
Efektivńı předzpracováńı a parametrizované algoritmy

MI-PAM

Učebńı text́ık

Ondřej Suchý

May 7, 2014

Contents

Contents i

1 Introduction 1

2 Preliminaries 3
2.1 Sets, numbers, languages, formulas 3
2.2 Graphs . 4
2.3 Graph Widths . 6

3 Basic Definitions of Param. Complexity 8
3.1 Parameterization and Parameterized Problem 8
3.2 Fixed-Parameter Tractability . 9

4 Parameterizations 11
4.1 Solution-Size and its Dual . 11
4.2 Parameterization Above Tight Lower Bound 12
4.3 Further Natural Parameters . 13
4.4 Structural Parameters - Graph Widths 14
4.5 Multivariate Approach . 15

5 Kernelization Point-of-View 18
5.1 Basic Ideas . 18
5.2 Further examples . 19
5.3 FPT means Kernelization . 21
5.4 On the Non-Existence of Polynomial Kernels 21
5.5 Notion of Kernelization Relaxed 23
5.6 Similar approach - Win/Win . 25

6 Further Algorithmic Methods 26
6.1 Bounded Search Trees . 26
6.2 Dynamic Programming and Meta-Theorems 28
6.3 Color Coding . 32
6.4 Iterative Compression . 33
6.5 Greedy Localization . 35

i

CONTENTS ii

6.6 Using the Theory of Minors, Bidimensionality 36

7 Intractability 41
7.1 Reductions, Classes . 41
7.2 Monotone/Antimonotone Collapse 43
7.3 Characterization by Computational Models 45
7.4 Multicolored Problems . 47
7.5 Connections to the Exponential Time Hypothesis 49

List of Considered Problems 52

Bibliography 57

Chapter 1

Introduction

Classical complexity treats the problems according to whether they admit an
algorithm solving them in polynomial time in terms of the input size or not. Un-
fortunately, many (if not most) interesting problems turned to be NP-complete,
which means that a polynomial algorithm optimally solving them is fairly im-
probable.

This turned the attention to approximation algorithms which should be able
to output a solution to the problem that is reasonably close to the optimal one in
time polynomial in the input size. But for many applications such an approximate
solution is not suitable. Also measuring the running times only in terms of the
input size effectively ignores any structure of the instances.

Abrahamson, Ellis, Fellows, and Mata [AEFM89] were the first to propose to
study the problems also with respect to some additional measure, the parameter,
distinguishing whether there is an algorithm that can optimally solve all instances
which have this parameter bounded by k in time O(f(k) · nc), where f is some
function, n is the input size and c is a constant independent of k or whether
such an algorithm would require time O(nf(k)) for some function f , that is, the
exponent depends on k.

This idea was further elaborated by Downey and Fellows [DF92b, DF92a]
in a series of papers in which they established the theory of fixed-parameter
tractability and completeness. The series culminated in the ground-breaking
textbook by Downey and Fellows [DF98], which attracted many people to the
field and started a rapid development of the field.

Although since 2004 the International Symposium (formerly workshop) on Pa-
rameterized and Exact Computation (IPEC) devoted to results on parameterized
complexity and exact moderately-exponential algorithms is organized, the papers
involving parameterized complexity are accepted on a wide range of conferences
devoted to graph problems, algorithms and complexity.

With the growing number of papers it was more and more clear, that the
algorithms used to show fixed-parameter tractability often use techniques specific
for the field. The 2006 Niedermeier’s book [Nie06] summarizes such techniques,

1

CHAPTER 1. INTRODUCTION 2

while the monograph by Flum and Grohe [FG06] from the same year concentrates
more to the intractability theory and maps various emerging complexity classes.

Since then the advancement in the field did not stop. Since the beginning it
was noted by Downey and Fellows that parameterized complexity can be under-
stood as a framework to measure the effectiveness of polynomial preprocessing.
The method most related to this perspective, the kernelization, has now its own
theory, and quite recently, in 2009, a tradition of workshops solely devoted to
this method was started.

The big advantage of parameterized complexity is that a single problem can
be studied from various points of view, using the virtually infinite set of possible
parameters. The intractability shown for a problem with respect to a particular
parameter does not mean that parameterized complexity was unsuccessful for the
problem, but, instead, that more work should be done to reveal more suitable
parameters for the problem which can possibly capture its hardness.

Also parameterized complexity enables us to study the complexity of a prob-
lem with respect to various parameters and their combination in a multivariate
manner as suggested recently by Fellows [Fel09] and Niedermeier [Nie10]. Such a
study then helps to understand where the complexity of the problem comes from
and why it is so hard to solve.

Chapter 2

Preliminaries

2.1 Sets, numbers, languages, formulas

Through the text we use standard notations. By N we denote the set of all positive
integers (natural numbers), whereas N0 denotes all non-negative integers.

Set of all subset of a set S is denoted P(S). If S is a set and r ∈ N0 then(
S
r

)
:= {A ⊆ S | |A| = r} denotes the set of all r-element subsets of S. As usual,

we let |A| denote the cardinality of the set A. We say that V1, V2, . . . , Vr is a
partition of a set V if and only if

⋃r
i=1 Vi = V , and ∀i, j, 1 ≤ i < j ≤ r : Vi∩Vj = ∅.

For a function h and a subset S of its domain, we denote the restriction of h
to S by h|S. We use the standard O() notation to compare asymptotical growth
of functions, although when talking about exponential functions sometimes the
O∗() notation is used, which suppresses the polynomial factors of the functions.

An alphabet is any finite set. Most often the alphabet {0, 1} can be used for
our purposes. Elements of the alphabet are called symbols. A word or a string
in an alphabet is a finite sequence of symbols. We denote by Σ∗ the set of all
words in the alphabet Σ and by |y| the length of the word y, i.e. the number of
(occurrences of) symbols in it. A language is a set of words.

In a decision problem we are given some input and a guestion and the task
is to decide whether the answer to this question is yes or no. When studying
decision problems we encode them in some suitable alphabet. This way the set of
all inputs to the decision problem with the positive answer corresponds to some
language over this alphabet. Hence we use the terms decision problem and lan-
guage as synonyms. We also assume that it is easy to recognize whether a string
constitutes an encoding of an input of the problem or not. More details on the de-
cision problems and their encodings can be found in any standard computational
complexity textbook, e.g. [AB09].

The running time or time complexity of an algorithm is the maximum num-
ber of steps it performs on inputs of given length. We do not examine the
space complexity of algorithms in this text. When talking about algorithms we

3

CHAPTER 2. PRELIMINARIES 4

describe them and measure their complexity on the RAM (Random Access Ma-
chine) model with unit cost per arithmetic operation, with the restriction that the
binary encoding of every number involved in the computation must be polynomial
in the input size (so we cannot abuse this model). For complexity considerations
the Turing Machine (TM) model is used more often. Although the time complex-
ity with respect to this models generally differs, if the question is only whether
there is an algorithm running in polynomial time (polynomial algorithm), the
model chosen does not matter [CR72]. The class of all decision problems having
a polynomial algorithm that correctly decides whether the input string is in the
corresponding language or not is called P. Such problems are called polynomially
solvable.

The class NP (stands for nondeterministic polynomial time) contains problems
having certificates of solution that can be checked in polynomial time. More
precisely for such languages there is a polynomial-time checker algorithm taking
inputs formed by two strings, such that for every string in the language there is a
witness string of size polynomial in the size of the original string that makes the
checker accept this pair of strings. By contrast, for a string not in the language,
there is no complementary string of polynomial size that would make the checker
accept.

A problem is NP-hard if every problem in NP can be reduced to it in polyno-
mial time and NP-complete if it is NP-hard and in NP. A language L ⊆ Σ∗ is in
coNP if its complement Σ∗ \L is in NP. Finally, if there is a function a : N→ Σ∗

(advice), a polynomial p : N → N, and a polynomial algorithm A(x, y, z) such
that for every n ∈ N the length of the string a(n) is at most p(n) and x is in
the language L if and only if there is no y ∈ Σ∗, |y| ≤ p(|x|) that would make
A(x, y, a(|x|)) accept, then the language L is in the class coNP/poly. In this case
we also say that it is in coNP with a polynomial advice, or it has coNP circuits.
Refer to [AB09] for a deeper account on computational complexity.

2.2 Graphs

Our notation in the graph theory is standard, for the terms that we forgot to
mention here, we refer the reader to any basic graph theory textbook as Matoušek
and Nešetřil [MN09] or West [Wes96].

In most of the text we speak about undirected graphs. A graph G is a pair
(V,E), where V = V (G) is the set of vertices and E(G) = E ⊆

(
V
2

)
is the set

of edges. When we talk about several graphs, we sometimes call the vertices
of some of them nodes to distinguish them from the vertices of the others. We
consider only simple finite loopless graphs thorough the text. We denote the set
of all such graphs G. If there is an edge between two vertices u and v, that is
{u, v} ∈ E, we say that the vertices u and v are adjacent or neighbors and also
that they are endpoints of the edge {u, v}. A complement of a graph G is a graph

CHAPTER 2. PRELIMINARIES 5

G = (V,
(
V
2

)
\ E).

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G)
and it is an induced subgraph if E(H) equals E(G) ∩

(
V (H)

2

)
. Conversely, H is

a spanning subgraph if V (H) = V (G). If S is a subset of the vertex set V (G)
then we denote the subgraph (S,E(G)∩

(
S
2

)
) induced by the set S by G[S], while

G \ S denotes the graph G[V (G) \ S] (especially if v ∈ V (G) then we use G \ v
in the meaning of G \ {v}). Similarly, if e is an edge of G, then G \ e denotes the
graph (V (G), E(G) \ {e}).

A k-clique is a graph or a subgraph on k vertices having an edge between any
two of them. Conversely an k-independent set is an induced subgraph on k ver-
tices with no edges. A path of length t ∈ N0 is a (sub)graph formed by distinct ver-
tices v0, v1, . . . , vt and edges {v0, v1}, {v1, v2}, . . . , {vt−1, vt}. The vertices v0 and
vt are its endpoints. Finally, a cycle of length t ≥ 3 is a graph or subgraph formed
by distinct vertices v1, . . . , vt and edges {v1, v2}, {v2, v3}, . . . , {vt−1, vt}, {vt, v1}. If
weights on edges are given then the length of a path refers to the sum of weights
of the involved edges.

We call a graph connected if there is a path between any two of its vertices.
Maximal connected subgraphs of a graph are called connected components. If a
graph does not contain a cycle as a subgraph then it is called a forest. A tree is
a connected forest. A distance distG(u, v) between two vertices u and v is the
length of a shortest path between them. A radius of a graph is the minimum
number r such that there is a vertex that is in distance at most r from any other
vertex of this graph.

A (proper) k-coloring of a graph G is mapping c : V (G) → {1, . . . , k} such
that no two adjacent vertices receive the same color (number). The set of all
vertices that receive a particular color in the coloring is called a color class.
A graph is k-colorable if there is at least one proper k-coloring of it. Graphs
that are 2-colorable graphs are also called bipartite and denoted (V1, V2, E) or
(V1 ∪ V2, E), where V1 and V2 are the color classes. We also say that V1 and V2
are the partitions of a bipartition of the vertices.

The set of all vertices adjacent to a vertex v is called the (open) neighborhood
of v and denoted N(v) while N [v] = N(v)∪ {v} denotes the closed neighborhood
of v. The degree deg(v) of a vertex v is the size of its (open) neighborhood. A
vertex is isolated if it has empty neighborhood. A graph is d-regular if every
vertex has degree d. A 3-regular graphs are also called cubic. A matching is a
1-regular subgraph and it is perfect if it is spanning. A graph is d-degenerate if
every its (non-empty) subgraph (including itself) has a vertex of degree at most d.

An edge contraction is an operation which removes an edge from a graph while
simultaneously merging together its two endpoints, removing the possibly arisen
paralel edges. The graph obtained from a graph G by contacting an edge e is
denoted by G · e. Note that any connected graph can be contracted to a (graph
having) single vertex by means of edge contractions. A graph H is a minor of
a graph G, if it can be obtained from G by a sequence of vertex deletions, edge

CHAPTER 2. PRELIMINARIES 6

deletions and edge contractions. A graph H is an induced minor of G if it can be
obtained by a sequence of vertex deletions and edge contractions only. A graph
class C is (induced) minor closed if any (induced) minor of a graph in C is again
in C, respectively.

By subdividing an edge we mean replacing it by a path of length 2. Note
that if we subdivide an edge and then contract any of the two edges of the newly
introduced path, we obtain the original graph. A graph G is a subdivision of a
graph H if it can be obtained from H by subdividing edges. A graph is planar
if it can be embedded into a plane without edge crossings. It is well known
that a class of planar graphs is proper minor closed and also closed under taking
subdivisions. A class of graphs is proper if it is nonempty and does not contain
all graphs.

A directed graph (digraph) is a pair D = (V,A), where V = V (D) is again
the set of vertices (or nodes more often this time) and A(D) = A ⊆ V × V is the
set of arcs. Although we generally allow loops in this case, they play no role in
our consideration - they are of no use nor make any obstacle for the solution of
our problems. We use (u, v) to denote the arc directed from the vertex u to the
vertex v (starting in u and ending in v) and in this case we also say that u has an
arc to v (it is an in-neighbor of v) and v has an arc from u (it is an out-neighbor
of u).

The notion of (induced) subgraph works analogously as in the undirected case.
A directed path from a vertex u to a vertex v is a subgraph of D formed by vertices
u = v0, v1, . . . , vt = v and arcs (v0, v1), (v1, v2), . . . , (vt−1, vt) for some t ∈ N0,
while a directed cycle is a subgraph ({v1, . . . , vt}, {(v1, v2), . . . , (vt−1, vt), (vt, v1)})
for some t ∈ N. We say that u is connected to v and v is reachable from u if there is
a directed path from u to v. A graph D = (V,A) is strongly connected if between
each pair of vertices u and v there is a path from u to v and a path from v to u. It is
(weakly) connected if its underlying graph (V, {{u, v} | (u, v) ∈ A or (v, u) ∈ A})
is connected.

In a directed graph D = (V,A), the in-neighborhood N−(u) (out-neighborhood
N+(u)) of a vertex u is the set of vertices which have arcs directed to u (from u),
and the in-degree deg−(u) (out-degree deg+(u)) of a vertex u denotes the size of
the in-neighborhood (out-neighborhood) of the vertex u. The terms neighborhood
and degree refer to the union of the in- and the out-neighborhood and the sum
of in- and out-degree in this case, respectively. A vertex with deg−(u) = 0 is a
source, and a vertex with deg+(v) = 0 is a sink.

2.3 Graph Widths

In this section we introduce some of the graph width measures that are used later
in the text. We start by the most renowned one, the treewidth introduced by
Robertson and Seymour [RS84].

CHAPTER 2. PRELIMINARIES 7

A tree decomposition of a graph G = (V,E) is a pair (T, σ), where T is a tree
and σ : V (T)→ P(V) is a mapping assigning to each node x of the tree a subset
Vx of vertices of the graph G called a bag, that satisfies the following:

(i) Every vertex u ∈ V is in some bag,

(ii) for every edge {u, v} ∈ E there is an x ∈ V (T) such that {u, v} is a subset
of the bag Vx, and

(iii) for every vertex u ∈ V if there are two bags Vx and Vy containing u then
for every z on the unique path from x to y in T , u is contained in Vz.

The width of the tree decomposition (T, σ) is the size of the largest bag minus
one.
The treewidth of a graph tw(G) is the minimum width of a decomposition over
all tree decompositions of G.

Restricting the tree involved in the tree decomposition to be a path we ob-
tain path decompositions and the pathwidth pw(G) of a graph, another measure
introduced by Robertson and Seymour.

Chapter 3

Basic Definitions of
Parameterized Complexity

In this chapter we present the basis of parameterized complexity with focus on
tractability. As the fixed-parameter tractability became well known approach for
solving NP-complete problems, there are several textbooks presenting compre-
hensively the field (except for some recent developments). The corner-stone was
laid by Downey and Fellows in [DF98], more recently Niedermeier [Nie06] focused
on the algorithmics and Flum and Grohe [FG06] on the complexity theory.

3.1 Parameterization and Parameterized Prob-

lem

Parameterized complexity is a framework to measure hardness of instances of
computational problems in a multi-dimensional manner. To this end, we first
need a notion of another measure apart from the size of the instance.

Definition 3.1. A parameterization of a decision problem P ∈ Σ∗ is a com-
putable function κ : Σ∗ → Σ∗.

Example 3.2. Suppose that we are going to investigate the problem of Vertex
Cover. Here one is given a graph G and k ∈ N and the question is whether
there is a set of vertices of size at most k, such that each edge of the graph has
at least one endpoint in this set (such a set is called a vertex cover). Hence we
assume, that an instance of this (decision) problem is an encoding of a pair (G, k)
in some alphabet Σ, G being a graph and k ∈ N. Then the so-called solution-size
parameterization gives (the encoding of) k if the input represents a pair (G, k)
and (the encoding of) 1 otherwise. If a parameterization is, as in this example,
a projection of the input to one of its components, we will usually use the name
of this component to denote the parameterization.

