertex: (id = 5) {4 11 }
    Vertex: (id = 6) {0 7 12 }
    Vertex: (id = 7) {1 6 8 13 }
    Vertex: (id = 8) {2 7 9 14 }
    Vertex: (id = 9) {3 8 10 15 }
    Vertex: (id = 10) {4 9 11 16 }
    Vertex: (id = 11) {10 5 17 }
    Vertex: (id = 12) {6 13 18 }
    Vertex: (id = 13) {7 12 14 19 }
    Vertex: (id = 14) {8 13 15 20 }
    Vertex: (id = 15) {9 14 16 21 }
    Vertex: (id = 16) {10 15 17 22 }
    Vertex: (id = 17) {16 11 23 }
    Vertex: (id = 18) {12 19 24 }
    Vertex: (id = 19) {13 18 20 25 }
    Vertex: (id = 20) {14 19 21 26 }
    Vertex: (id = 21) {15 20 22 27 }
    Vertex: (id = 22) {16 21 23 28 }
    Vertex: (id = 23) {22 17 29 }
    Vertex: (id = 24) {18 25 30 }
    Vertex: (id = 25) {19 24 26 31 }
    Vertex: (id = 26) {20 25 27 32 }
    Vertex: (id = 27) {21 26 28 33 }
    Vertex: (id = 28) {22 27 29 34 }
    Vertex: (id = 29) {28 23 35 }
    Vertex: (id = 30) {24 31 }
    Vertex: (id = 31) {25 30 32 }
    Vertex: (id = 32) {26 31 33 }
    Vertex: (id = 33) {27 32 34 }
    Vertex: (id = 34) {28 33 35 }
    Vertex: (id = 35) {29 34 }
    Edge  0: 1 <-> 0
    Edge  1: 6 <-> 0
    Edge  2: 2 <-> 1
    Edge  3: 7 <-> 1
    Edge  4: 3 <-> 2
    Edge  5: 8 <-> 2
    Edge  6: 4 <-> 3
    Edge  7: 9 <-> 3
    Edge  8: 5 <-> 4
    Edge  9: 10 <-> 4
    Edge  10: 7 <-> 6
    Edge  11: 12 <-> 6
    Edge  12: 8 <-> 7
    Edge  13: 13 <-> 7
    Edge  14: 9 <-> 8
    Edge  15: 14 <-> 8
    Edge  16: 10 <-> 9
    Edge  17: 15 <-> 9
    Edge  18: 11 <-> 10
    Edge  19: 16 <-> 10
    Edge  20: 13 <-> 12
    Edge  21: 18 <-> 12
    Edge  22: 14 <-> 13
    Edge  23: 19 <-> 13
    Edge  24: 15 <-> 14
    Edge  25: 20 <-> 14
    Edge  26: 16 <-> 15
    Edge  27: 21 <-> 15
    Edge  28: 17 <-> 16
    Edge  29: 22 <-> 16
    Edge  30: 19 <-> 18
    Edge  31: 24 <-> 18
    Edge  32: 20 <-> 19
    Edge  33: 25 <-> 19
    Edge  34: 21 <-> 20
    Edge  35: 26 <-> 20
    Edge  36: 22 <-> 21
    Edge  37: 27 <-> 21
    Edge  38: 23 <-> 22
    Edge  39: 28 <-> 22
    Edge  40: 25 <-> 24
    Edge  41: 30 <-> 24
    Edge  42: 26 <-> 25
    Edge  43: 31 <-> 25
    Edge  44: 27 <-> 26
    Edge  45: 32 <-> 26
    Edge  46: 28 <-> 27
    Edge  47: 33 <-> 27
    Edge  48: 29 <-> 28
    Edge  49: 34 <-> 28
    Edge  50: 11 <-> 5
    Edge  51: 17 <-> 11
    Edge  52: 23 <-> 17
    Edge  53: 29 <-> 23
    Edge  54: 35 <-> 29
    Edge  55: 31 <-> 30
