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Abstract

A novel test-per-clock built-in self-test (BIST) equipment desigathod
for combinational or full-scan circuits, together with necessary supplenmentar
algorithms, is proposed in this Thesis. This method is mostly based @iga dé a
combinational block - the Decoder, transforming pseudo-random code words into
deterministic test patterns pre-computed by some ATPG tool. Then@dllatching
algorithm to design the decoder is proposed. Here the maximum of output variables
of the decoder is tried to be matched with the decoder inputs,ngetlde outputs be
implemented as mere wires, thus without any logic. No memory etearenheeded
to store the test patterns, which reduces the BIST area overhead.

Since quite a large number of test vectors is often needed to enifjictest a
particular circuit, synthesizing all these vectors deterministycalbuld involve a very
large area overhead. Thus, the basic Column-Matching method has been extended
to support the mixed-mode testing. Here the BIST execution is dividesvandisjoint
phases — the pseudo-random phase, where the pseudo-random patterns are being
applied to the circuit unmodified, and the deterministic phase detectintpealyet
undetected faults. This enables us to reach high fault coverage in a Stdnnie and
with a low area overhead. The novelty of this approach comprises of thbdathese
phases are disjoint. As a consequence of this, the BIST control logic iscaigiyf
reduced, when compared to other state-of-the-art methods. The choloe lehgths
of the two phases directly influences the test time, BIST designaind BIST area
overhead. The Column-Matching algorithm is described in details in the Téegis
several heuristic methods solving some of the major NP-hard probsmised are
proposed. The tradeoff between the duration of the execution of BIST, thensoluti
quality and runtime is discussed. The time complexity of the algoistlstudied and
experimentally evaluated.

A truth table description of a Boolean function is obtained as a resutheof
Column-Matching algorithm. This function describes the Output Decoder logic.
In order to maximally reduce the BIST area overhead, the function has to Ipeizethi
Since it is usually a function of many input and output variables (hundreds, thousands),
available Boolean minimizers were not able to handle it in a reasonal#de Tinus, an
efficient Boolean minimizer has been developed for this reason. BOGiMmasmizer
capable to process functions having many input variables, is proposed. The implicants
of a function are generated by a top-down way: the universal hypercube is being
gradually reduced, until it becomes an implicant. This approach becomes very
advantageous for sparse functions, i.e., functions where values of only fewnsiater
defined. This is exactly the case of the Column-Matching BIST desigeffichency
of Boom for such functions is documented on standard benchmark circuit, asswell a
on practical Column-Matching examples.

The proposed BIST design method was tested on ISCAS and ITC’99 benchmarks and
the results were compared with the results obtained by some ofatieeothe-art
methods. The complete resulting BIST equipment logic was synthesizedsand i
complexity evaluated. A complete (100%) stuck-at fault coverageonaglered in all
the experiments performed.

The main contributions of this Thesis are the following:

* A new BIST design methodology is proposed
* The BIST process is divided into two separate phases, unlike in other methods
* A new and very efficient Boolean minimizer is proposed
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1 Introduction

With the ever-increasing complexity of present VLSI circuiiseir testing is
becoming more and more important. There often arise faulty chips dthimg
manufacturing process due to an inaccurate technology and such chips ls&éould
detected and eliminated. Using only external test equipment (&Ttst the chips is
becoming impossible, mainly due to a huge amount of test vectorstdsingime and
very expensive test equipment. Incorporating the Built-in Sedf-Equipment (BISTE)
becomes inevitable. It requires no external tester to testrthet, since all the circuitry
needed to conduct the test is included in the very circuit. Bhigaid by an area
overhead, long test time and often low fault coverage. Up to now, m&TyrBethods
have been developed [Aga93, Tou96a, Tou96b], all of them trying to find some
trade-off between these four aspects that are mutually antipodal:

» Fault coverage, i.e., the percentage of detected faults, in a chosen fault model
* Testtime

» BIST area overhead

* BIST design time

To reach a high fault coverage, either a long test time (etthatsst), or a high area
overhead (ROM-based BIST) is involved. A pseudo-random testing shktdblihe
simplest trade-off between all these criteria. With an exgig low area overhead the
circuit can be tested usually up to more than 90% in a relativedyl sumber of clock
cycles. To improve the fault coverage and to reduce the test tiamg, @mhancements
of this pseudo-random principle have been developed. Of course, all of tkem a
accompanied by some additional area overhead. Here the BIST diesgyrames
to importance — a design of a BIST structure achieving high faulrageevith a low
area overhead often takes a long time to synthesize.

1.1 Basic Principles of Built-In Self-Test

The general Built-in Self-Test structure consists of threenrparts [McC85] — see
Figure 1.1. The TPGTEst Pattern Generatpproducedest patternghat are fed to the
inputs of aCircuit under Tes{CUT) and the responses of a circuit are then evaluated
in aResponse Evaluat¢RE).

Test Pattern Generator

|

Circuit under Test

|

Response Evaluator

Figure 1.1: BIST structure



Test patterns are sequentially applied to the inputs of a ¢ogigit and the response
at the primary outputs is checked during the test. If the respemkierent from the
expected value, a fault is detected.