8

CHAPTER 3. BASIC DEFINITIONS OF PARAM. COMPLEXITY 9

Parameterized complexity deals with parameterized problems:

Definition 3.3. By a parameterized problem L we mean any subset L ⊆ Σ∗×Σ∗,
where Σ is some finite alphabet. An instance of the parameterized problem L is
any pair (x, k) ∈ Σ∗×Σ∗, where x is called the main part and k is the parameter
(of the instance). We call (x, k) a yes-instance for the parameterized problem L
if (x, k) ∈ L and a no-instance otherwise.

A parameterization provides a connection between classical decision problems
and parameterized problems:

Definition 3.4. If P ⊆ Σ∗ is a decision problem, and κ : Σ∗ → Σ∗ a parameteri-
zation, then we denote by κ-P the parameterized problem κ-P := {(x, κ(x)) | x ∈
P}. If the parameterization is clear from the context (especially for the so-called
standard parameterization) we often omit its specification and use P also for the
parameterized problem.1

Remark 3.5. Some authors [FG06] define the parameterized problem as a pair
(P , κ) and require the parameterization to be a polynomial-time computable
function κ : Σ∗ → N. We prefer to use definition as stated above, as we neglect
the possible time needed to evaluate the parameterization. There are also some
parameterizations for which it is not possible to compute them in polynomial
time, justifying our decision (see Section 4.4).

We defer the discussion on whether the parameter must be an integer after
the main definition of parameterized algorithmics.

3.2 Fixed-Parameter Tractability

The main goal of parameterized complexity was always to decide which parame-
terized problems are fixed-parameter tractable and which are not.

Definition 3.6. We say that a parameterized problem L ⊆ Σ∗ × Σ∗ is fixed
parameter tractable if there is an algorithm that correctly decides whether an
instance (x, k) is in L in time f(k) · |x|c for some function f : Σ∗ → N and
some constant c. Such an algorithm is called a parameterized algorithm or fpt-
algorithm. The class of all fixed parameter tractable problems is denoted FPT.

Remark 3.7. Distinguishing the cases f(k) ≤ |x| and f(k) > |x| one can see that
an (f(k) · |x|c)-algorithm also runs in time (f(k))2 + |x|2c. On the other hand,
an (f(k) + |x|c)-algorithm also runs in time 2f(k) · |x|c, as we assume both |x|
and f(k) to be at least one. Hence FPT is also a class of par. problems having
(f(k) + |x|c)-algorithms.

1As there is no standardized way to denote the parameterization of the problem, some tradi-
tional names of decision problems already use the dash. In these exceptional cases we keep the
traditional names and, thus, the part before the dash is then not necessarily a parameterization.

CHAPTER 3. BASIC DEFINITIONS OF PARAM. COMPLEXITY 10

Definition 3.8. A parameterized problem L ⊆ Σ∗×Σ∗ is in the class XP if there
is an algorithm that correctly decides whether an instance (x, k) is in L in time
f(k) · |x|g(k) for some functions f and g : Σ∗ → N.

Definition 3.9. We say that a (decision) problem P is (in)2 FPT (in XP) with
respect to the parameterization κ (or parameterized by κ) if the parameterized
problem κ-P is in FPT (in XP), respectively. Again, if clear from context we
sometimes omit the parameterization.

Example 3.10. Vertex Cover is FPT with respect to k.

The fundamental difference between the FPT and XP algorithmic running-
times laid the corner-stone of parameterized complexity. It is obvious that FPT
⊆ XP, while it is known that XP 6⊆ FPT [DF98].

Remark 3.11. We have allowed the parameter to be an arbitrary string. But in
some cases (e.g. when talking about polynomial functions of the parameter) it is
necessary to restrict the parameter to be formed by a (single) integer. Therefore
some authors require the parameter to be an integer [FG06]. On the other, hand
it is sometimes natural to consider for example a graph or a pair of numbers as a
parameter. It is easy to check that if there is an fpt-algorithm deciding whether
(x, k) ∈ Σ∗ × Σ∗ is a yes-instance of the problem running in time f(k) · |x|c for
some function f : Σ∗ → N and some constant c, then the algorithm also runs
in time f ′(|k|) · |x|c for some f ′ : N → N. Hence, we can replace the parameter
k ∈ Σ∗ by the parameter |k| ∈ N if necessary, without affecting the membership
of a particular problem in FPT (or XP). However, if the parameter particularly
is formed by an r-tuple (a1, a2, . . . , ar) ∈ Nr of natural numbers, we prefer to
replace it by the sum a1 + a2 + · · ·+ ar ∈ N, as this preserves the polynomiality
of functions of the parameter.

2The letters FPT are often used as an acronym for fixed-parameter tractable. Therefore we
often say that a problem is FPT, instead of saying that it is in FPT

Chapter 4

Parameterizations

In the previous chapter we have said that parameterized complexity relies strongly
on having further measure on the instances of the problem apart from the input
size. In this chapter we discuss some of the measures used. We would like to
remark that when talking about complexity of graph problems mostly the number
of vertices n and sometimes the number of edges m are used to measure the size
of the input. These quantities, although closely related to, are also quite different
than the actual bit-size of the input. But they are quite unsuitable for our purpose
by the following reason.

It is easy to see, that if a parameterization grows monotonically with the
input size and is unbounded (or it is lower bounded by such a function) then any
decidable problem is FPT with respect to this parameterization. Hence we head
for parameterizations unrelated to the input size. Also, as the dependence of
running time of fpt-algorithms on the parameter is mostly exponential or worse,
there is a strong need for parameterizations that remain small on some reasonable
part of the instances that are (though to be) practical.

4.1 Solution-Size and its Dual

As the vast majority of decision problems originate from optimization problems,
their instances are usually equipped with a number k representing the size of the
sought solution. Or, in view of the definition of the class NP, the size of the
witness we search for. This number is widely used; such a parameterization is
called the standard parameterization or the parameterization by the size of the
solution.

The disadvantage of this parameterization is that we sometimes cannot expect
it to be small. On the other hand, there is usually an input-size related upper
bound for the parameter, the answer being trivial above it. Then we can use the
parameter saying how far from this upper bound we can get. This is called the
dual parameterization and the corresponding parameterized problem is called the

11

CHAPTER 4. PARAMETERIZATIONS 12

parametric dual of the original parameterized problem. For example, if we have
a graph problem where we search for a vertex subset S of size k satisfying some
condition, and the size of the vertex set V is n, then the dual parameterization
assigns to such an instance the number n − k, that is the size of V \ S. Or,
equivalently, we can keep the parameter to be k and change the question to be
“Is there a set of size n− k?”

Special case of the solution-size parameterization is when the input is weighted,
i.e., we are given weights on the elements that we can use in the solution an the
question is, whether there is a solution with total weight not exceeding the given
bound (budget). As a rule, in this case, it is necessary to normalize the weights
in some sense, as otherwise (in most cases) any instance can be transformed to
an instance with the budget 1 (dividing all the weights by the budget), effectively
ruling out the possibility of the problem being FPT (unless it is in P) with re-
spect to the parameterization by the budget. Hence we either allow only integer
weights, or take the ratio between the budget and the minimum weight used as
a parameter (or force the minimum to be 1).

4.2 Parameterization Above Tight Lower Bound

Sometimes there is an unbounded growing function f of the size of the input |x|,
such that whenever the parameter k is less than this function f(|x|), then the
answer is trivial. This means always yes or always no, depending only on the
problem considered. As an example consider Max d-Sat. Here one is given a
propositional formula in form of conjunction of m clauses, each formed by exactly
d literals and the question is whether it is possible to satisfy at least k clauses
simultaneously. By a simple probabilistic argument one can show, that it is
always possible to satisfy at least 1−2−d fraction of the clauses. Hence whenever
we are asked whether it is possible to satisfy k ≤ m(1−2−d) clauses we can simply
answer yes. Otherwise there is less than k/(1− 2−d) clauses containing less than
d · k/(1− 2−d) variables and any brute force algorithm can be used to show the
fixed-parameter tractability of the problem with respect to the parameter k.

Of course this algorithm is somewhat unsatisfactory. The question arises,
wheather we can get a bit more, than what we are quaranteed. That is to
pose a question: “Is it possible to satisfy at least m(1 − 2−d) + k clauses?” or,
equivalently, parameterize the problem by max{k −m(1− 2−d), 1}. If the lower
bound used is tight, then such a parameterization is called the parameterization
above tight lower bound. To see that the bound from our example is tight it
is enough to consider a formula formed by a blocks of all 2d possible clauses on
some d variables, taking different variables for different blocks. As often the lower
bound is obtained by some probabilistic argument, this kind of parameterization
is also often called the parameterization above average.

There are several positive results for such parameterizations, to see the one

CHAPTER 4. PARAMETERIZATIONS 13

for the above example refer to [AGK+10].

4.3 Further Natural Parameters

Definition of some other problems already shows off some natural parameters.
Graph problems often include several “request” that should be satisfied simulta-
neously. As the number of the request can be often assumed to be small it forms
a natural measure to parameterize with.

A typical example of such problem is Steiner Tree, where we are given an
edge weighted graph G = (V,E), a subset of vertices T (called terminals) and a
natural number p ∈ N. The question is whether there is a connected subgraph
of G of weight at most p containing all vertices of T . While p can be regarded
as the size of the solution, |T | provides a further natural parameter—we will see
further in the text that even much more useful.

Another example can be found in the more recently studied k-Local Search
for Traveling Salesperson [Mar08]. In this problem we are given a graph
with positive weights on edges and a Hamiltonian cycle in it and the question is
whether we can find a Hamiltonian cycle which uses at most k edges not used by
the original cycle and its weight is smaller than the weight of the original one.
Here the number k can be hardly called size of the solution. Similar parameter
is involved in Conservative Coloring where we are given a graph which has
all vertices except for one properly colored by k colors and we search for a proper
coloring of that graph with k colors which differ from the original one on at most
c places [HN10]. Again, c is a natural parameter which does not represent the
solution-size.

Further natural parameters appear in the problems where we search for a
consensus. For example in one problem in voting systems we are given several
linear orders on the candidates representing the votes and we search for a linear
order that is reasonably close to the given orders in a given distance measure.
Such a problem offer several natural parameters as the number of voters, number
of candidates, the sum of the distances to the consensus or the maximum distance
and many further. Moreover for each of them there is a natural scenario, where
it is reasonable to assume that this parameter will be small [BGN08].

Natural parameters appear also in many other areas, for example for geomet-
rical problems in higher dimensions it is natural to consider the dimension of the
problem as a parameter [Kna10]. For string problems the size of the alphabet is
often considered, etc.

CHAPTER 4. PARAMETERIZATIONS 14

4.4 Structural Parameters - Graph Widths

In practice, many graph problems come with instances formed by sparse graphs,
often having some additional structure. The most obvious sparsity measure is
the average degree or the closely related degeneracy (see Section 2.2 for the
definitions). Although these parameters are quite useful for many problems, for
many others they provide too little structure.

The situation improves when we restrict our attention to the most studied
class of sparse graphs — planar graphs. Or more generally we parameterize
our problems be the genus of the graph, which is FPT to determine [Moh99].
Although many hard problems become tractable on graphs of bounded genus,
still there are many more, that are NP-complete even on planar graphs Hence
many other measures — graph widths — were introduced to really catch the
structure of graphs. Nowadays there are dozens if not hundreds of such widths.1

If we should present some of the widths, we have to start with the treewidth.
Introduced by Robertson and Seymour [RS84] in 1984 it is the most widely rec-
ognized and definitely the most successful of them.

Interestingly it is NP-hard given G and k to decide whether the treewidth
of G is at most k [ACP87], while it is FPT parameterized by k as there is an
algorithm, whose running time is linear for every fixed k [Bod96]. Since the
algorithm actually finds the decomposition in case one exists, this implies the
existence of an optimal decomposition with linear number of nodes. While this
algorithm is completely impractical due to the huge function f(k) involved in
the running time, there are practical algorithms constructing a decomposition of
width 3k+2 if the treewidth of G is at most k [Ree92] and, if this is not sufficient,
heuristic approaches are used [BK10].

Hence, if we parameterize the problem by the treewidth, it is convenient (but
should be mentioned) to assume that we are given a decomposition, and the
complexity of the algorithm is actually measured with respect to the width of the
decomposition given. We just have to bear in mind that if we don’t provide the
algorithm with the optimal decomposition, the bound on the running time of the
algorithm being an expression of the treewidth should be actually considered as
an expression of the width of the decomposition given.

After the great success of the treewidth, the research aimed both to extend the
tractability results to wider classes of graphs as well as to further restrict the class
of graphs considered to achieve tractability for further problems. To compare the
measures we use the following notion. For two graph measures κ, κ′ : G → N we
say that κ is more restrictive than κ′ (κ′ is less restrictive than κ) if there is a
function g : N → N such that for every graph G ∈ G : κ′(G) ≤ g(κ(G)). If κ
is both less and more restrictive than κ′ then we say that they are equivalently

1Over 40 were mentioned on the 2009 workshop on Graph Classes, Optimization, and Width
Parameters (GROW).

CHAPTER 4. PARAMETERIZATIONS 15

restrictive.
The intuitive meaning is that if we have a subclass of graphs such that the

values of some width are bounded by a constant on that class, then the values
of any less restrictive width are bounded by a constant too. For example the
pathwidth is more restrictive than the treewidth. Also if a problem is FPT
parameterized by κ (without giving the decomposition) and κ′ is more restrictive
than κ then the problem is automatically also FPT with respect to κ′.

More related to our results are some widths that are more restrictive than
the treewidth. First, restricting the tree involved in the tree decomposition to
be a path we obtain the pathwidth pw(G) of a graph. The restricted structure of
the decompositions can help to devise algorithms, but there are very few exam-
ples of problems being intractable parameterized by the treewidth and tractable
parameterized by the pathwidth.

Another approach is represented by the feedback vertex set number fvs(G),
which is the size of the minimum feedback vertex set in the graph G. A subset of
vertices S is a feedback vertex set for the graph G if the graph G\S is a forest. It
may seem strange at first sight to use the result of one optimization problem as
a parameter for another problem, but such parameterizations turn to be useful.
A natural restriction in this case for the decision version of the “parameterizing”
optimization problems is to be FPT with respect to the solution size. We also
need it to provide some structure that we can further use. In the case of feedback
vertex set number, we can start by doing the brute force on the (small) feedback
vertex set and afterwards the rest is just a forest that we can hopefully treat
easily. The feedback vertex set number is more restrictive than the treewidth as
it can be seen that always tw(G) ≤ fvs(G). To see that, consider the width-1
tree decomposition of the forest G \ S and add S to every bag.

As further examples of this kind let us mention the vertex cover number vc(G),
which is the size of the minimum vertex cover of the graph and the max leaf
number ml(G), the maximum number of leaves in a spanning tree of a graph.
Both of them are more restrictive than both the feedback vertex set number and
the pathwidth. To see the later, the result of Kleitman and West [KW91] can
be used showing that if the maximum number of leaves in any spanning tree of
a graph G is k then G is a subdivision of a graph on at most 4k − 2 vertices.
Hence, maybe, the minimum number of vertices and the minimum number of
edges of a graph our graph is a subdivision of would be a better candidate for
a parameterization. But ml(G) is used more often, maybe because there is no
short name for the other two.

4.5 Multivariate Approach

Parameterized complexity tends not only to treat the problems under different
parameterizations, but also in different scenarios, where the interplay between

CHAPTER 4. PARAMETERIZATIONS 16

more parameterizations influences the complexity of the problems. We are always
interested in the existence of an algorithm with a certain running time. In such a
scenario a parameterization κ can play several different roles (the roles are ordered
from those putting the most restrictions on the parameterization to those putting
no restrictions):

• It is a constant with a known value k0 - we restrict our attention to instances
having the value of κ equal to k0. Our algorithm quite possibly does not
work at all for instances having κ different then k0 and thus no dependence
of the running time on κ is to be examined. As an example consider the
parameterization by the graph genus. Devising an algorithm just for planar
graphs equals restricting the genus to be 0.

• It is a constant but the value is unknown - the algorithm works for all values
of κ but the running time can depend on κ quite arbitrarily, in particular κ
can appear in an exponent of the polynomial in the running time. A typical
example is the number d in d-Hitting Set2 when we examine families of
sets, each having at most d elements. It is supposed that this measure will
be very small when applying the scenario, say definitely less than 10.

• It is a parameter - then κ can only influence the multiplicative factor in the
polynomial running time. With such an influence the algorithm can grow
much higher, for some parameterized problems, values of parameter larger
than 100 can still give reasonable running times.

• It is just a variable without any influence on the running time of the algo-
rithm. This is included only for completeness, as this rather means that κ
plays no role in this scenario.

