
Radovan Červený
cervera3@fit.cvut.cz

presented:

On the Shortest Path Game
Andreas Darmann, Ulrich Pferschy, Joachim Schauer

http://www.sciencedirect.com/science/article/pii/S0166218X15003959

Definitions

Shortest Path Game

• game setting: (un)directed graph G = (V, E); edges have non-negative cost c(e) : E → R+
0 ; two

designated vertices s, t ∈ V(G)
• two players A, B start in s; players move together along the edges and take turns in selecting the next

vertex to be visited; the deciding player pays the cost of the edge; total costs payed by players are given
by C(A), C(B)

• A starts i.e. A has first decision in s, game ends the first time A and B step on t
⇒ each player selfishly minimizes his total cost payed

Additional rules
(R1) no player can select an edge which does not permit a path to vertex t
(R2) the players cannot select an edge which implies necessarily a cycle of even length
⇒ gives us perfect information finite game in extensive form
• subgame perfect equilibrium (spe) is a strategy that is a Nash equilibrium for every subgame of the original

game
• spe-path is a unique path from s to t in G corresponding to the unique subgame perfect equilibrium

Problems

Shortest Path Game

Input: edge-weighted graph G = (V, E), vertices s, t, values CA, CB ∈ R+
0

Decide: does spe-path yield costs c(A) ≤ CA and c(B) ≤ CB?

Quantified 3-SAT
Input: set X = x1, . . . , xn of variables, quantified formula F = (∃x1)(∀x2)(∃x3) . . . (∀xn)φ(x1, . . . , xn)

where φ is a 3-CNF formula over X
Decide: is F true?

Theorems

Theorem 1. Shortest Path Game is PSPACE-complete even for bipartite directed graphs.
Theorem 2. The spe-path of Shortest Path Game on DAGs can be computed in O(|E|) time.
Theorem 3. Shortest Path Game on undirected graphs is PSPACE-complete even for bipartite graphs.
Theorem 4. The spe-path of Shortest Path Game on undirected cactus graphs can be computed in O(|V|2)
time.

Cactus algorithm

Let G = (V, E) is a undirected cactus graph – each edge is part of at most one simple cycle.

1. Recognize connection strip G′ in G
2. Recognize cycles in G \ G′ and determine order in which we need to preprocess them.
3. Preprocess G \ G′ in a bottom-up fashion computing swap options to be used in G′

4. Compute spe-path in G′ taking swap options into account.

Let d±p (i) be general distance d from vertex i to a fixed vertex, where p ∈ {d, f } denotes decider, follower role
and ± ∈ {+,−}. If ± = + player deciding in i is the same as player deciding in v0 = 0, otherwise ± = −.

Step 3 dynamic programming arrays

• tc±p (i) := min. cost to move from i back to 0 if a turn around is possible.
• rc±p (i) := min. cost to move from i back to 0 with no turn possible and the path goes around the cycle.

mailto:cervera3@fit.cvut.cz
http://www.sciencedirect.com/science/article/pii/S0166218X15003959