There are two basic testing strategiesictional testingand structural testing The
functional testing checks the circuit’'s response to the input patternest the
functionality of the circuit, while its inner structure needs nokhewvn. On the other
hand, the structural test tries to find physical defects ofitieait by propagating faults
to the output (by finding a sensitive path). There are several kindgutt§ caused
by various physical defects, like thstuck-at faults (stuck-at-one, stuck-at-zero),
bridging faults, opens and other technology dependent faults. Mdst tdults are easy
to detect, as they can be propagated to the circuit’s output@ry possible vectors
applied to the input (of their total numbet, &vheren is the number of the primary
inputs of the circuit). However, there are faults that are twad#tect tandom pattern
resistant faults, hard faulis as only few test vectors propagate these faults to the
outputs. Thus, the amount of faults that can be detected by a partésilaet depends
on the test patterns. Thus we always have to specify the datles on which we
concentrate. If a test set detects all faults from the gigah set, it is denoted as
complete The most commonly accepted fault set consists of all stuck-at faults.

In most of cases, some kinds of pseudo-random pattern generatofSs)PRRe used
as test pattern generators (TPGs), either stand-alone ofiedashmehow. Generally,
PRPGs are simple sequential circuits generating code wordsrdag to the
generating polynomial [Str02]. These code words are then either fetlydicethe CUT
inputs, or they are modified by some additional circuitry.

The most common PRPG structures kmear feedback shift registefd FSRs) or
cellular automata(CA). An n-bit (n-stage) LFSR is a linear sequential circuit consisting
of D flip-flops and XOR gates generating code words (patterns) gtlac code. The
structure of am-stage LFSR-I (with internal XORs) is shown in Fig. 1.2.

D Serial Output

Parallel Outputs

Figure 1.2: LFSR structure

The register has parallel outputs corresponding to the outputs of the D flip-flops,
and one flip-flop output can be used as a serial output of a register.

The coefficientsc; — G.1 express whether there exists (1) a connection from the
feedback to the corresponding XOR gate or no connection (0). Thus inohete
whether there is a respective XOR gate present or thddpg-fire connected directly.
The feedbacks leading to the XOR gates are also dajbad

The sequence of code words produced by an LFSR can be describgédrigrating
polynomialg(x) in GF(2), [Ada91].

g(x) =X+ GaxX" + X+ L+ axt + 1



If the generating polynomial is primitive, the LFSR has a marinperiod 2-1, thus
it produces 21 different patterns.

The initial state of the register (initial values of the flip-flops) itecethe seed.

The second LFSR type, the LFSR-II is implemented with XORbkenfeedback. Its
generating polynomial is dual to the LFSR-I polynomial. Only LHSRIll be
considered in this Thesis, since these two LFSRs types are mutuallytdmaver

Cellular automata [Hor90, Alo93] are sequential structures sinal&f=SRs. Their
periods are often shorter, but code words generated by CA aetire@s more suitable
for test patterns with preferred numbers of ones or zeros at the outputs.

An example of a CA performing multiplication of the polynomiatsresponding
to code words by the polynomial x+1 (rule 60 for each cell [Cha97]3hswn

in Fig. 1.3.
D D 6 D ‘ D Serial Output

Parallel Outputs
Figure 1.3: Example of a cellular automaton

Since the TPG can be constructed to have both parallel and/or agpats, the
BIST can be designed in two general ways: the testipek-@and test-per-scan BIST.
In thetest-per-clockBIST the CUT is being fed by parallel outputs of the TPG, which is
mostly the linear feedback shift register (LFSR) or autailautomaton (CA). Each test
pattern is processed in one clock cycle. The response of the CUTogihesresponse
evaluator in parallel, which is often a Multi-Input Shift Regis@lISR). A general
structure of the test-per-clock BIST is shown in Fig. 1.4.

LFSR
¥

Circuit Under Test
(CUT)

¥
MISR

Figure 1.4: Test-per-clock BIST structure

The second typical structure, suitable especially to test segjueintuits, is denoted

as atest-per-scarBIST (Fig. 1.5). It is used in connection with CUTs having a scan

chain, i.e., the circuit’s flip-flops are connected into a chain madirg scan register
for testing purposes. Here the test patterns are shifted intocaheegister of the CUT
and applied by activating the functional clock after every full scasf one test pattern.



The response is then scanned out and typically evaluated by asggralire analyzer
(signature register).

In this work only the test-per-clock is considered, however the method can bedadapte
to test-per-scan as well [Cha03].

Circuit Under Test
(CUT)

3

LFSR —» Scan Chain — Signature Reg.

Figure 1.5: Test-per-scan BIST structure

The two above-mentioned methods suffer from their specific drawbackigie
test-per-clock BIST case there is often a very “wide” PR&gister and heavy wiring.
On the other hand, the test application time is the shortest po3aibén the test is
applied using the test-per-scan method, there is a big testotwerhead, since each
of the test patterns has to be serially loaded into the scan dhaieover, the circuit
often cannot be tested at its work frequency, since the flippimgtaain the signals
exceeds the activity occurring during its normal operation. Whisld cause the tested
chip dissipate more heat, which could “burn” the chip during the test.