To get better the idea, consider a scenario in which κ1 has known value k0, κ2 is
a constant, κ3 forms the parameter and κ4 is a variable. Then we are interested
in the existence of an algorithm which works for all instances having κ1 equal to
k0 and its running time on an instance x is bounded by f(κ2(x), κ3(x)) · |x|g(κ2(x))
for some functions f and g.

It is important to note, that an FPT result for some scenario also applies
to scenarios where each parameterization plays the same or more restricted role.
On the other hand, a hardness result for a particular scenario also translates to
scenarios that are less restrictive. In particular, an fpt-algorithm with respect
to a single parameter also shows that the problem is in FPT with respect to
the combination of this parameter and any other. Conversely, a hardness result
for a combined parameterization means also hardness with respect to each single

2d-Hitting Set: Given a family of sets, each with at most d elements and k ∈ N, decide,
whether there are at most k elements, such that each set in the family contains at least one of
them (is hit).

CHAPTER 4. PARAMETERIZATIONS 17

parameter involved in the combination. This way the number of scenarios we
need to study to get the full picture can be significantly decreased.

Also note that it makes no sense to use several structural parameterizations
with the same role if one of them is more restrictive than the other (see Sec-
tion 4.4). Although there are several hardness results for a combination of two
incomparable structural parameters such as the pathwidth and the feedback ver-
tex set number, it seems complicated to use structures provided by two parame-
ters in combined matter to develop an algorithm.

The main purpose of studying different scenarios is not only to provide peo-
ple solving the problem the best suited tool for their particular case, but also to
understand where the hardness of the problem comes from, which is very impor-
tant from the theoretical point of view. Hopefully understanding of the problem
hardness can lead to even better tractability results for it. More ideas about how
to examine the problem in the fully multivariate manner can be found in [Fel09]
and [Nie10].

Chapter 5

Kernelization Point-of-View

Kernelization is a natural formalization of a notion of effective polynomial pre-
processing in terms of parameterized complexity. It is known by many names
such as data reduction or reduction to a problem kernel. Of course efficient pre-
processing is not only a domain of the parameterized algorithms. As the use of
a kernelization makes no harm, it can be used prior to almost any approach for
solving the problem, such as heuristics or approximation algorithms.

5.1 Basic Ideas

We present the basic ideas on an example of the now legendary kernelization for
Vertex Cover, which is attributed to Samuel R. Buss in [DF98], but nowadays
is considered rather folklore. Recall than in Vertex Cover we are given a graph
G and a natural k and the question is whether there is a set of at most k vertices in
which every edge has at least one endpoint. The standard parameter (considered
here) is k.

First observation that can help to reduce the instance is that in an instance
of Vertex Cover isolated vertices play no role. Hence we can replace G by
G \ I in our considerations, where I is the set of isolated vertices in G. This is
usually called a reduction rule. To see its correctness (soundness) it is necessary
to check that the instance produced by the rule is a yes-instance if and only if
the original one is. In our case this means that G has a vertex cover of size at
most k if and only if G \ I does so, which is obvious.

Further consider a vertex v having more than k neighbors in G. It has to
take part in any vertex cover of size at most k as the cover cannot contain all
neighbors of the vertex. Thus G has a vertex cover of size k if and only if G− v
has a vertex cover of size at most k−1, immediately leading to another reduction
rule. Note that, in contrast with the previous rule, this rule uses the value of the
parameter - it is parameter dependent. Of course parameter independent rules
are more desirable, as they can be used also on the optimization problem itself,

18

CHAPTER 5. KERNELIZATION POINT-OF-VIEW 19

not only on its (parameterized) decision variant.
To complete the kernelization we need a boundary lemma saying that if the

instance is reduced (none of the reduction rules can be applied to it any more)
then either the answer is trivial, or the size of the instance is bounded in terms
of the parameter. If the Vertex Cover instance is reduced with respect to the
above two rules, then either it is a no-instance or it has at most k2 + k vertices,
as each vertex is non-isolated and thus must be in the cover or a neighbor of one
of (at most) k cover vertices, each of them having degree at most k. Obviously,
reduced yes-instance has also at most k2 edges and thus can be described by
O(k2 · log k) bits.

Now we are ready to give a formal definition of kernelization:

Definition 5.1. A kernelization of a parameterized problem1 P ⊆ Σ∗ × N is a
polynomial time evaluable function A that on the input (x, k) ∈ Σ∗×N produces
an instance (x′, k′) := A((x, k)) ∈ Σ∗ × N such that

• (x′, k′) is in P if and only if (x, k) is in P , and

• there is a function g : N→ N such that |x′| ≤ g(k) and k′ ≤ g(k).

The instance (x′, k′) is called problem kernel and the function g is called the size
of the kernel. If we talk about g(k)-kernel for some function g we always mean,
that there is a kernelization with g being the size of the kernel.

5.2 Further examples

First we note that that our first example translates also to a generalization of
Vertex Cover called d-Hitting Set: Given a family of sets, each with at
most d elements and k ∈ N, decide whether there are at most k elements, such
that each set in the family contains at least one of them (is hit). Here, in conflict
with our notion (but in accordance with the literature), we consider k to be the
parameter and d to be a fixed constant, the case of d = 2 is exactly Vertex
Cover.

Of course it doesn’t make sense to consider elements not contained in any set
of the family. Similarly a superset of another set in the family is redundant in
the instance. The mentioned “high degree” rule can be generalized to this case
by a notion of a sunflower:

Definition 5.2. Sets S1, . . . , Sr form a sunflower if there is a (possibly empty) set
A :=

⋂r
i=1 Si (center) such that the intersection of any two sets Si and Sj, j 6= i

is equal to A or, equivalently, if the sets Si \ A (petals) are disjoint.

1We restrict ourselves here to parameters formed by a single integer, as we want to later
speak about polynomial functions of the parameter; see also Remark 3.5.

CHAPTER 5. KERNELIZATION POINT-OF-VIEW 20

If an instance of d-Hitting Set contains a sunflower with more than k petals
then in order to hit each set in the sunflower we have to select an element from
the center. This can be represented by adding the center into the instance and
removing all supersets of the center (in particular all sets of the sunflower).

Using the so-called Sunflower lemma or the Erdös-Rado Lemma (see [FG06,
Lemma 9.7, p. 211]) one can show that an instance which has more than kd ·d ·d!
sets contains a sunflower with more than k petals that can be found in polynomial
time in both k and the size of the instance. Thus if a reduced family contains
more sets, it is a no-instance. With the kd ·d·d! sets containing altogether at most
kd ·d2 ·d! elements we arrive at an O(kd ·d2 ·d! · (2 log d+d · (log k+log d)))-kernel.
We mention in one of the next sections that this is asymptotically optimal.

The above example is included since most kernelizations in fact use some kind
of high degree rule. It is a local rule in the sense that it only examines an (r-
)neighborhood of a vertex (or an element) an tries to replace it with something
simpler with the same function. On the other hand there are also global rules
examining the structure of the whole graph at once. We present an example
of a crown rule in one less ordinary, although well known application on the
parametric dual of Graph Coloring. Here the question is given a graph G on
n vertices and k ∈ N can G be properly colored by at most n − k colors? It is
known as “How to Save k Colors in O(n2) Steps” [CFJ04].

Definition 5.3. A crown decomposition of a graph G = (V,E) is a partition
C ∪H ∪B = V of the vertex set, such that

• C is an independent set,

• there are no edges between C and B, and

• there is a matching of size |H| between H and C.

The sets C, H, and B can be thought of as the crown, the head, and the body,
respectively.

Lemma 5.4. There is an algorithm, that in polynomial time finds either

• a matching of size at least k + 1, or

• a crown decomposition C ∪H ∪B such that |B| ≤ 3k.

The proof can be found in [CFJ04] and we omit it here.
To solve the dual of coloring, we run the algorithm on the the complement

G of the graph G. If we find a large matching, then obviously we can color
the matched vertices by a same color, obtaining a coloring with less than n − k
colors. If C ∪H ∪B is a crown decomposition of G then C is a clique in G that
is connected to every vertex of B. Hence each vertex of C needs its own color
that, furthermore, cannot be used on B. On the other hand, due to the matching

CHAPTER 5. KERNELIZATION POINT-OF-VIEW 21

between H and C (in G) it is possible to use colors of C for the vertices of H.
Thus G can be colored with n − k colors if and only if G[B] can be colored by
|B| − (k − |C|) colors. Since B has at most 3k vertices, this directly yields a
kernel.

We remark, that via the crown decomposition we can similarly get a kernel
with 3k vertices (of bitsize O(k2)) also for Vertex Cover. A survey of other
results on kernelization can be found in [GN07].

5.3 FPT means Kernelization

The following theorem gives a notification of the importance of kernelization for
parameterized complexity.

Theorem 5.5. A decidable parameterized problem is FPT if and only if it has a
kernelization.

Proof. First suppose that P is FPT, that is, there is an algorithm running in
time f(k) · nc. The promised kernelization works as follows: If f(k) ≤ n then
it solves the instance in f(k) · nc ≤ nc+1-time and outputs some (constant size)
trivial instance being in the language if and only if the input one is. Otherwise
n < f(k) and it outputs the same instance without a modification.

For the other direction it is enough to use any algorithm (ensured by the
decidability) on the output of the kernelization.

Having the above theorem in hand it may seem that having a kernelization
is just another name for being FPT. The important thing here is the size of
the kernel. From the above theorem we only get super-polynomial kernels (for
NP-hard problems). In fact, as noted by Bodlaender [Bod09], we cannot get a
constant size kernel for NP-complete problem (unless P=NP). What we can get
are kernels of polynomial size as we have seen in our example and such kernels are
of broad interest, as not only they often lead to the best known fpt-algorithms
for a particular problem, but as we have mentioned earlier, they can be used in
virtually any approach to solve the problem.

5.4 On the Non-Existence of Polynomial Ker-

nels

As we have already said, a (polynomial) kernelization for a problem is more valued
than just fixed-parameter tractability. The theory of parameterized hardness is
capable of showing fixed-parameter intractability (see Chapter 7) but it is not
fine-grained enough to provide any evidence that for a fixed-parameter tractable
problem there is presumably no polynomial kernel, or to even show that some

CHAPTER 5. KERNELIZATION POINT-OF-VIEW 22

kernel is asymptotically optimal in terms of its size. In this section we present
the framework that is capable of such results (under certain complexity theoretic
assumptions). We need the following definition of an algorithm doing an “OR”
of several instances:

Definition 5.6. A composition algorithm for a parameterized problem P ⊆ Σ∗×
N is an algorithm that receives as input a sequence ((x1, k), . . . , (xt, k)), with
(xi, k) ∈ Σ∗ × N for each 1 ≤ i ≤ t, uses time polynomial in

∑t
i=1 |xi| + k, and

outputs (y, k′) ∈ Σ∗ × N with

• (y, k′) ∈ P if and only if there is an 1 ≤ i ≤ t such that (xi, k) ∈ P and

• k′ is polynomial in k.

A parameterized problem is compositional if there is a composition algorithm for
it.

We also need the following notion:

Definition 5.7. An unparameterized version of the parameterized problem P ⊆
Σ∗×N is the language P̃ := {x♦1k | (x, k) ∈ P}, where ♦ /∈ Σ, and 1k is a unary
encoding of k with 1 being an arbitrary symbol of Σ.
It is important that in the unparameterized version of the problem the parameter
forms a lower bound for the input size, as it is encoded in unary. For most graph
problems this is the case anyway, thus taking the unparameterized version makes
no difference.

The main theorem of the framework states:

Theorem 5.8 (Bodlaender, Downey, Fellows, and Hermelin [BDFH09]; Fortnow
and Santhanam [FS08]). Let P be a compositional parameterized problem whose
unparameterized version P̃ is NP-complete2. Then, if P has a polynomial kernel
then NP⊆coNP/poly. this would imply a collapse of the polynomial hierarchy to
the third level.

To use the framework, it is necessary to show the composionality of the prob-
lem considered. For many graphs problems this is easy, the composition algorithm
can simply return the disjoint union of the input graphs and leave k′ := k. This
works for example for k-Path, where one asks, whether a given graph G contains
a path of a given length k ∈ N, parameterized by k. But there are also prob-
lems for which the compositional algorithm is fairly complicated (cf. [DLS09]),
sometimes surprisingly also using the positive results known for the problem.

It is also possible to transfer the result obtained on one problem to another
problem for which we were unable to design compositional algorithm directly.
For that purpose the following transformation is used:

2As we mostly deal with NP-hard problems, this requirement is fulfilled as long as the
parameter can be upper-bounded by some polynomial of the input size.

CHAPTER 5. KERNELIZATION POINT-OF-VIEW 23

Definition 5.9 (Bodlaender, Thomassé, and Yeo [BTY08]). Let P ⊆ Σ∗×N and
Q ⊆ Σ∗×N be parameterized problems. We say that P is polynomial parameter
reducible to Q, written P ≤Ptp Q, if there exists a polynomial time computable
function f : Σ∗×N→ Σ∗×N and a polynomial p, such that for all (x, k) ∈ Σ∗×N

• (x, k) ∈ P if and only (x′, k′) := f(x, k) ∈ Q and

• k′ ≤ p(k).

The function f is called polynomial parameter transformation.

Proposition 5.10 (Bodlaender, Thomassé, and Yeo [BTY08]). Let P and Q be
the parameterized problems and P̃ and Q̃ be the unparameterized versions of P
and Q respectively. Suppose that P̃ is NP-complete and Q̃ is in NP. If there is
a polynomial parameter transformation from P to Q, then if Q has a polynomial
kernel then P also has a polynomial kernel.

We believe that the usage of this proposition does not need any example, but
we mention that such a reduction exists showing that k-Leaf Out-Branching
has no polynomial kernel [FFL+09]. In k-Leaf Out-Branching we are given a
directed graph and k ∈ N and the question is whether the directed graph contains
a subgraph in which every vertex except for one has in-degree exactly 1 and k
vertices has out-degree 0. Another complicated transformation can be found in
Dom et al. [DLS09], where it is shown that for certain problems, the suitably
colored version of the problem has a kernel if and only if the uncolored version
does.

Recently Dell and van Melkebeek [DvM10] proved by a method to some ex-
tent similar to the above framework, that the O(kd log k)-kernel for d-Hitting
Set mentioned in Section 5.2 is presumably optimal up to a logarithmic fac-
tors. Namely they have shown, that there is no kernel of size O(kd−ε) for any
ε > 0, unless NP⊆coNP/poly. Furthermore they have shown that there are
no O(k2−ε)-kernels for a class of graph deletion problems, where the task is to
delete at most k vertices from a given graph to obtain a graph that fulfill some
fixed subgraph-hereditary graph property. Feedback Vertex Set, Bounded-
Degree Deletion or Planar Deletion are examples of such a problems
(Here the task is to delete at most k vertices to obtain a forest, a graph with
bounded-degree, and a planar graph, respectively). We believe that this approach
will provide many further tight kernel lower bounds in the future.

5.5 Notion of Kernelization Relaxed

As the number of problems unlikely to have polynomial kernels grows, several
approaches to relax the notion of kernelization were made. The easiest way to do
this is to desist from the somewhat artificial requirement, that the result of the
procedure must be an instance of the same problem. More formally:

CHAPTER 5. KERNELIZATION POINT-OF-VIEW 24

Definition 5.11. A bikernelization from a parameterized problem P to a pa-
rameterized problem Q is a polynomial time evaluable function A that on the
input (x, k) ∈ Σ∗ × N produces an instance (x′, k′) := A((x, k)) ∈ Σ∗ × N such
that

• (x′, k′) is in Q if and only if (x, k) is in P , and

• there is a function g : N→ N such that |x′| ≤ g(k) and k′ ≤ g(k).

The instance (x′, k′) is called a problem bikernel and the function g is called a
size of the bikernel.

Note that, similarly to Theorem 5.5, existence of a bikernel from P to a
decidable problem implies that P is FPT. Moreover, if P and Q are NP-complete
and the parameters are upper bounded by the size of the input, then P has a
polynomial kernel if and only if there is a polynomial bikernel from P to Q.
Hence, this notion does not bring too much new.

In fact, the notion of bikernelization is very close to the so-called annotated
kernels. An annotation is additional information added to handle partially solved
instances during the run of an algorithm. An instance of the original problem
can be viewed as a special instance of the annotated problem. On the other
hand, although no polynomial kernel is known for the original problem, there can
be a polynomial kernel for the annotated problem (sometimes called annotated
kernel), as in this case some information can be stored in the annotation.