    Edge  56: 32 <-> 31
    Edge  57: 33 <-> 32
    Edge  58: 34 <-> 33
    Edge  59: 35 <-> 34
]
Robot arrangement: (|R| = 15, |V| = 36) [
     robot locations: {1#21 2#16 3#1 4#3 5#28 6#13 7#2 8#18 9#19 10#6 11#7 12#32 13#20 14#0 15#26 }
     vertex occupancy: {14#0 3#1 7#2 4#3 0#4 0#5 10#6 11#7 0#8 0#9 0#10 0#11 0#12 6#13 0#14 0#15 2#16 0#17 8#18 9#19 13#20 1#21 0#22 0#23 0#24 0#25 15#26 0#27 5#28 0#29 0#30 0#31 12#32 0#33 0#34 0#35 }
]
Robot arrangement: (|R| = -1, |V| = 0) [
     robot locations: {}
     vertex occupancy: {}
]
Robot goal: (|R| = 15, |V| = 36) [
    robot goals: {
        1#{1}
        2#{11}
        3#{20}
        4#{23}
        5#{17}
        6#{16}
        7#{18}
        8#{27}
        9#{6}
        10#{3}
        11#{30}
        12#{25}
        13#{24}
        14#{21}
        15#{34}
    }
    vertex compatibilities: {
        0@{}
        1@{1}
        2@{}
        3@{10}
        4@{}
        5@{}
        6@{9}
        7@{}
        8@{}
        9@{}
        10@{}
        11@{2}
        12@{}
        13@{}
        14@{}
        15@{}
        16@{6}
        17@{5}
        18@{7}
        19@{}
        20@{3}
        21@{14}
        22@{}
        23@{4}
        24@{13}
        25@{12}
        26@{}
        27@{8}
        28@{}
        29@{}
        30@{11}
        31@{}
        32@{}
        33@{}
        34@{15}
        35@{}
    }
]
Open/close/exp size (steps): 5/1/5 (2)
Open/close/exp size (steps): 17/4/17 (5)
Open/close/exp size (steps): 27/8/27 (9)
Open/close/exp size (steps): 1/0/1 (14)
Open/close/exp size (steps): 15/4/15 (20)
Open/close/exp size (steps): 17/5/17 (28)
Open/close/exp size (steps): 9/2/9 (38)
Open/close/exp size (steps): 20/7/20 (50)
Open/close/exp size (steps): 9/2/9 (65)
Open/close/exp size (steps): 24/9/24 (83)
Open/close/exp size (steps): 33/15/33 (105)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 0 and 5 collide.
Solution of group 0
Mulirobot solution: (|moves| = 5, paralellism = 1.000) [
    Step 0: 1#21->15 
    Step 1: 1#15->9 
    Step 2: 1#9->3 
    Step 3: 1#3->2 
    Step 4: 1#2->1 
]
Solution of group 5
Mulirobot solution: (|moves| = 3, paralellism = 1.000) [
    Step 0: 1#13->14 
    Step 1: 1#14->15 
    Step 2: 1#15->16 
]
Occupation table complementary for group 0
1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 
1 1 1 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 