A well known example is the case of Dominating Set in Planar Graphs
where we are given a planar graph and k ∈ N and the question whether there is
a set of at most k vertices, such that each vertex not in this set has a neighbor in
it (is dominated). Here the annotation divides vertices into two groups — those
that are already dominated by vertices taken into a solution and removed from
the graph — these vertices are left in the graph as they can still dominate some
of the other vertices — those not dominated yet, which form the other group.
This way we can obtain a linear kernel for (Annotated) Dominating Set in
Planar Graphs [DF98]

Another approach is based on the observation that for practice it is still de-
sirable to produce polynomially many (in terms of the input size) polynomial (in
terms of the parameter) kernels. Such a reduction is often called Turing kernel-
ization. Fernau et al. [FFL+09] showed that there is a cubic kernel for Rooted
k-Leaf Out-Branching a variant of k-Leaf Out-Branching, where the
root of the sought out-branching is given. Hence k-Leaf Out-Branching can
be transformed into n Turing kernels, each of size O(k3), although it was shown
unlikely to have a standard polynomial kernel.

There is an active research in the area. The already mentioned results of Dell
and van Melkebeek [DvM10] show that the existence of a Turing kernelization
asking n1−ε queries each of size polynomial in k, for some ε > 0 would imply the
collapse of the polynomial-time hierarchy.

CHAPTER 5. KERNELIZATION POINT-OF-VIEW 25

5.6 Similar approach - Win/Win

After applying the reduction rules, kernelization basically branches into two cases
according to the size of the reduced input: If the reduced input is too large than
the answer is trivial. If it is small, then the running time of an algorithm we
have will be hopefully affordable. It is not necessary to lower exactly the input
size. The only requirement is that the low value of the decisive measure provides
us with a (known) reasonable algorithm. This approach is sometimes called
Win/Win that is we “win” if the measure is high and also if it is low. The
measure used is mostly some graph width.

We give an easy illustrative example for Max Leaf, where given a graph and
k ∈ N we search for a spanning tree of the graph with at least k leaves, k being
the standard parameter. We start by doing (arbitrarily) a bread-first search from
some vertex. If the tree obtained has at least k leaves, we won. Otherwise each
layer contains at most k − 1 vertices. Note that the edges only appear inside
layers and between two consecutive layers. Hence we can easily obtain a path-
decomposition of width 2k − 2, forming a bag from each two consecutive layers.
As Max Leaf is FPT with respect to the pathwidth (by a dynamic programming
on the path decomposition [Bod93], see Section 6.2 for such algorithms), we win
in this case also.

Chapter 6

Further Algorithmic Methods

In this chapter we present the most important methods that are used to show
fixed-parameter tractability.

6.1 Bounded Search Trees

If there is a method, that is similarly important in showing fixed-parameter
tractability with respect to the solution size (or its dual) as kernelization, it
is definitely the method of Bounded Search Trees. Or, if you want, you can call
it Branching or Recursive algorithms. As there is not so much theory related to
this method, we cut its presentation in space.

The basic idea is very simple: Identify a set of objects, one of which must
be in the solution and try all possibilities to add one of them to a solution set.
Continue recursively searching for a one-smaller solution on each of the partially
solved instances. This gives a search tree of the recursive calls. This works for
the primal parameterization, if the dual parameterization is used, we talk about
objects that will not be a part of the solution

The important thing making this a special case of brute-force algorithms is
that the size of the search tree can be bounded in terms of the parameter. As the
depth of the tree is usually bounded by the solution size, it remains to bound the
number of solution possibilities in each call of the procedure. The set of objects is
usually constant size, but sizes bounded by the parameter are good as well. The
number of leaves of the search tree is then bounded by the k-th power of the size
of the set, while the number of internal vertices in the tree is upper-bounded by
the number of leaves. The time needed inside one recursive call (corresponding
to one node of the tree) is usually polynomial.

More involved algorithms usually add more than one object at once into the
solution (at least in some branches) doing the analysis of the size of the tree
more complicated. Also several different branching rules for different situation
usually form the whole algorithm. As the branching algorithms are widely used

26

CHAPTER 6. FURTHER ALGORITHMIC METHODS 27

in the area of moderately exponential exact algorithms for hard problems, the
ways to compute (an upper bound for) the running time can be found in any
standard textbook on algorithms (see for example [KT05]). For most of the
complicated branching algorithms it is hard to come with lower bound matching
(or approaching) the upper bounds and thus the actual time complexity is rather
unknown, which makes it harder to compare different branching algorithms.

The easiest example is the folklore O(2k ·n)-algorithm for Vertex Cover. It
is directly suggested by the definition of the problem — as each edge has to have
at least one endpoint in the cover, we try both possibilities, delete the appropriate
vertex from the graph (together with the incident edges), and continue recursively
on the rest, searching for a cover of size at least by one smaller. Obviously there
is no cover of size 0 for a graph with at least one edge, while for an edgeless graph
the empty set is a cover of size 0. It is immediate that such a search tree has
at most 2k leaves and, thus, O(2k) nodes, the time needed to process each node
being proportional to the number of vertices.

The algorithm can be improved by employing the idea that either a vertex is
a part of the cover, or all its neighbors are. In this case, the bigger the degree
of the vertex, the larger the progress we make (in one of the branches). Hence
it is preferable to process the vertices of the highest degrees first. Once there
is no vertex of degree at least 3 anymore, the minimum vertex cover for the
graph can be found in linear time. Hence whenever we branch, one branch has
the parameter reduced by at least 3, while the other by one. The resulting tree
has O(1.4656k) nodes, the time spent in each node is still linear, yielding an
O(1.4656k · n)-algorithm. This can be further improved to O(1.4656k · k2 + k · n)
by first using the Buss’ Kernelization. Also note that 1.4656k · k2 is O(1.4657k)
and therefore we can omit the factor polynomial in k as the base of the exponent
was already rounded up.

Further example is d-Hitting Set, which also admits a natural search tree
algorithm. Here for d ∈ N fixed constant and k ∈ N parameter we are given
a family of sets, each with at most d elements and we should find at most k
elements that hit every of the given sets. That is, the solution must contain at
least one element out of each set. There is nothing easier than to take one set
and try each element as the one that hits this set. Delete all sets hit by this
element, decrease the parameter and continue recursively. We arrive at an O(dk)
search tree for the problem.

Observe that a solution containing more elements of the set is considered
in several branches of algorithm — in each branch that corresponds to some
of the elements finally taken into the solution. We can actually partially avoid
this inefficiency. To this end, we need the following reduction rule: Whenever
an element u is contained in each set, where v is contained, delete v from all
sets (without changing the value of the parameter), as it is never worse to take
u whenever v should be taken. Now we force our algorithm to only consider
the solutions containing the first element of the set (in some order) in the first

CHAPTER 6. FURTHER ALGORITHMIC METHODS 28

branch and delete it (as unusable) in all other branches. For each of the elements
u different from the first one, there is always a set that contains the first element
but not the element u. This set is not hit by the element u and has at most d−1
elements as the first element was deleted from it. Therefore it allows for better
branching in the recursive call. This approach suggested in [NR03] brings the
base of the exponent down to

α(d) =
d− 1

2

(
1 +

√
1 +

4

(d− 1)2

)
,

which is a significant improvement at least for small values of d. For example
α(3) roughly equals to 2.41.

It is important to note, that in the above example, the rule has to be applied
at the beginning of each recursive call, as otherwise the condition can be violated
during the execution. This increases the polynomial time needed in each node.
On the other hand, this is greatly balanced by the improvement of the exponential
factor. Furthermore this time can be decreased using the kernelization from
Section 5.1. Usually (as in this case) the reduction rules are also used in between
the branchings, which is sometimes called interleaving (of the kernelization and
the search tree). This usually improves the performance both practically and
theoretically. Quite typically an fpt-algorithm is formed by a set of rules, some of
them being reduction rules (hopefully yielding a kernelization) and some of them
being branching rules.

6.2 Dynamic Programming and Algorithmic Meta-

Theorems

Dynamic programming is definitely the most successful technique for problems
parameterized by something else than the solution-size or its dual. It is based on
finding the solutions for the subproblems of the original problem, storing them
in a table and then combining the solution for smaller subproblems to obtain a
solution for larger subproblems.

Although the success of the method is very much connected with the success
of the treewidth and other structural measures, we prefer to start by an exam-
ple for Steiner Tree parameterized by the number of terminals to be con-
nected.The algorithm we present is a modification of the famous Dreyfus-Wagner
Algorithm [DW72] as presented in [DYW+07].

In Steiner Tree we are given a graph G = (V,E) with integral weights on
edges w : E → N, a set of terminals T ⊆ V and integers p ∈ N. The question is
whether there is a tree of cost at most p containing all the terminals.

We use two tables S and D: For any X ⊆ T and r ∈ V the table entry
S(r,X) will store the smallest weight of a tree that contains vertices of X ∪ {r}

CHAPTER 6. FURTHER ALGORITHMIC METHODS 29

(for a better imagination it can be viewed as rooted in r) and the table D(r,X)
will store an auxiliary number that in most cases equals the weight of a smallest
tree (rooted in r) that contains vertices of X ∪ {r} in which either r has degree
at least two or r ∈ X. As the answer is trivial for |T | ≤ 1, we assume |T | ≥ 2.

The algorithm proceeds through all sets ∅ 6= X ⊆ T from the smaller to the
larger ones and for each of them does the following two things: First, if X is
a singleton then we set D(r,X) := S(r,X) := 0 for {r} = X and D(r,X) :=
S(r,X) :=∞ for each r ∈ V \X. Otherwise, for every r ∈ V , we set

D(r,X) := min
∅6=Y (X

(S(r, Y) + S(r,X \ Y)). (6.1)

Second, we obtain the values of S(r,X) for every r ∈ V as

S(r,X) := min
v∈V

(D(v,X) + distG(r, v)), (6.2)

where distG(r, v) is the length of the shortest path between r and v in G. This is
done by running Dijkstra’s Algorithm [Dij59] on S(r,X) initializing S(r,X) :=
D(r,X) for every r ∈ V . The result of the whole algorithm is obtained as
S(r, T \ {r}) for an arbitrary r ∈ T .

The overall correctness of the algorithm follows from the claim, that the al-
gorithm correctly computes S(r,X) for every r ∈ V and ∅ 6= X ⊆ T . This is
easily seen if X = {x} as in this case Dijkstra’s Algorithm in fact computes the
shortest path from r to x. We further proceed by the induction on the size of the
set X.

Next we show that whenever the algorithm assigns a value t to a cell S(r,X) or
D(r,X) of the tables, there is a connected subgraph of weight at most t containing
the vertices X∪{r} justifying that. If the value of D(X, r) is set according to the
equation 6.1 then we obtain such a graph as the union of the graphs for S(r, Y)
and S(r,X \ Y). Similarly if the recurrence 6.2 is used, the graph is obtained as
the union of the shortest path from r to v with the graph for D(v,X).

Finally suppose that |X| ≥ 2, the claim holds for every nonempty proper
subset of X and there is a tree T ′ containing X ∪ {r} of weights smaller than
S(r,X). Denote by v the vertex closest to r in T ′ that is either in X or of degree
at least tree in T ′ and Pv the (possibly trivial) path between r and v.

If v ∈ X then T ′ \ (V (Pv) \ v) forms a tree for {v} ∪ (X \ {v}) and hence is
lower bounded by S(v, (X \ {v}), due to our assumptions, as ∅ 6= (X \ {v}) (X.
Thus w(T ′) ≥ S(v, (X \ {v}) + w(Pv) = S(v, (X \ {v}) + S(v, {v}) + w(Pv) ≥
D(v,X) + distG(r, v) ≥ S(v,X) — a contradiction.

Otherwise T ′ \ V (Pv) has more components. Then denote Y the subset of
X contained in the first component. The subtree of T ′ induced by the first
component together with v is a tree for Y ∪ {v} and therefore is lower bounded
by S(v, Y) due to our assumptions, as ∅ 6= Y (X. Similarly, removing the
first component and Pv \ v we obtain a tree for (X \ Y) ∪ {v} lower bounded by

CHAPTER 6. FURTHER ALGORITHMIC METHODS 30

s(v,X \Y). Thus w(T ′) ≥ s(v, Y)+s(v,X \Y)+w(Pv) ≥ D(v,X)+distG(r, v) ≥
S(r,X), contradicting our assumptions.

As to the time complexity, the equation 6.1 yields two table lookups for each
combination of ∅ (Y (X ⊂ T and each r ∈ V , hence the total time needed to
evaluate the recurrence 6.1 can be bounded by O(3|T | ·n). Further, in each of the
2|T | iterations of the cycle we execute once Dijkstra’s Algorithm, which can be
implemented to run in time O(n log n + m) [FT87]. Hence the whole algorithm
runs in time O(3|T | · n+ 2|T |(n log n+m)).

As we have said, dynamic programming is, among parameterized algorithmics,
mostly used in connection with the treewidth. To this end, usually the following
modified decomposition is used:

Definition 6.1. A tree decomposition (T, σ) of a graph G = (V,E) is called nice
if it has a distinguished root and each node x is either a leaf or

• it has exactly one child y and there is a vertex v ∈ V such that Vx = Vy∪{v}
(such a node is called introduce node), or

• it has exactly one child y and there is a vertex v ∈ Vy such that Vx = Vy\{v}
(forget node), or

• it has exactly two children y and z such that Vx = Vy = Vz (join node).

We use Gx to denote a subgraph of G induced by the vertices of Vx and all vertices
that appear in the bags of the subtree of T rooted in x.

Due to the following observation we can always assume that the decomposition
we are given is a nice decomposition with O(k · n) nodes.

Observation 6.2. Given a tree decomposition (T, σ) of width k with O(n) nodes,
we can modify it to a nice tree decomposition with O(k ·n) nodes in O(k ·n) time.

We demonstrate the use of dynamic programming on a problem parameterized
by the treewidth on Independent Set. In Independent Set we are given a
graph and search for a maximum size independent set. A subset of vertices is
called independent if no two of the vertices are connected by an edge. We also
assume that the tree decomposition of width tw(G) is given on the input.

We associate with each node x a table Ax indexed by all subset of Vx. The
number stored in the table on index S will represent the maximum independent
set I in Gx that intersect Vx exactly in S or −∞ if S itself is not an independent
set.

We fill the tables from leaves of the decomposition to the root assuming that
by the time we process a node, all its children were already processed (this is
usually called bottom-up fashion). For the leaves we set Ax(S) := |S| if S is an
independent set and Ax(S) := −∞ otherwise. If x is an introduce node with child

CHAPTER 6. FURTHER ALGORITHMIC METHODS 31

y, where the vertex v is introduced, we set again Ax(S) := −∞ if S is not an
independent set. Otherwise if v is contained in S, we set Ax(S) := Ay(S\{v})+1
and for v /∈ S we let Ax(S) := Ay(S). Similarly for a forget node forgetting vertex
v and S an independent set we set Ax(S) := max{Ay(S), Ay(S ∪ {v})}. Finally,
let x be a join node with children y and z and S ⊆ Vx. If either Ay(S) = −∞
or Az(S) = −∞ then set Ax(S) := −∞. Otherwise we let Ax(S) := Ay(S) +
Az(S)− |S|. The size of the maximum independent set in the graph is then the
maximum number stored in the table of the root.

The algorithm obviously runs in time O(2k · (k2 + k · n)) as there are at
most 2k+1 subsets of each Vx. The correctness follows from that the algorithm
correctly fills all the tables. This is obvious for the leaves. Now we prove that
for the other nodes under the assumption that it was already proven for all
their children. For a forget node the independent set in Gx intersecting Vx in S
intersects Vy in S \ {v} and, hence, the correctness of the table directly follows
from the correctness of the tables of the children. Similarly for the introduce
node, the maximum independent set in Gx either contains v or not.

For the join node, assume that there is an independent set I in Gx intersecting
Vx in S such that |I| > Ax(S). Then I ∩ V (Gy) is an independent set in Gy

intersecting Vy in S and thus |I∩V (Gy)| ≤ Ay(S). Similarly |I∩V (Gz)| ≤ Az(S)
and hence |I| ≤ Ay(S) + Az(S) − |S| = Ax(S) –a contradiction. To finish the
proof, note that if Iy is an independent set in Gy and Iz is an independent set
in Gz both intersecting Vx = Vy = Vz in S, then Iy ∪ Iz is an independent set in
Gx as there are no edges between Gy \ Vx and Gy \ Vx (vertices of an edge are
contained in one bag and, hence, can appear in only one subtree rooted at x).

There are many results similar to the example we gave. In fact, for any prob-
lem, that is expressible in the so-called Monadic Second-Order Logic (MSOL), a
similar algorithm exists.

The Monadic Second Order Logic (MSOL) over graphs uses the union of the
vertex set and the edge set as its domain and there are two unary predicates
— V (x) and E(x) to distinguish, whether the object x is a vertex or an edge,
respectively — and one binary I(v, e), which is true, if and only if v is a vertex
and e an edge incident to it. The quantification can be done over objects and
sets of objects (unary predicates), but not over relations of higher arity.

Often this variant is called MSO2 as there is another variant MSO1, where the
domain is only formed by the vertex set and only one binary relation adj(u, v) is
available, coding the adjacency of the vertices. This variant is less powerful, as
it is unable to quantify over sets of edges.

The following result justifies the importance of the concept of tree decompo-
sitions:

Theorem 6.3 (Courcelle [Cou92]). Given an MSO2 formula ϕ, there is an al-
gorithm that, given a graph G together with its tree-decomposition of width w,
decides whether G |= ϕ, that is whether G is a model for ϕ, in time O(f(ϕ,w)·n),

CHAPTER 6. FURTHER ALGORITHMIC METHODS 32

where the function f is independent of G (it only depends on w and ϕ) and n is
the number of vertices of the graph G.

The function f involved in the theorem is so huge, that it makes the theorem
mainly of theoretical interest. One-purpose dynamic programming algorithms as
the one for Independent Set are to be used in praxis. The result can be also
strengthened in the sense, that in same linear time we can actually also find the
maximum of some linear objective function on the cardinalities of the involved
set variables. Recall that the tree-decomposition of the graph can be obtained in
linear time due to the result of Bodlaender [Bod96].

6.3 Color Coding

It is no surprise that it is often easier to search only for solutions of a certain
type. The color coding technique does that by first coloring the vertices of the
graph (adjacent vertices can receive the same color) and searching for a rainbow
solution, that is, a solution in which no two vertices are of the same color. As we
no longer search for a solution of certain size, but rather for a solution using once
each of the colors, dynamic programming can be usually used for the search. Of
course we do not always have to color vertices, there are many other parts of the
instances to be colored, such as edges.

The following clever way of coloring ensures that each possible solution is
colored in a rainbow manner at least in one of the colorings tried.

Definition 6.4. Let k, n ∈ N. We say that H is a k-perfect family of hash
functions from {1, 2, . . . , n} to {1, 2, . . . , k} if for every S ⊆ {1, 2, . . . , n} of size
k there is an h ∈ H such that h|S is a bijection between S and {1, 2, . . . , k}.

Lemma 6.5 (Naor; Alon, Yuster, and Zwick [AYZ95]). There is a k-perfect
family of hash functions from {1, 2, . . . , n} to {1, 2, . . . , k} of size |H| = 2O(k)·log n
that can be constructed in time 2O(k) · n · log n.

To illustrate the technique we present the algorithm for k-Path as stated in
the original paper of Alon, Yuster, and Zwick [AYZ95]. Recall that in k-Path
we search for a path of given length k (parameter) in a given graph. We start by
constructing the hash functions as guaranteed by the previous lemma. For each
h of the functions constructed we assign to each vertex v ∈ V the color h(v) in
{1, . . . k} and search for a path formed by one vertex of each color.

This is done by a dynamic programming. With each vertex v ∈ V we associate
a table Sv(A) indexed by all non-empty subsets A of the color set {1, . . . k}.
The value on position Sv(A) determines whether there is a path in G having an
endpoint in v an using one vertex of each color in A. The table is initialized by
setting Sv({h(v)}) := true and Sv(A) = false for every other singleton set A.
Then the sets A are processed from smaller to larger, and Sv(A) is set to true if

CHAPTER 6. FURTHER ALGORITHMIC METHODS 33

and only if h(v) is in A and there is a neighbor u of v with Su(A\{h(v)}) = true.
There is a rainbow path if and only if Sv({1, . . . , k}) is true for some v ∈ V .

It is not hard to see that the dynamic programming works correctly and
runs in time O(2k · k · |E|), we omit the proof here. The k-perfectness of the
hash family ensures that if a path of length k exists, then it becomes a rainbow
path by at least one function in the family and, hence, is found by the dynamic
programming. Therefore the whole algorithm runs in time O(2O(k) ·m · log n).

The idea used in the example can be generalized to any class of graphs with
low treewidth as follows:

Theorem 6.6 (Alon, Yuster, and Zwick [AYZ95]). Let H be a directed or undi-
rected graph on k vertices with treewidth t. Let G = (V,E) be a (directed or
undirected) graph. A subgraph of G isomorphic to H, if one exists, can be found
in time 2O(k)|V |t+1 log |V |.

6.4 Iterative Compression

Iterative Compression is a method used almost exclusively for vertex deletion
problems parameterized by the size of the solution, where the task is to delete
some vertices from the graph to achieve some property. It iteratively produces
a solution for subproblems that is already one vertex bigger than the solution
we search for. Then it compresses the solution to hit the bound. If this is not
possible then there is no solution for the whole instance. Otherwise some more
vertices are considered in the subproblem so that the solution is again too big
and the next iteration is executed.

Our example is for Odd Cycle Transversal, where we aim to delete at
most k (parameter) vertices from a given graph G in order to make it bipartite.
The algorithm was first proposed by Reed et al. [RSV04] and the simplified version
we present appeared in [LSS09].

The main part of an algorithm based on iterative compression is the so-called
compression step. Here, given a solution of size k + 1 we are trying to find a
solution of size at most k or to show that no such solution exists. Before presenting
it, let us show how to solve the whole problem once we have an algorithm A for
the compression step.

Assume V (G) = {v1, . . . vn} and for i ∈ {k + 2, . . . n − 1} denote by Gi the
graph G[{v1, . . . , vi}]. First observe that for the graph Gk+2 any set of size k
constitutes a solution. Let us denote one of them Sk+2. Now for i ∈ {k +
2, . . . n − 1} assume we have a solution Si of size at most k for Gi and we want
to find one of size at most k for Gi+1. The set S ′i+1 := Si ∪ {vi+1} is a solution
for Gi+1 of size at most k + 1. If it is of size at most k we denote Si+1 := S ′i+1.
Otherwise we use the compression step to obtain a solution Si+1 of size at most
k for Gi+1 being given the solution S ′i+1 of size k+ 1. If there is no such solution
for Gi+1 then obviously there is no solution of size k also for the whole graph G.

CHAPTER 6. FURTHER ALGORITHMIC METHODS 34

At the end we either obtain a size-k solution Sn for Gn = G or we know that
there is no solution of size at most k.

It remains to solve the compression step. Assume that we are given a solution
S ′ of size k + 1 for a graph G and we search for solution S of size k. We start
be trying all possible partitions of S ′ into T ∪ L ∪R. The vertices in T will be a
part of the new solution, while the vertices of L and R will be on the left and the
right side of the bipartition provided by the new solution, respectively (they will
definitely not be a part of the solution). If there is an edge inside G[L] or G[R]
then there is no chance to find a solution corresponding to this partition and we
continue with a further partition. Otherwise we make use of the following fact:

Fact 6.7. If H = (V1 ∪ V2, E) is a bipartite graph with the partitions V1 and V2
then

• any trail from Vi to Vi has even length (i = 1, 2) and

• any trail from V1 to V2 has odd length.

The graph G \ S ′ is bipartite. Let us call the partitions A and B, and denote
AL, BL the neighbors of the set L in A and B, respectively. Similarly AR and BR

denote the neighbors of R. We further need the following lemma:

Lemma 6.8. If X is a subset of V \ S ′ such that G \ (T ∪X) is bipartite with
partitions VL and VR such that L ⊆ VL and R ⊆ VR, then in G\(S ′∪X) there are
no paths between AL and BL, AR and BR, AL and AR, and between BL and BR.

Proof. Assume there is a path between AL and BL, then Fact 6.7 implies it has
an odd length as it goes from one partition of G\S ′ to the another. Hence it can
be prolonged to an odd trail from L to L in G \ (T ∪X) which is a contradiction
with G \ (T ∪X) being bipartite. Similarly for the other combinations.

Lemma 6.9. If X is a subset of V \ S ′ such that in G \ (S ′ ∪ X) there are no
paths between AL and BL, AR and BR, AL and AR, and between BL and BR, then
G \ (T ∪X) is bipartite with partitions VL and VR such that L ⊆ VL and R ⊆ VR.

Proof. First note that in this case each path from L to L with internal vertices
from V \ (S ′ ∪ X) is even. The same holds for such a path from R to R, while
any such path from R to L is odd. Thus if G \ (T ∪ X) is bipartite then the
partitions VL and VR can be taken such that L ⊆ VL and R ⊆ VR.

Suppose that there is a cycle C in G\(T∪X). If C∩(L∪R) 6= ∅ then C is even,
as the graph G\S ′ is bipartite. Otherwise denote v1, . . . , vt vertices of C∩(L∪R)
in order as they appear on the cycle, and for simplicity set v0 := vt. The length
of the cycle can be counted as |E(C)| =

∑t−1
i=0 dC(vi, vi+1), where dC(vi, vi+1) is

the distance between vi and vi+1 taken along the cycle C. It remains to observe
that the number of indices i with vi ∈ L and vi+1 ∈ R equals the number of i’s
with vi ∈ R and vi+1 ∈ L and hence C is again even.

CHAPTER 6. FURTHER ALGORITHMIC METHODS 35

Due to the above lemma, to finish the compression step it is enough to find
X of size at most k − |T | such that in G \ (S ′ ∪X) there are no paths between
the mentioned pairs of sets. But this is equal to finding a cut of size k − |T |
in G \ S ′ between AL ∪ BR and AR ∪ BL. This can be done in time O(k · m)
using standard flow techniques [FF56]. As this is done at most 3k+1 times in
the compression step and the compression step is executed at most n times, we
obtain an O(3k · k · n ·m) running-time for the whole algorithm.

Iterative compression was several times the break-through tool on problems
resisting the research attacks for a long time before. A survey of known results
based on iterative compression can be found in [GMN09].

6.5 Greedy Localization

Similarly to the previous technique, greedy localization uses some solution that is
not good enough as a starting point for the search for the desired one. In contrast
to the previous method, this time we use an inclusion maximal solution that is
found greedily.

The idea is best illustrated on Packing 3-Sets where we are given a system
C of three-element subsets of a finite set S and an integer k ∈ N. The task is to
find a subsystem C ′ of at least k mutually disjoint sets. The result is due to Jia
et al. [JZC04] and actually uses the idea twice.

The algorithm first greedily locates an inclusion maximal subsystem C ′0 of
system C formed by pairwise disjoint sets. We assume |C ′0| < k as otherwise we
are done. Each set in an optimal solution must contain at least one element of⋃
C ′0 as C ′0 is maximal. Hence an optimal solution fits into one of the following

patterns:

C∗ = {{a1, ∗, ∗}, {a2, ∗, ∗}, . . . , {ak, ∗, ∗}}, where ai ∈
⋃
C ′0 are distinct.

Our algorithm will try all such patterns. Now assume that we have a pattern
P with some positions filled and some still carrying a wild-card symbol ∗. We
greedily try to fill the pattern into a pattern P ′. That is we take the incomplete
sets in the pattern one by one and look for a 3-set of C that contains the elements
prescribed by the pattern and the other elements in it are not used anywhere else
in the partially filled pattern — that is they are nor in the prescribed pattern P
neither they have been already used to fill other set in P ′.

If we succeed to fill the whole pattern, we have a solution. Otherwise consider
the set S which we were unable to fill. If every its completion contains elements
of some other part of P , that means the pattern P cannot be realized. Otherwise
to complete this set we have to use some elements already added to the other
sets in the pattern P ′. As an optimal solution fitting the pattern (if it exists)
must add one of these elements into S we try all the possibilities to do so. The

CHAPTER 6. FURTHER ALGORITHMIC METHODS 36

element is added permanently to P and the algorithm recourses on it. This way
a solution must be revealed if one exists.

As to the running time of the algorithm, the first greedy search runs in time
O(|C|). As |C ′0| < 3k there are at most

(
3k
k

)
“initial patterns”. We are trying

to fill each of them by the recursive algorithm, that first runs a greedy search
in O(|C| ·k) time and then possibly runs some recursive calls, each corresponding
to an element added to some set. Hence there are less than 2k of such calls, and
for each of them the pattern is filled by one more element. Hence at latest on
level 2k of the recursion it is completely full and it either constitutes a solution
or some of its sets is not in C and the pattern can be discarded. Thus the overall
running time of the algorithm is O((3k)k · (2k)2k · |C|).

6.6 Using the Theory of Minors, Bidimension-

ality

The theory of minors, developed mainly by Robertson and Seymour in their
famous Graph Minors series (started by [RS83]), is nowadays one of the most
important parts of the whole graph theory. It is no surprise, that it can be also
used in parameterized algorithmics. For the basic definitions related to the minor
theory refer to Section 2.2.

The following two essential results of Robertson and Seymour are of special
interest also for parameterized algorithmics:

Theorem 6.10 (Robertson and Seymour [RS04]). Any class of graphs has finitely
many minimal elements with respect to the minor relation. In particular, if C is a
minor closed class of graphs, then there is a finite set F(C) of obstructions such
that G ∈ C if and only if there is no H ∈ F(C) such that H is a minor of G.

Theorem 6.11 (Robertson and Seymour [RS95]; shorter proof published recently
in [KW10]). There is an algorithm that decides whether H is a minor of G in
time O(f(H) · |V (G)|3), for some function f .

Putting Theorems 6.10 and 6.11 together we obtain the following corollary:

Corollary 6.12. Any minor closed graph class C can be recognized in a cubic
time.

Proof. Due to Theorem 6.10, graphG is in C if and only if there is no minorH ofG

in F(C). By Theorem 6.11, this can be tested in timeO
((∑

H∈F(C) f(H)
)
· |V (G)|3

)
.

It remains to note that
∑

H∈F(C) f(H) is a finite constant since F(C) is finite.

It is very easy to use Corollary 6.12 in parameterized complexity. It is enough
to show that a set of yes-instances with a particular value of the parameter is

CHAPTER 6. FURTHER ALGORITHMIC METHODS 37

minor closed. The usage in parameterized complexity is very easy, it is only
necessary to show that the class of problem instance with bounded parameter
value is minor closed.

Example 6.13. Class of graphs having a vertex cover of size at most k is minor
closed — hence it can be decided in O(f(k) ·n3)-time whether an n-vertex graph
G has a vertex cover of size at most k. To see the former it is enough to show
that if G has an k-vertex cover C then for every v ∈ V (G) and every e ∈ E(G)
the graphs G \ {v}, G \ e, and G · e have vertex cover of size at most k. For the
first two C \ {v} and C constitute such a cover, respectively. If e = {x, y} is an
edge of G, the vertex z to corresponds to the union of x and y in V (G · e) and
x ∈ C or y ∈ C then C \ {x, y} ∪ {z} is such a cover for third case. Otherwise
we can use simply C.

Remark 6.14. In Example 6.13 we have shown, that it can be decided in O(f(k) ·
n3)-time whether an n-vertex graph G has a vertex cover of size at most k, but we
have shown no algorithm for that. We only know that there is a cubic algorithm
for each fixed k, but the result gives no way to find the algorithm. Note that
our definition of the class FPT requires the existence of a single algorithm for
all values of the parameter. The class of problems for which there is a constant
c and for each fixed value of the parameter there is an O(nc)-algorithm is often
called non-uniform FPT.

The above result can be simply generalized to a whole class of graph problems:

Definition 6.15. Let C be a class of graphs. A graph G is in the class C ⊕ kv if
and only if there is a set S ⊆ V (G) of size at most k such that G \ S is in C.

Observation 6.16. If C is a minor closed class, then so is C ⊕ kv.

It is easy to see that edgeless graphs, forests and planar graphs form minor-
closed families of graphs. As a corollary of this fact together with the above
observation we get that not only Vertex Cover, but also Feedback Ver-
tex Set or Planar Deletion are in non-uniform FPT (Here the question is
whether it is possible to delete at most k vertices to obtain an edge-less graph, a
forest, and a planar graph, respectively).

The most powerful usage of the theory of minors is in the combination with
the graph width measures for the problems restricted to planar graphs, graphs
with bounded genus or graphs excluding a fixed graph as a minor [DFHT05]. We
present only the planar case. The other cases, although similar in the basic ideas,
are more complicated in details.

Theorem 6.17 (Robertson, Seymour, and Thomas [RST94]). Let l ≥ 1 be an
integer. Every planar graph of treewidth at least 6l− 4 contains an (l× l)-grid as
a minor.

CHAPTER 6. FURTHER ALGORITHMIC METHODS 38

If we forbid ourselves edge deletions and instead of each vertex deletion we
contract the vertex to be deleted with some of its neighbors, we arrive at the
following corollary.

Corollary 6.18. Let l ≥ 1 be an integer. Every connected planar graph of
treewidth at least 6l − 4 can be transformed into a partially triangulated (l × l)-
grid using only edge contractions.

Using the above theorem we can derive a fairly general result for problems that
are bidimensional. Intuitively, a parameterized graph problem is bidimensional if
it is closed under (at least some) minor operations and if the parameter for grids
grows linearly with the number of vertices of the grid. More formally:

Definition 6.19 (Demaine et al. [DFHT05]). A parameter P assigning an integer
to each graph is minor bidimensional with density δ if

(1) P (H) ≤ P (G) whenever a graph H is a minor of a graph G, and

(2) for the (l × l)-grid R, P (R) = (δl)2 + o(l2).

The parameter P is called contraction bidimensional with density δ if

(1) contracting an edge in a graph G cannot increase P (G),

(2) P (C) is at most P (G) whenever C is a connected component of G,

(3) for any partially triangulated (l × l)-grid R, P (R) ≥ (δl)2 + o(l2), and

(4) δ is the smallest real number for which this inequality holds.