** Open/close/exp size (steps): 1/1/1 (2)
Occupation table complementary for group 5
1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 
1 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 
0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 

Unable to resolve collision between groups 0 and 5.
Merging groups 0 and 5.
Searching solution for merged group 0+5.
Open/close/exp size (steps): 63/18/63 (132)
Open/close/exp size (steps): 155/51/155 (165)
Open/close/exp size (steps): 243/91/243 (205)
Open/close/exp size (steps): 335/139/335 (253)
Open/close/exp size (steps): 468/197/468 (311)
Open/close/exp size (steps): 627/267/627 (381)
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 0 and 4 collide.
Solution of group 0
Mulirobot solution: (|moves| = 8, paralellism = 1.600) [
    Step 0: 1#21->20 2#13->14 
    Step 1: 1#20->19 2#14->15 
    Step 2: 1#19->13 2#15->16 
    Step 3: 1#13->7 
    Step 4: 1#7->1 
]
Solution of group 4
Mulirobot solution: (|moves| = 3, paralellism = 1.000) [
    Step 0: 1#28->22 
    Step 1: 1#22->16 
    Step 2: 1#16->17 
]
Occupation table complementary for group 0
1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 
1 1 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 

Occupation table complementary for group 4
1 1 1 1 0 0 1 1 0 0 0 0 0 2 0 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 
1 1 1 0 1 0 1 0 0 0 1 0 0 1 2 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 2 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 2 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 2 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 2 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 2 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 

** Open/close/exp size (steps): 4/2/4 (5)
** Open/close/exp size (steps): 6/6/6 (9)
** Open/close/exp size (steps): 6/11/6 (14)
** Open/close/exp size (steps): 4/17/4 (20)
** Open/close/exp size (steps): 2/25/2 (28)
Unable to resolve collision between groups 0 and 4.
Merging groups 0 and 4.
Searching solution for merged group 0+4.
Open/close/exp size (steps): 48/13/48 (465)
Open/close/exp size (steps): 428/114/428 (566)
Open/close/exp size (steps): 632/236/632 (688)
Open/close/exp size (steps): 765/383/765 (835)
Open/close/exp size (steps): 968/560/968 (1012)
Open/close/exp size (steps): 1140/773/1140 (1225)
Open/close/exp size (steps): 1344/1029/1344 (1481)
Open/close/exp size (steps): 1508/1337/1508 (1789)
Open/close/exp size (steps): 1790/1707/1790 (2159)
Open/close/exp size (steps): 2288/2151/2288 (2603)
Open/close/exp size (steps): 2686/2684/2686 (3136)
Open/close/exp size (steps): 3135/3324/3135 (3776)
Open/close/exp size (steps): 3568/4092/3568 (4544)
Open/close/exp size (steps): 4177/5014/4177 (5466)
Open/close/exp size (steps): 4996/6121/4996 (6573)
Open/close/exp size (steps): 5981/7450/5981 (7902)
Open/close/exp size (steps): 7190/9045/7190 (9497)
Open/close/exp size (steps): 10897/10959/10897 (11411)
Open/close/exp size (steps): 16414/13256/16414 (13708)
Open/close/exp size (steps): 20079/16013/20079 (16465)
Open/close/exp size (steps): 23093/19322/23093 (19774)
Open/close/exp size (steps): 25130/23293/25130 (23745)
Open/close/exp size (steps): 22645/28059/22645 (28511)
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 0 and 2 collide.
Solution of group 0
Mulirobot solution: (|moves| = 11, paralellism = 2.200) [
    Step 0: 1#21->15 2#28->22 
    Step 1: 1#15->9 2#22->16 3#13->14 
    Step 2: 1#9->3 2#16->17 3#14->15 
    Step 3: 1#3->2 3#15->16 
    Step 4: 1#2->1 
]
Solution of group 2
Mulirobot solution: (|moves| = 4, paralellism = 1.000) [
    Step 0: 1#1->2 
    Step 1: 1#2->8 
    Step 2: 1#8->14 
    Step 3: 1#14->20 
]
Occupation table complementary for group 0
1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 
1 1 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 

Occupation table complementary for group 2
1 0 1 1 0 0 1 1 0 0 0 0 0 3 0 0 1 0 1 1 1 1 0 0 0 0 1 0 2 0 0 0 1 0 0 0 
1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 2 0 0 0 1 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 0 1 0 1 0 1 1 0 3 0 2 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 3 0 2 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 
0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 3 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 3 2 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 3 2 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 