The parameter P is called bidimensional if it is either minor or contraction bidi-
mensional.

It is usually very easy to prove that some parameter is bidimensional. We
have already shown that the vertex cover number satisfies the condition (1) for
the minor bidimensionality. If we notice, that an (l × l)-grid contains l disjoint
parallel paths each of length l and, thus, a matching of size l · bl/2c we arrive at
the following observation.

Observation 6.20. Vertex cover number vc(G) is minor bidimensional with den-
sity 1/

√
2.

Similarly one can see that the minimum size of a dominating set in a graph
ds(G) is closed under contractions of edges and taking connected components.
Furthermore, a partially triangulated (l× l)-grid contains (l− 2)2 inner vertices,
among which no vertex can dominate more than 9 (including itself). Hence ds(G)
is contraction bidimensional.

The following theorem is a simple corollary of Theorem 6.17.

CHAPTER 6. FURTHER ALGORITHMIC METHODS 39

Theorem 6.21 (Demaine et al. [DFHT05]). Let P be a bidimensional parameter.
Then for any planar graph G, tw(G) = O(

√
P (G)).

To use the above theorem we need to able to determine the treewidth of a
graph very quickly, the algorithm of Bodlaender [Bod96] is not fast enough for
our purpose. Fortunately, treewidth can be 3

2
approximated in planar graphs.

Theorem 6.22 (Seymour and Thomas [ST94]; Gu and Tamaki [GT05]). There
is an algorithm that given a planar graph G outputs in a cubic time a tree de-
composition of width w with the guarantee, that the treewidth tw(G) is at least
2w/3 (the algorithm actually computes an optimal so-called branch decomposition
of the graph G, from which such a tree decomposition can be derived).

The last important ingredient in a subexponential algorithm for computing a
bidimensional parameter is a fast algorithm for the computation of the param-
eter on graphs of bounded treewidth. We need an algorithm with running time
2O(tw(G)) · poly(n) or at least 2o(tw(G)2) · poly(n). Such an algorithm for the vertex
cover number can be derived from the algorithm for Independent Set in Sec-
tion 6.2 and for (Annotated) Dominating Set an algorithm can be devised
similarly.

Theorem 6.23 (Demaine et al. [DFHT05]). If P is a bidimensional parameter
and there is an 2O(tw(G)) · poly(|V (G)|)-time algorithm for its computation, then

it is possible to decide in time 2O(
√
k) · poly(|V (G)|) for a planar graph G whether

it has P (G) ≤ k.

Proof. We prove the theorem for a parameter P that is minor bidimensional,
the case of contraction bidimensionality is similar. We assume that P (R) =
(δl)2 + o(l2) for every (l × l)-grid R. Hence there is some l0 and 0 < δ0 ≤ δ such
that for every l ≥ l0 and every (l × l)-grid R we have P (R) ≥ (δ0l)

2.
We use the algorithm from Theorem 6.22 to obtain a tree-decomposition of

width w. Due to Theorems 6.22 and 6.17 we know that the graph contains a
grid of side at least (2w/3)/6 = w

9
. If 1

9
w ≥ l0 and (1

9
δ0 · w)2 > k then the

answer is no, as P is greater than k already on the w
9
× w

9
-grid contained in

G. Otherwise, we have a tree-decomposition of width at most max{9l0, 9δ−10

√
k}

and, hence, the problem can be solved in time 2O(max{9l0,9δ−1
0

√
k}) · poly(|V (G)|) =

2O(
√
k) · poly(|V (G)|).

The running times can be sometimes further improved, if the dynamic pro-
gramming itself is designed more carefully using the properties of planar graphs.
The results further generalize in a certain way to a classes of graphs of higher
genus and classes excluding some fixed graph as a minor. See [DFHT05] for
details of such generalizations.

Recent results [FLST10] also show that if the problem satisfies some further
conditions, then one can even obtain a polynomial kernel for it, by replacing large

CHAPTER 6. FURTHER ALGORITHMIC METHODS 40

parts of the graph with low treewidth and small boundary by equivalent smaller
parts.

Chapter 7

Intractability

As with the classical complexity, there is no way known to show unconditionally
the non-existence of an fpt-algorithm for a certain problem (such a result would
imply P 6=NP). Instead we use to show that the fixed-parameter tractability of
the problem considered would mean the same result for a wide class of other
problems. For that purpose we first need a notion of parameterized reduction.

7.1 Reductions, Classes

Definition 7.1. A parameterized reduction (fpt-reduction) from a parameterized
problem P to a parameterized problem Q is an algorithm that on an instance1

(x, k) ∈ Σ∗ × N of P produces in time f(k) · |x|O(1) an instance (x′, k′) ∈ Σ∗ × N
of Q such that

• (x, k) ∈ P if and only if (x′, k′) ∈ Q, and

• k′ ≤ g(k),

where the functions f and g depend only on k. A parameterized problem P is
fpt-reducible to a parameterized problem Q if there is a parameterized reduction
from P to Q.

Remark 7.2. We use the term reduction for both the classical polynomial time
many:one reductions and the parameterized ones. The meaning should be clear
from the context.

The essential property of parameterized reductions is that whenever P reduces
to Q (by an fpt-reduction) and Q is in FPT, then P is FPT as well. Note
that the second condition of Definition 7.1 is necessary for that purpose. It
also worth noticing, that kernelization (Definition 5.1) and polynomial parameter
transformation (Definition 5.9) are both special cases of parameterized reduction.

1We give the definition of the parameterized reduction only for the case when parameter is
a single integer, but in the sense of Remark 3.5 it generalizes also to all other cases.

41

CHAPTER 7. INTRACTABILITY 42

Unlike the classical complexity, in parameterized complexity the classes of
intractability are primarily determined by their canonical complete problem, not
by a model of computation. To this end, we first need the following classes of
Boolean formulae.

Definition 7.3. A Boolean formula ϕ is 1-normalized if it is in the form of a
conjunction of disjunctions of two literals (it is an instance of 2-SAT).
For t ∈ N, t > 1, we say that a formula ϕ is t-normalized if it is in the form of
a conjunction of disjunctions of conjunctions of.... of literals, where the conjunc-
tions and the disjunctions alternate t− 1 times (a formula in conjunctive normal
form is 2-normalized).
A formula is called monotone, if it contains no negations and antimonotone if
every literal in it is a negation of a variable.
A weight of a Boolean assignment a : {x1, . . . , xn} → {true, false} is the number
of variables set to true.

Fundamental problems of parameterized intractability are the following:

Weighted t-Normalized Satisfiability
Input: A t-normalized Boolean formula ϕ and k ∈ N .
Question: Is there a satisfying assignment for ϕ of weight exactly k?

Weighted Satisfiability
Input: A Boolean formula ϕ and k ∈ N .
Question: Is there a satisfying assignment for ϕ of weight exactly k?

Weighted Circuit Satisfiability
Input: A Boolean decision circuit C and k ∈ N .
Question: Is there a satisfying assignment for C of weight exactly k?

In all cases we use the weight of the sought solution k as a parameter. We will
further mention Weighted Monotone t-Normalized Satisfiability and
Weighted Antimonotone t-Normalized Satisfiability, the definitions
of these problems should be clear.

Now we are ready to introduce the basic classes of parameterized intractabil-
ity:

Definition 7.4. For every t ∈ N the class W[t] consists of all parameterized
problems that are fpt-reducible to Weighted t-Normalized Satisfiability.
The classes of parameterized problems reducible to Weighted Satisfiability
and Weighted Circuit Satisfiability are called W[Sat] and W[P], respec-
tively.
We say that a parameterized problem P is W[t]-hard if every problem in W[t] can
be FPT-reduced to P and W[t]-complete if it is W[t]-hard and in W[t]. Similarly
for W[Sat] and W[P].

Immediately from the definitions one can get the following hierarchy of the
parameterized complexity classes.

CHAPTER 7. INTRACTABILITY 43

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[t] ⊆ . . . ⊆ W[Sat] ⊆ W[P] ⊆ XP

The reduction of an FPT problem to Weighted 1-Normalized Satis-
fiability can be done by first solving the problem (by its fpt-algorithm) and
outputting a constant-size instance with the same answer. For the last inequality
it suffices to use a trivial algorithm for Weighted Circuit Satisfiability
that tries all weight k assignments and checks whether any of them is satisfying.

All of the above inequalities are supposed to be strict but so far we only know
that FPT (XP [DF98]. It is also interesting that it is not known, whether an
eventual collapse of two classes would propagate, either upwards or downwards.

As the W-classes serve to show that some problem is presumably not in FPT,
the following class can be used to show that some problem is not even in the class
XP.

Definition 7.5. A parameterized problem P ⊆ Σ∗ × Σ∗ is para-NP-complete if
there is a string k0 ∈ Σ∗ such that the k0-th slice of P , that is the set {(x, k0) |
(x, k0 ∈ P}, is NP-complete.

A classical example of a para-NP-complete problem is Graph Coloring
parameterized by the number of colors to be used, as it is known to be NP-
complete even for 3 colors [GJ79].

It is not hard to see, that if there is a para-NP-complete problem in XP, then
P=NP.

7.2 Monotone/Antimonotone Collapse

The following well known theorem gives an overview what happens if we require
all literals of the formula to be positive or all of them to be negative.

Theorem 7.6 (Downey, Fellows [DF95a, DF95b]; Monotone/Antimonotone Col-
lapse). Let t ∈ N. Then Weighted Monotone t-Normalized Satisfiabil-
ity is

• W[t]-complete if t is even,

• W[t− 1]-complete if t is odd and t > 1, and

• FPT for t = 1.

Conversely Weighted Antimonotone t-Normalized Satisfiability is

• W[t− 1]-complete if t is even, and

• W[t]-complete if t is odd.

CHAPTER 7. INTRACTABILITY 44

It can be easily seen that every instance of Weighted Antimonotone 1-
Normalized Satisfiability can be viewed as an instance of k-Independent
Set (or k-Clique equivalently) and vice versa and, hence, k-Clique is W[1]-
complete. It is only slightly harder to show, that Dominating Set (also with
standard parameterization) is W[2]-complete. Hence these two problems form a
graph problem basis for W[1] and W[2], the two complexity classes vast majority
of intractable natural problems fall in. There are also some quite natural problems
known to be W[t] for all t ∈ N, W[Sat] or W[P] complete, but the other classes
are mainly of theoretical interest.

To give a flavor of a parameterized reduction, we prove the theorem for
Weighted Antimonotone 1-Normalized Satisfiability, which implies
that Clique is W[1]-complete. Obviously it suffices to show the hardness.

Theorem 7.7 (Downey, Fellows [DF95b]). Weighted Antimonotone 1-Normalized
Satisfiability is W[1]-hard.

The proof is a modification of the original proof from [DF95b], where it was
stated in a much more general way.

Proof. We will reduce Weighted 1-Normalized Satisfiability, as expected.
Let (ϕ, k) be an instance of this problem with variables x1, . . . xn. We will con-
struct an equivalent instance ψ, k′ of Weighted Antimonotone 1-Normalized
Satisfiability. For simplicity we assume 2 ≤ k ≤ n.

The variables of ψ form k blocks Al = {al1, . . . , aln} for 1 ≤ l ≤ k and k − 1
blocks Bl = {bli,j | 1 ≤ i, j ≤ n} for 1 ≤ l ≤ k−1. We set k′ = 2k−1 as from each
of the blocks one variable is to be true. True variables in A blocks represent the
variables of ϕ set to true and the variables in B blocks represent gaps between
them. In particular, if ali is true, then the true variable in Bl must be bli,j for

some j. Conversely if bli,j is true, then in Al+1 the variable al+1
i+j must be true.

These restrictions are enforced by clauses as follows:

• There is at most one variable true in each block: for every 1 ≤ l ≤ k and
all 1 ≤ i, j, i′, j′ ≤ n add to ψ the clause (¬ali ∨¬ali′) if i 6= i′ and the clause
(¬bli,j ∨ ¬bli′,j′) if l ≤ k − 1 and (i, j) 6= (i′, j′).

• The variable selected in Al enforces the selection in Bl: for every 1 ≤ l ≤
k − 1 and every 1 ≤ i, i′, j ≤ n add the clause (¬ali ∨ ¬bli′,j) if i′ 6= i

• The variable selected in Bl enforces the selection in Al+1: for every 1 ≤ l ≤
k − 1 and every 1 ≤ i, i′, j ≤ n add the clause (¬bli,j ∨ ¬al+1

i′) if i′ 6= i+ j

Since the construction can only handle gaps of positive size, we know that if
both ali and al+1

i′ are set to true, then i < i′.
The most important thing to realize is that the fact that some variable of ϕ

is set to false is represented by a certain variable set to true in our construction.
Namely setting xr to false can be represented by that

CHAPTER 7. INTRACTABILITY 45

• some of the variables a1r+1, . . . , a
1
n is set to true, or

• some of the variables bli,j with i < r < i+ j and 1 ≤ l ≤ k− 1 is set to true,
or

• some of the variables ak1, . . . , a
k
r−1 is set to true.

Denote the set of the above mentioned variables by Sr.
Now consider a clause C of ϕ. If (for some 1 ≤ p, r ≤ n) the clause C is of

the form

• (xp ∨ xr) then we add into ψ the clauses (¬y ∨ ¬z) for every y ∈ Sp and
z ∈ Sr

• (¬xp ∨ xr) (or (xr ∨ ¬xp)) then we add into ψ the clauses (¬alp ∨ ¬y) into
ψ for every 1 ≤ l ≤ k and y ∈ Sr

• (¬xp∨¬xr) then we add into ψ the clauses (¬alp∨¬al
′
r) for every 1 ≤ l, l′ ≤ k.

We claim that if the clause C is not satisfied in the assignment examined,
then at least one of the added clauses is not satisfied as well. For the first case,
this holds since if neither xp nor xr is set to true, then at least one variable y ∈ Sp
is set to true and at least one variable z ∈ Sr is set to true and (¬y ∨ ¬z) is not
satisfied. Conversely, if all the newly added clauses are satisfied, then either no
variable of Sp or no variable of Sr is set to true and thus either xp or xr is set to
true and C is also satisfied. For the other cases it can be seen similarly.

Hence, an assignment setting exactly the variables xi1 , xi2 , . . . , xik to true,
where i1 ≤ i2 ≤ · · · ≤ ik, satisfies ϕ if and only if the assignment setting exactly
variables alil , 1 ≤ l ≤ k and blil,il+1−il , 1 ≤ l ≤ k − 1 to true is satisfying for ψ.
This finishes the reduction, as the instance (ψ, k′) can be clearly constructed in
polynomial time.

7.3 Characterization by Computational Models

Although we said that the parameterized hardness classes are not defined by
a computational model, there is actually a way to characterize the classes in
terms of Turing Machine computation [CF03]. We only show that for two most
important classes W[1] and W[2]. For that purpose let us first formally define a
Nondeterministic Turing Machine.

Definition 7.8. A Nondeterministic Turing Machine is a sextuple (Σ, t, Q, s, A, δ),
where Σ is an alphabet, t is the number of tapes, Q is a set of internal states, s
is the initial state, A ⊆ Q is the set of accepting states and δ ⊆ (Q×Σt×Q×Σt×
{−1, 0, 1}t) is the set of transitions. A quintuple (p, (r1, . . . , rt), q, (w1, . . . , wt), (m1, . . . ,mt))
being in δ means that if the machine is in the state p reading the symbol ri on a

CHAPTER 7. INTRACTABILITY 46

tape i (for every 1 ≤ i ≤ t) it can proceed to the state q, writing the symbol wi
on the tape i and moving the head on this tape by mi (for every i).
Note that not only the set of transitions can contain several possible transitions
for one particular state and a t-tuple of symbols read, but it is also not required
to be total, that is it does not have to contain a transition for each combina-
tion of state and t symbols read. The maximum number of possible transitions
from a particular state when particular symbols are read is called the amount of
nondeterminism.

It was proven in [CI97] that the following natural parameterized analogue of
the Halting Problem is W[1]-complete:

Short Nondeterministic Turing Machine Computation
Input: A single-tape nondeterministic Turing machine M = (Σ, 1, Q, s, A, δ); a
positive integer k.
Question: Is there a computation of M (on the empty tape) that reaches an
accepting state in at most k steps?
Parameter: The allowed length of a computation k.

Note that for the result it is crucial that no bound is given for the size of
the alphabet, the number of states, nor to the amount of nondeterminism. The
problem is FPT for any of the parameterizations obtained by combining the
number of steps k with any of the aspects mentioned above [CI97].

Similarly, the following problem is complete for W[2] as shown in [Ces03]:

Short Multi-Tape Nondeterministic Turing Machine Computation
Input: A nondeterministic Turing machine M = (Σ, t, Q, s, A, δ); a positive
integer k.
Question: Is there a computation of M on the empty input that reaches an
accepting state in at most k steps?
Parameter: The allowed length of a computation k.

The result heavily depends on having unlimited number of tapes. Parame-
terized by k and t, the problem becomes equivalent to the previous one, that
is W[1]-complete [CI97]. A characterization of other classes by means of short
computations of alternating Turing Machines can be found in [CF03].

Although Turing Machine is a standard tool in complexity considerations,
RAM (Random Access Machine) model seems to be used more often when talking
about algorithms. We introduce the concept of non-determinism into this model
in a slightly unnatural way as proposed by Chen et al. [CFG03].

In a nondeterministic random access machine (NRAM) model a single nonde-
terministic instruction ”GUESS” is added to the standard deterministic random
access machine (RAM) model. The semantics of this instruction is: Guess a
natural number less than or equal to the number stored in the accumulator and
store it in the accumulator. Acceptance of an input by an NRAM is defined as
usually for nondeterministic machines, that is, the program accepts the particular

CHAPTER 7. INTRACTABILITY 47

input if there is a computation on it that ends by an execution of the ACCEPT
instruction. The steps of the computation of an NRAM that execute the GUESS
instruction are called nondeterministic steps.

To stay within the class W[1], the following restrictions should by put on a
program for NRAM.

Definition 7.9 (Chen, Flum, and Grohe [CFG03]). An NRAM program P is
tail-nondeterministic k-restricted if there are computable functions f and g and
a polynomial p such that on every run with input (x, k) ∈ Σ∗ × Σ∗ the program
P

• performs at most f(k) · p(|x|) steps;

• uses at most the first f(k) · p(|x|) registers;

• contains numbers ≤ f(k) · p(|x|) in any register at any time;

and all nondeterministic steps are among the last g(k) steps of the computation.

The following characterization due to Chen, Flum, and Grohe [CFG03] seems
to be easier to apply then developing a reduction to a single-tape Turing Machine:

Theorem 7.10 (Chen, Flum, and Grohe [CFG03]). A parameterized problem
P is in W[1] if and only if there is a tail-nondeterministic k-restricted NRAM
program deciding P.

The model can be further enriched by a nondeterministic instruction FORALL,
to obtain alternating RAMs. By restricting the number of times the machine can
switch from using the GUESS instruction to the FORALL instruction and vice
versa, one can characterize the other classes of the W-hierarchy [CF03].

7.4 Multicolored Problems

In most reductions that directly reduce Weighted t-Normalized Satisfia-
bility it is necessary to somehow represent, that some variable was not set to
true in the solution considered. This is usually done by representing the gap be-
tween two neighboring (in a certain order) variables set to true. Such reductions
are sometimes called gap reductions.

Another approach is to develop a problem in which the objects for a size-k
solution are picked from k groups, each object from a different group. Then the
case that an object is not picked into a solution is represented by picking another
object from the same group. The groups are usually referred to as colors and we
speak about multicolored problems. The result from Section 6.3 suggests, that
the multicolored problem is usually no easier than the original one.

CHAPTER 7. INTRACTABILITY 48

The problem most often used for hardness reductions is probably Multicol-
ored Clique. It can be found in older literature under the name Partitioned
Clique, but it is nowadays more known under the other name.
Multicolored Clique (MCC)
Input: A graph G = (V,E), positive integer k ∈ N and a proper k-coloring
c : V → {1, . . . , k} of G.
Question: Is there a multicolored clique in G, that is, a clique taking exactly
one vertex of each color?
Parameter: The number of colors k.

Note that any clique of size k in a graph properly colored by k colors must
take exactly one vertex of each color, and there is no clique of size more than k.

The following easy theorem was in fact proved in [Pie03], and recently redis-
covered by [FHRV09].

Theorem 7.11. Multicolored Clique is W[1]-complete.

Proof. We provide an almost trivial reduction from and to Clique which we
have shown to be W[1]-complete in Section 7.2. Omitting the coloring from an
instance of MCC one obtain an equivalent instance of Clique, which implies
that MCC is in W[1]. To show the W[1]-hardness we let G = (V,E), k be an
instance of Clique. Consider an instance of MCC formed by G′ = (V ′, E ′),
where V ′ = V × {1, . . . , k} and E ′ = {{(u, i), (v, j)} | i 6= j ∧ {u, v} ∈ E}, the
number k, and the coloring c : V ′ → {1, . . . , k} assigning to each vertex (v, i) its
second coordinate i.

If {v1, . . . , vk} is a k-Clique in G, then {(v1, 1), . . . , (vk, k)} is a multicolored
clique in G′. On the other hand if {(v1, 1), . . . , (vk, k)} is a multicolored clique in
G′ then for every i 6= j the set {vi, vj} is an edge of G and, thus, {v1, . . . , vk}.
Hence (G, k) is a yes-instance of Clique if and only if (G′, k, c) is a yes-instance
of MCC, which finishes the proof, as G′ can be constructed in polynomial time
and the parameter is preserved.

Note that the constructed instance of MCC has the same number of vertices
of each color and also the number of edges with endpoints colored by a particular
pair of colors is the same for each pair of colors selected. This property is also
often used in the reductions.

We also mention, that in many reduction from MCC, not only there are
gadgets for each color, that represent a selection of a vertex of this color, but there
are often gadgets for each pair of different colors representing the selection of an
edge between the vertices of the particular color. This simplifies the subsequent
check, whether the select objects form a clique. We just check, whether the
selected edges are incident with the selected vertices, which is often much simpler
than checking whether the selected vertices are adjacent. This idea called edge
representation strategy was first introduced by Fellows et al. in [FHRV09].

CHAPTER 7. INTRACTABILITY 49

A very simple example of a reduction starting from Multicolored Clique
(MCC) is to show that List Coloring is W[1]-hard parameterized by the
vertex cover number. This was first observed in [FFL+07] and so far constitutes
one of a few, if not the only example of a problem hard with respect to the vertex
cover number. We also mention that the paper is also the first one to show that
some problem is W[1]-hard with respect to the treewidth for which it also uses a
reduction from MCC together with the edge representation strategy.

In List Coloring we are given a graph G, a set of colors B and a mapping
L : V (G) → P(B) assigning to each vertex its list of available colors. The
question is whether there is a proper coloring c : V (G)→ B of G respecting the
lists. This means that for every v ∈ V (G) we have c(v) ∈ L(v).

Theorem 7.12. List Coloring is W[1]-hard parameterized by the vertex cover
number.

Proof. For the reduction, assume that we are given an instance of MCC with a
graph G having n vertices of each color out of {1, . . . , k}. The vertices of color
i are denoted vi,1, . . . , vi,n. We construct an instance of List Coloring formed
by a graph G′, a set of colors B = V (G) and a mapping L : V (G′) → B. We
start by introducing k vertices a1, . . . , ak; the vertex ai will have a list L(ai) =
{vi,1, . . . , vi,n}. The colors chosen for these vertices should represent the selected
vertices of particular colors.

To ensure that the selected vertices form a clique, we do the following. For
each i and i′, where 1 ≤ i < i′ ≤ k, if for some 1 ≤ j, j′ ≤ n the vertices vi,j and
vi′,j′ are not connected by an edge in G, we add a new vertex into G′ which will
be connected to ai and ai′ and will have a list {vi,j, vi′,j′}. Hence, if the vertex ai
was assigned the color vi,j and the vertex ai′ the color vi′,j′ , then there would be
no chance to color this new vertex. Otherwise there is always at least one color
left.

It is easy to see, that this way x1, . . . , xk is a multicolored clique in G if and
only if the partial coloring f : {a1, . . . ak} → V (G), that assigns the color xi to the
vertex ai for every i, can be extended to a proper list coloring of G′ respecting the
lists L. As the construction can be clearly done in polynomial time, it remains
to note that the set {a1, . . . ak} forms a vertex cover of size k for the graph G′.
Hence, the parameter of the new instance equals the parameter of the original
instance and the reduction is indeed a parameterized one.

7.5 Connections to the Exponential Time Hy-

pothesis

Although it is hard to believe that there could an f(k)nO(1)-time algorithm for
Short Nondeterministic Turing Machine Computation (which would

CHAPTER 7. INTRACTABILITY 50

be implied by W[1]=FPT) still for some people less familiar with parameterized
complexity the following hypothesis is more plausible than that W[1]6=FPT.

Hypothesis 7.13 (Exponential Time Hypothesis (ETH)). There is no algorithm
that solves n-variable 3SAT in time 2o(n).

In fact, ETH is a stronger hypothesis — it implies W[1] 6=FPT, while it
is not known whether W[1] 6=FPT implies ETH. In particular Abrahamson et
al. [ADF95] have shown the following:

Theorem 7.14 (Abrahamson, Downey, and Fellows [ADF95]). If there is an
f(k) · nO(1) time algorithm for k-Clique, then ETH fails.

This result was later strengthened so that it also excludes algorithms with
the exponent of the polynomial running time growing slower than linear in the
parameter:

Theorem 7.15 (Chen, Huang, Kanj, and Xia [CHKX04]). If there is an f(k) ·
no(k) time algorithm for k-Clique, then ETH fails.

The result stated for Clique can be easily translated to other problems.
Namely, if there was a parameterized reduction transforming an instance (G, k) of
k-Clique to an instance (x′, k′) of a problem P with k′ = O(kc) then an algorithm

for P with running time f(k)no(k
1/c) would imply an f ′(k)no(k) algorithm for k-

Clique and, thus, ETH would fail. As most of the parameterized reductions
known have either k′ = O(k) or k′ = O(k2) this provides a good lower bound for
many problems. Note that this way the results also translate to many problems
parameterized by a structural or other parameters.

Assuming ETH it is also possible to prove, that for certain problems the
dependence of the exponent of the exponential part of the running time on the
parameter is asymptotically optimal.

Theorem 7.16 (Cai and Juedes [CJ03]). If Vertex Cover can be solved in
time 2o(k) · nO(1), then ETH fails.

Similar results can be proved also for problems on planar graphs, but here
the known (asymptotically optimal) algorithms are only exponential in the square
root of the parameter; see Section 6.6 for such algorithms.

Theorem 7.17 (Cai and Juedes [CJ03]). If Vertex Cover, Independent

Set, or Dominating Set can be solved in time 2o(
√
k) · nO(1) for planar graphs,

then ETH fails.

The following is a further strengthening of ETH, which is definitely not so
widely believed as ETH itself.

CHAPTER 7. INTRACTABILITY 51

Hypothesis 7.18 (Strong Exponential Time Hypothesis (SETH)). Let ε > 0.
There is no algorithm that solves n-variable SAT in time (2− ε)n.

Under this assumption, the lower bound for the running times of an algorithm
for Dominating Set can be further improved as follows.

Theorem 7.19 (Patrascu and Williams [PW10]). If for some k ≥ 3 and ε > 0,
k-Dominating Set can be solved in O(nk−ε) time then SETH fails.

This result can be again translated in a certain way to some W[2]-hard prob-
lems. By contrast, an O(n0.793k) algorithm for k-Clique is known [NP85]. This
suggests, that also some differences in the running times achievable for W[1]-
complete and W[2]-complete problems are to be expected.

List of Considered Problems

d-Hitting Set
Input: A family F of sets, each with at most d elements, and k ∈ N.
Question: Is there a set of at most k elements, that contains an element from
(hits) every set in F?
Parameterizations Considered: solution-size k
Considered on pages: 16, 19, 20, 23, 27

k-Leaf Out-Branching
Input: A directed graph and k ∈ N.
Question: Does the directed graph contain a subgraph in which every vertex
except for one has in-degree exactly 1 and k vertices has out-degree 0 (are leaves)?
Parameterizations Considered: number of leaves k
Considered on pages: 23, 24

k-Local Search for Traveling Salesperson
Input: A graph with positive weights on edges, a Hamiltonian cycle in it and
k ∈ N.
Question: Can we find a Hamiltonian cycle which uses at most k edges not used
by the original cycle and its weight is smaller than the weight of the original one
Parameterizations Considered: locality k
Considered on pages: 13

k-Path
Input: A graph G and k ∈ N.
Question: Does G contain a path of length k?
Parameterizations Considered: solution-size k
Considered on pages: 22, 32

Bounded-Degree Deletion
Input: A graph G, d ∈ N and k ∈ N.
Question: Is there a set of at most k vertices such that its deletion turns G into
a graph with maximum degree at most d?

52

List of Considered Problems 53

Parameterizations Considered: solution-size k
Considered on pages: 23

Clique
Input: A graph and k ∈ N.
Question: Does the graph have complete subgraph with at least k vertices?
Parameterizations Considered: solution-size k
Considered on pages: 44, 48, 50, 51

Conservative Coloring
Input: A graph which have all vertices except for one properly colored by k
colors and c ∈ N.
Question: a proper coloring of that graph with k colors which differ from the
original one on at most c places?
Parameterizations Considered: conservativeness c
Considered on pages: 13

Dominating Set
Input: A graph G and k ∈ N.
Question: Is there a set of at most k vertices, such that every vertex of G is
either a part of it or has a neighbor in it?
Parameterizations Considered: solution-size k, treewidth tw(G)
Considered on pages: 24, 38, 39, 44, 50, 51

Feedback Vertex Set
Input: A graph G and k ∈ N.
Question: Is there a set of at most k vertices such that its deletion turns G into
a forest?
Parameterizations Considered: solution-size k
Considered on pages: 23, 37

Graph Coloring
Input: A graph G on n vertices and k ∈ N.
Question: Can G be properly colored by at most k colors?
Parameterizations Considered: number of colors available k, dual parame-
terization n− k
Considered on pages: 20, 43

Independent Set
Input: A graph and k ∈ N.
Question: Is there a subset of at least k vertices such that no two of the vertices
are connected by an edge?
Parameterizations Considered: solution-size k, treewidth tw(G)

List of Considered Problems 54

Considered on pages: 30, 32, 39, 44, 50

List Coloring
Input: A graph G, a set of colors B and a mapping L : V (G)→ P(B) assigning
to each vertex its list of available colors
Question: Is there a proper coloring c : V (G) → B respecting the lists? This
means that for every v ∈ V (G) we have c(v) ∈ L(v)
Parameterizations Considered: vertex cover number vc(G)
Considered on pages: 48, 49

Max d-Sat
Input: A propositional formula ϕ in form of conjunction of clauses, each formed
by exactly d literals and k ∈ N.
Question: Is it possible to satisfy at least m(1− 2−d) + k clauses?
Parameterizations Considered: param. above tight lower bounds k
Considered on pages: 12

Max Leaf
Input: A graph and k ∈ N.
Question: Is there a spanning tree of the graph with at least k leaves?
Parameterizations Considered: solution-size k
Considered on pages: 25

Multicolored Clique (MCC)
Input: A graph G = (V,E), positive integer k ∈ N and a proper k-coloring
c : V → {1, . . . , k} of G.
Question: Is there a multicolored clique in G, that is a clique taking exactly
one vertex of each color?
Parameterizations Considered: number of colors k
Considered on pages: 47–49

Odd Cycle Transversal
Input: A graph G and k ∈ N.
Question: Is there a set of at most k vertices such that its deletion turns G into
a bipartite graph?
Parameterizations Considered: solution-size k
Considered on pages: 33

Packing 3-Sets
Input: A system C of three-element subsets of a finite set S and an integer k ∈ N.
Question: Is there a subsystem C ′ of at least k mutually disjoint sets?
Parameterizations Considered: solution-size k
Considered on pages: 35

List of Considered Problems 55

Planar Deletion
Input: A graph G and k ∈ N.
Question: Is there a set of at most k vertices such that its deletion turns G into
a planar graph?
Parameterizations Considered: solution-size k
Considered on pages: 23, 37

Short Multi-Tape Nondeterministic Turing Machine Computation
Input: A nondeterministic Turing machine M = (Σ, t, Q, s, A,∆); a positive
integer k.
Question: Is there a computation of M on empty input that reaches accepting
state in at most k steps?
Parameterizations Considered: allowed length of a computation k, number
of tapes
Considered on pages: 46

Short Nondeterministic Turing Machine Computation
Input: A single-tape nondeterministic Turing machine M = (Σ, 1, Q, s, A,∆); a
positive integer k.
Question: Is there a computation of M (on empty tape) that reaches the ac-
cepting state in at most k steps?
Parameterizations Considered: allowed length of a computation k, size of
the alphabet |Σ|, number of states |Q|, amount of non-determinism, their com-
binations
Considered on pages: 46, 49

Steiner Tree
Input: A graph G = (V,E) with integral weights on edges w : E → N, a set of
terminals T ⊆ V and an integer p ∈ N.
Question: Is there a tree containing all the terminals of cost at most p?
Parameterizations Considered: maximum number of non-terminals in a solu-
tion (solution-size parameterization above tight lower bound) p−|T |+1, number
of terminals |T |
Considered on pages: 13, 28

Vertex Cover
Input: A graph G and k ∈ N.
Question: Is there a set of at most k vertices, that contains at least one endpoint
of each edge?
Parameterizations Considered: solution-size k
Considered on pages: 8, 10, 18, 19, 21, 27, 37, 50

List of Considered Problems 56

Weighted t-Normalized Satisfiability
Input: A t-normalized Boolean formula ϕ and k ∈ N .
Question: Is there a satisfying assignment for ϕ of weight exactly k?
Parameterizations Considered: weight of the assignment k
Considered on pages: 42–44, 47

Weighted Antimonotone t-Normalized Satisfiability
Input: A t-normalized antimonotone Boolean formula ϕ and k ∈ N .
Question: Is there a satisfying assignment for ϕ of weight exactly k?
Parameterizations Considered: weight of the assignment k
Considered on pages: 42–44

Weighted Circuit Satisfiability
Input: A Boolean decision circuit C and k ∈ N .
Question: Is there a satisfying assignment for C of weight exactly k?
Parameterizations Considered: weight of the assignment k
Considered on pages: 42, 43

Weighted Monotone t-Normalized Satisfiability
Input: A t-normalized monotone Boolean formula ϕ and k ∈ N .
Question: Is there a satisfying assignment for ϕ of weight exactly k?
Parameterizations Considered: weight of the assignment k
Considered on pages: 42, 43

Weighted Satisfiability
Input: A Boolean formula ϕ and k ∈ N .
Question: Is there a satisfying assignment for ϕ of weight exactly k?
Parameterizations Considered: weight of the assignment k
Considered on pages: 42

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Mod-
ern Approach. Cambridge University Press, 2009. Cited on pages 3
and 4.