Unable to resolve collision between groups 0 and 2.
Merging groups 0 and 2.
Searching solution for merged group 0+2.
Open/close/exp size (steps): 6109/3245/6109 (34231)
Open/close/exp size (steps): 10656/10109/10656 (41095)
Open/close/exp size (steps): 14613/18346/14613 (49332)
Open/close/exp size (steps): 20795/28231/20795 (59217)
Open/close/exp size (steps): 54662/40093/54662 (71079)
Open/close/exp size (steps): 71220/54328/71220 (85314)
Open/close/exp size (steps): 80648/71410/80648 (102396)
Open/close/exp size (steps): 90457/91909/90457 (122895)
Open/close/exp size (steps): 102855/116508/102855 (147494)
Open/close/exp size (steps): 117147/146027/117147 (177013)
Open/close/exp size (steps): 132601/181450/132601 (212436)
Open/close/exp size (steps): 152524/223958/152524 (254944)
Open/close/exp size (steps): 187634/274968/187634 (305954)
Open/close/exp size (steps): 346510/336180/346510 (367166)
Open/close/exp size (steps): 455588/409635/455588 (440621)
Open/close/exp size (steps): 525831/497781/525831 (528767)
Open/close/exp size (steps): 599253/603557/599253 (634543)
Open/close/exp size (steps): 788181/730489/788181 (761475)
Open/close/exp size (steps): 911883/882808/911883 (913794)
Open/close/exp size (steps): 887097/1065591/887097 (1096577)
0 2 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 0 0 0 4 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 2 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 2 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 0 0 0 4 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 2 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 2 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 2 0 0 0 0 0 0 4 1 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 2 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Groups 0 and 3 collide.
Solution of group 0
Mulirobot solution: (|moves| = 15, paralellism = 3.000) [
    Step 0: 1#21->15 2#1->7 3#28->22 4#13->14 
    Step 1: 1#15->9 2#7->13 3#22->16 
    Step 2: 1#9->3 2#13->19 3#16->17 4#14->15 
    Step 3: 1#3->2 2#19->20 4#15->16 
    Step 4: 1#2->1 
]
Solution of group 3
Mulirobot solution: (|moves| = 5, paralellism = 1.000) [
    Step 0: 1#3->4 
    Step 1: 1#4->5 
    Step 2: 1#5->11 
    Step 3: 1#11->17 
    Step 4: 1#17->23 
]
Occupation table complementary for group 0
1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 
1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 

Occupation table complementary for group 3
1 2 1 0 0 0 1 1 0 0 0 0 0 4 0 0 1 0 1 1 1 1 0 0 0 0 1 0 3 0 0 0 1 0 0 0 
1 1 0 0 0 0 1 2 0 0 1 0 0 1 4 1 0 0 0 1 0 0 3 0 0 0 1 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 1 0 1 0 1 1 2 4 0 3 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 4 0 3 1 2 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 
0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 4 3 0 0 2 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 4 3 1 0 2 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 
0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 4 3 1 0 2 1 0 0 1 1 0 1 0 0 1 0 0 0 1 0 

** Open/close/exp size (steps): 2/6/2 (38)
Unable to resolve collision between groups 0 and 3.
Merging groups 0 and 3.
Searching solution for merged group 0+3.
Open/close/exp size (steps): 108953/132121/108953 (1315917)
Open/close/exp size (steps): 251905/395329/251905 (1579125)
Open/close/exp size (steps): 939643/711179/939643 (1894975)
Cannot decide existence of solution..
Multirobot solution analysis: (
    total makespan           = 0
    total distance           = 0
    total trajectory         = 0
    average parallelism      = -nan
    average distance         = 0.000
    average trajectory       = 0.000
    parallelism distribution  = [ ]
    distance distribution     = [ 14 ]
    trajectory distribution   = [ ]
)
Phase statistics (current phase = 'root_phase') [
        Phase (name = 'root_phase') [
            Total SAT solver calls         = 0
            Satisfiable SAT solver calls   = 0
            Unsatisfiable SAT solver calls = 0
            Indeterminate SAT solver calls = 0
            Move executions                = 0
            Produced CNF variables         = 0
            Produced CNF clauses           = 0
            Search steps                   = 0
            Wall clock TIME (seconds)      = 3.842
            CPU/machine TIME (seconds)     = 3.850
        ]
        Sub-phases {
            Phase (name = 'independent_solving') [
                Total SAT solver calls         = 0
                Satisfiable SAT solver calls   = 0
                Unsatisfiable SAT solver calls = 0
                Indeterminate SAT solver calls = 0
                Move executions                = 6618273
                Produced CNF variables         = 0
                Produced CNF clauses           = 0
                Search steps                   = 0
                Wall clock TIME (seconds)      = 64.021
                CPU/machine TIME (seconds)     = 64.010
            ]
        }
]
----------------------------------------------------------------