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Com-
plexity of finding embeddings in a k-tree. SIAM Journal on Algebraic
and Discrete Methods, 8(2):277–284, 1987. Cited on page 14.

[ADF95] Karl R. Abrahamson, Rodney G. Downey, and Michael R. Fellows.
Fixed-parameter tractability and completeness IV: On completeness
for W[P] and PSPACE analogues. Ann. Pure Appl. Logic, 73(3):235–
276, 1995. Cited on page 50.

[AEFM89] Karl R. Abrahamson, John A. Ellis, Michael R. Fellows, and
Manuel E. Mata. On the complexity of fixed parameter problems
(extended abstract). In FOCS, pages 210–215. IEEE, 1989. Cited on

page 1.

[AGK+10] Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and
Anders Yeo. Solving MAX-r-SAT above a tight lower bound. In
Charikar, editor, Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, pages 511–
517, 2010. Cited on page 13.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM,
42(4):844–856, 1995. Cited on pages 32 and 33.

[BDFH09] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and
Danny Hermelin. On problems without polynomial kernels. Jour-
nal of Computer and System Sciences, 75(8):423–434, 2009. Cited on

page 22.

[BGN08] Nadja Betzler, Jiong Guo, and Rolf Niedermeier. Parameterized com-
putational complexity of Dodgson and Young elections. In Gud-
mundsson, editor, SWAT, volume 5124 of LNCS, pages 402–413.
Springer, 2008. Cited on page 13.

57

BIBLIOGRAPHY 58

[BK10] Hans L. Bodlaender and Arie M.C.A. Koster. Treewidth computa-
tions I. Upper bounds. Information and Computation, 208(3):259 –
275, 2010. Cited on page 14.

[Bod93] Hans L. Bodlaender. On linear time minor tests with depth-first
search. J. Algorithms, 14(1):1–23, 1993. Cited on page 25.

[Bod96] Hans L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Computing,
25(6):1305–1317, 1996. Cited on pages 14, 32, and 39.

[Bod09] Hans L. Bodlaender. Kernelization: New upper and lower bound
techniques. In Proc. 4th IWPEC, volume 5917 of LNCS, pages 17–
37. Springer, 2009. Cited on page 21.

[BTY08] Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Analysis
of data reduction: Transformations give evidence for non-existence of
polynomial kernels. Technical report, Department of Information and
Computing Sciences Utrecht University, Utrecht, The Netherlands,
2008. Cited on page 23.

[Ces03] Marco Cesati. The Turing way to parameterized complexity. J.
Comput. Syst. Sci., 67(4):654–685, 2003. Cited on page 46.

[CF03] Yijia Chen and Jörg Flum. Machine characterization of the classes of
the W-hierarchy. In Baaz and Makowsky, editors, CSL, volume 2803
of LNCS, pages 114–127. Springer, 2003. Cited on pages 45, 46, and 47.

[CFG03] Yijia Chen, Jörg Flum, and Martin Grohe. Bounded nondeterminism
and alternation in parameterized complexity theory. In IEEE Con-
ference on Computational Complexity, pages 13–29. IEEE Computer
Society, 2003. Cited on pages 46 and 47.

[CFJ04] Benny Chor, Mike Fellows, and David W. Juedes. Linear kernels in

linear time, or how to save k colors in O(n2) steps. In Hromkovič,
Nagl, and Westfechtel, editors, Graph-Theoretic Concepts in Com-
puter Science, 30th International Workshop,WG 2004, volume 3353
of LNCS, pages 257–269, 2004. Cited on page 20.

[CHKX04] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Linear fpt
reductions and computational lower bounds. In STOC ’04: Proceed-
ings of the thirty-sixth annual ACM symposium on Theory of com-
puting, pages 212–221, New York, NY, USA, 2004. ACM. Cited on

page 50.

BIBLIOGRAPHY 59

[CI97] Marco Cesati and Miriam Di Ianni. Computation models for pa-
rameterized complexity. Math. Log. Q., 43:179–202, 1997. Cited on

page 46.

[CJ03] Liming Cai and David W. Juedes. On the existence of subexponen-
tial parameterized algorithms. J. Comput. Syst. Sci., 67(4):789–807,
2003. Cited on page 50.

[Cou92] Bruno Courcelle. The monadic second-order logic of graphs III: Tree-
decompositions, minor and complexity issues. ITA, 26:257–286, 1992.
Cited on page 31.

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded random
access machines. In STOC ’72: Proceedings of the fourth annual
ACM symposium on Theory of computing, pages 73–80, New York,
NY, USA, 1972. ACM. Cited on page 4.

[DF92a] Rodney G. Downey and Michael R. Fellows. Fixed-parameter in-
tractability. In Structure in Complexity Theory Conference, pages
36–49, 1992. Cited on page 1.

[DF92b] Rodney G. Downey and Michael R. Fellows. Fixed-parameter
tractability and completeness. Congressus Numerantium, 87:161–178,
1992. Cited on page 1.

[DF95a] Rodney G. Downey and Michael R. Fellows. Fixed-parameter
tractability and completeness I: Basic results. SIAM Journal on Com-
puting, 24(4):873–921, 1995. Cited on page 43.

[DF95b] Rodney G. Downey and Michael R. Fellows. Fixed-parameter
tractability and completeness II: On completeness for W[1]. Theor.
Comput. Sci., 141(1&2):109–131, 1995. Cited on pages 43 and 44.

[DF98] Rodney G. Downey and Michael R. Fellows. Parameterized Complex-
ity. Springer, 1998. Cited on pages 1, 8, 10, 18, 24, and 43.

[DFHT05] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and
Dimitrios M. Thilikos. Subexponential parameterized algorithms on
bounded-genus graphs and H-minor-free graphs. J. ACM, 52(6):866–
893, 2005. Cited on pages 37, 38, and 39.

[Dij59] Edsger W. Dijkstra. A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1:269–271, 1959.
10.1007/BF01386390. Cited on page 29.

BIBLIOGRAPHY 60

[DLS09] Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompress-
ibility through colors and IDs. In ICALP ’09: Proceedings of the
36th International Colloquium on Automata, Languages and Pro-
gramming, pages 378–389, Berlin, Heidelberg, 2009. Springer-Verlag.
Cited on pages 22 and 23.

[DvM10] Holger Dell and Dieter van Melkebeek. Satisfiability allows no non-
trivial sparsification unless the polynomial-time hierarchy collapses.
In Schulman, editor, STOC, pages 251–260. ACM, 2010. Cited on

pages 23 and 24.

[DW72] Stuart E. Dreyfus and Robert A. Wagner. The Steiner problem in
graphs. Networks, 1:195–207, 1972. Cited on page 28.

[DYW+07] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and
Xuemin Lin. Finding top-k min-cost connected trees in databases.
In Proc. 23rd ICDE, pages 836–845. IEEE, 2007. Cited on page 28.

[Fel09] Michael R. Fellows. Towards fully multivariate algorithmics: Some
new results and directions in parameter ecology. In Proc. 20th
IWOCA, volume 5874 of LNCS, pages 2–10. Springer, 2009. Cited

on pages 2 and 17.

[FF56] Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a
network. Canadian Journal of Mathematics, 8:399–404, 1956. Cited

on page 35.

[FFL+07] Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A.
Rosamond, Saket Saurabh, Stefan Szeider, and Carsten Thomassen.
On the complexity of some colorful problems parameterized by
treewidth. In Dress, Xu, and Zhu, editors, COCOA, volume 4616
of LNCS, pages 366–377. Springer, 2007. Cited on page 49.

[FFL+09] Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Daniel Raible,
Saket Saurabh, and Yngve Villanger. Kernel(s) for problems with
no kernel: On out-trees with many leaves. In Albers and Marion,
editors, STACS, volume 3 of LIPIcs, pages 421–432. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany, 2009. Cited on pages 23
and 24.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity The-
ory (Texts in Theoretical Computer Science. An EATCS Series).
Springer-Verlag New York, Inc., 2006. Cited on pages 2, 8, 9, 10, and 20.

BIBLIOGRAPHY 61

[FHRV09] Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and
Stéphane Vialette. On the parameterized complexity of multiple-
interval graph problems. Theoretical Computer Science, 410(1):53–
61, 2009. Cited on page 48.

[FLST10] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M.
Thilikos. Bidimensionality and kernels. In Charikar, editor, SODA,
pages 503–510. SIAM, 2010. Cited on page 39.

[FS08] Lance Fortnow and Rahul Santhanam. Infeasibility of instance com-
pression and succinct PCPs for NP. In Dwork, editor, Proceedings
of the 40th Annual ACM Symposium on Theory of Computing, pages
133–142. ACM, 2008. Cited on page 22.

[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and
their uses in improved network optimization algorithms. J. ACM,
34(3):596–615, 1987. Cited on page 30.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman,
1979. Cited on page 43.

[GMN09] Jiong Guo, Hannes Moser, and Rolf Niedermeier. Iterative compres-
sion for exactly solving NP-hard minimization problems. In Lerner,
Wagner, and Zweig, editors, Algorithmics of Large and Complex Net-
works, volume 5515 of LNCS, pages 65–80. Springer, 2009. Cited on

page 35.

[GN07] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and
problem kernelization. ACM SIGACT News, 38(1):31–45, 2007. Cited

on page 21.

[GT05] Qian-Ping Gu and Hisao Tamaki. Optimal branch-decomposition
of planar graphs in O(n3) time. In Caires, Italiano, Monteiro,
Palamidessi, and Yung, editors, ICALP, volume 3580 of LNCS, pages
373–384. Springer, 2005. Cited on page 39.

[HN10] Sepp Hartung and Rolf Niedermeier. Incremental list coloring of
graphs, parameterized by conservation. In Kratochv́ıl, Li, Fiala, and
Kolman, editors, Theory and Applications of Models of Computation,
7th Annual Conference, TAMC 2010, volume 6108 of LNCS, pages
258–270. Springer, 2010. Cited on page 13.

[JZC04] Weijia Jia, Chuanlin Zhang, and Jianer Chen. An efficient param-
eterized algorithm for m-set packing. J. Algorithms, 50(1):106–117,
2004. Cited on page 35.

BIBLIOGRAPHY 62

[Kna10] Christian Knauer. The complexity of geometric problems in high
dimension. In Kratochv́ıl, Li, Fiala, and Kolman, editors, Theory
and Applications of Models of Computation, 7th Annual Conference,
TAMC 2010, volume 6108 of LNCS, pages 40–49. Springer, 2010.
Cited on page 13.

[KT05] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2005. Cited on

page 27.

[KW91] Daniel J. Kleitman and Douglas B. West. Spanning trees with many
leaves. SIAM J. Discret. Math., 4(1):99–106, 1991. Cited on page 15.

[KW10] Ken-ichi Kawarabayashi and Paul Wollan. A shorter proof of the
graph minor algorithm: the unique linkage theorem. In Schulman,
editor, Proceedings of the 42nd ACM Symposium on Theory of Com-
puting, STOC 2010, pages 687–694. ACM, 2010. Cited on page 36.

[LSS09] Daniel Lokshtanov, Saket Saurabh, and Somnath Sikdar. Simpler
parameterized algorithm for OCT. In Fiala, Kratochv́ıl, and Miller,
editors, IWOCA, volume 5874 of LNCS, pages 380–384. Springer,
2009. Cited on page 33.

[Mar08] Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-
hard. Oper. Res. Lett., 36(1):31–36, 2008. Cited on page 13.

[MN09] Jǐŕı Matoušek and Jaroslav Nešetřil. Invitation to Discrete Math-
ematics, Second Edition. Oxford University Press, 2009. Cited on

page 4.

[Moh99] Bojan Mohar. A linear time algorithm for embedding graphs in an
arbitrary surface. SIAM J. Discrete Math., 12(1):6–26, 1999. Cited

on page 14.

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford
University Press, 2006. Cited on pages 1 and 8.

[Nie10] Rolf Niedermeier. Reflections on multivariate algorithmics and prob-
lem parameterization. In Proc. 27th STACS, volume 5 of LIPIcs,
pages 17–32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2010. Cited on pages 2 and 17.

[NP85] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the sub-
graph problem. Commentationes Mathematicae Universitatis Caroli-
nae, 26(2):415–419, 1985. Cited on page 51.

BIBLIOGRAPHY 63

[NR03] Rolf Niedermeier and Peter Rossmanith. An efficient fixed-parameter
algorithm for 3-Hitting Set. J. Discrete Algorithms, 1(1):89–102,
2003. Cited on page 28.

[Pie03] Krzysztof Pietrzak. On the parameterized complexity of the fixed
alphabet shortest common supersequence and longest common sub-
sequence problems. Journal of Computer and System Sciences,
67(4):757 – 771, 2003. Parameterized Computation and Complex-
ity 2003. Cited on page 48.

[PW10] Mihai Patrascu and Ryan Williams. On the possibility of faster SAT
algorithms. In Charikar, editor, Proceedings of the Twenty-First An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010,
pages 1065–1075, 2010. Cited on page 51.

[Ree92] Bruce A. Reed. Finding approximate separators and computing tree
width quickly. In STOC ’92: Proceedings of the twenty-fourth annual
ACM symposium on Theory of computing, pages 221–228, New York,
NY, USA, 1992. ACM. Cited on page 14.

[RS83] Neil Robertson and Paul D. Seymour. Graph minors. I. Excluding a
forest. J. Comb. Theory, Ser. B, 35(1):39–61, 1983. Cited on page 36.

[RS84] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-
width. J. Comb. Theory, Ser. B, 36(1):49–64, 1984. Cited on pages 6
and 14.

[RS95] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The dis-
joint paths problem. J. Comb. Theory, Ser. B, 63(1):65–110, 1995.
Cited on page 36.

[RS04] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s
conjecture. J. Comb. Theory, Ser. B, 92(2):325–357, 2004. Cited on

page 36.

[RST94] Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly ex-
cluding a planar graph. J. Comb. Theory, Ser. B, 62(2):323–348,
1994. Cited on page 37.

[RSV04] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle
transversals. Oper. Res. Lett., 32(4):299–301, 2004. Cited on page 33.

[ST94] Paul D. Seymour and Robin Thomas. Call routing and the ratcatcher.
Combinatorica, 14(2):217–241, 1994. Cited on page 39.

[Wes96] Douglas B. West. Introduction to graph theory. Prentice Hall Inc.,
Upper Saddle River, NJ, 1996. Cited on page 4.

	Contents
	Introduction
	Preliminaries
	Sets, numbers, languages, formulas
	Graphs
	Graph Widths

	Basic Definitions of Param. Complexity
	Parameterization and Parameterized Problem
	Fixed-Parameter Tractability

	Parameterizations
	Solution-Size and its Dual
	Parameterization Above Tight Lower Bound
	Further Natural Parameters
	Structural Parameters - Graph Widths
	Multivariate Approach

	Kernelization Point-of-View
	Basic Ideas
	Further examples
	FPT means Kernelization
	On the Non-Existence of Polynomial Kernels
	Notion of Kernelization Relaxed
	Similar approach - Win/Win

	Further Algorithmic Methods
	Bounded Search Trees
	Dynamic Programming and Meta-Theorems
	Color Coding
	Iterative Compression
	Greedy Localization
	Using the Theory of Minors, Bidimensionality

	Intractability
	Reductions, Classes
	Monotone/Antimonotone Collapse
	Characterization by Computational Models
	Multicolored Problems
	Connections to the Exponential Time Hypothesis

	List of Considered Problems
	List of Considered Problems

	Bibliography
	Bibliography