The present trend in the BIST design area is a combinations# the approaches:
the multiple scan chain BIS[Kei98]. Here the CUT registers form more than one scan
chains, which are fed in parallel, see Fig. 1.6.

I scan path |
13 > scan path H— L
R 1
P CUT . S
G { scan path I R

Figure 1.6: Multiple scan chain BIST structure

The state-of-the-art serially-parallel BIST trend is ®I€UMPS (Self-Test Using
MISR and Parallel Shift-Register Sequence Generators)ectine [Bar87], where the
PRPG code words are modified by so called “phase shifter” (PS) and then fedlligl par
into multiple scan chains. The output response is evaluated in MISR. See Fig. 1.7.
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Figure 1.7: STUMPS structure



1.2 Structure of the Thesis

After a brief introduction to the BIST in Section 1, a surveytafesof-the-art BIST
design methods follows (Section 2). Section 3 describes the airhg dfissertation.
The proposed BIST design method is presented in Section 4. Sectiorcribetes
BOOM, the Boolean minimizer which has been developed as a ngcessaof the
proposed BIST design process. The Implementation section (Sectaes@&jbes the
engineer work done, thus the programs developed in the processnSeconcludes
the Dissertation and proposes several ways of future research.



2 State-of-the-Art Methods

Before describing the principles of the state-of-the arthods, namely the
Reseeding, Weighted pattern testing, Bit-fixing, Bit-flippingdaRow-marching
methods, the basic BIST methods will be introduced, for better uaddmgy to the
latter ones.

2.1 Exhaustive Testing

There are several testing approaches differing in their suobessd, in terms of the
BIST area overhead, design time and test duration. In the most mathed — the
exhaustive testing the circuit is fed with all the possiblé @vheren is the number
of CUT inputs) patterns and the responses is checked. Obviously, for anatoral
circuit the exhaustive test provides complete fault coverage, arah ibe very easily
implemented (an area overhead is often the lowest possible), ibutxtremely time
consuming and thus inefficient and practically unusable. It is apf#i¢a circuits with
up to 30 inputs (1Dpatterns, which takes cca. 1 sec on the frequency of 1 GHz), for
more inputs the exhaustive testing is not feasible. The testiqmtre mostly generated
by an LFSR (Linear Feedback Shift Register), since it prod2tgsdifferent patterns
during its period and it can be very easily implemented on the chip.

A slight modification of this method called @seudo-exhaustive testirjlylcC84]
allows us to test a circuit exhaustively without a need to lisieea?’ test patterns. The
circuit is divided into several possibly overlappingnes which comprise of logic
elements that influence individual outputs of the circuit. Then, hal ¢ones are
separately tested exhaustively, and hereby also the wholet cga@ompletely tested.
The only fault type not covered by pseudo-exhaustive tests are bridgitgybetween
elements belonging to different non-overlapping cones. If such aitiepff
decomposition is possible, the circuit can be tested with muchhims<Lttest patterns.
However, for more complex circuits the cones are rather wigkegdnes have a large
number of inputs) and thus the pseudo-exhaustive testing is often not feasible either.

2.2 Pseudo-Random Testing

In a simplepseudo-random testirte test patterns are generated by a pseudo-random
pattern generator (PRPG) and led directly to the circuimfmits. It differs from the
exhaustive testing by a test length. If the PRPG structureesaiare properly chosen,
only several test patterns (less thdh &e needed to completely test the circuit. The
pseudo-random testing is also widely used in a case where thecteifigullt coverage
IS not required, since pseudo-random patterns often successfully ohesiciof the
easy-to-detect faults. Linear feedback shift registers Rdy9r cellular automata (CA)
are usually used as PRPGs. As an improvement of an LFSR, algedet#SR
(GLFSR) has been proposed [Pra99], however it involves an increae airea
overhead.



A combination of a pseudo-random and deterministic BIST is beifegred to as a
mixed-mode BISTThe easy-to-detect faults are tested by pseudo-random teshpa
and the deterministic patterns are generated to test the regiaindetected faults. The
popular bit-fixing [Tou95, Tou96a, Tou01] and bit-flipping [Wun96] techniques belong
to this category.

2.3 Reseeding-Based Techniques

In the basiaeseedingechnique, the LFSR is seeded with more than one seeds during
the test, while the seeds need to be stored in ROM [Koe91]. The areesismetimes
smaller than the test patterns themselves and, most importamilg, thran one test
patterns are derived from one seed. This significantly reduces memoirgnegjuts.

One problem is that if a standard LFSR is used as a patterragendrmay always
not be possible to find the seed producing the required test pattesautton of this
problem is using anulti-polynomial LFSRMP-LFSR), where the feedback network
of an LFSR is reconfigurable [Hel92, Hel95]. Both the seeds and polynaangastored
in a ROM memory and for each LFSR seed also a unique LFSR polynsmsédected.

The structure of such a TPG is shown in Fig. 2.1.

MP-LFSR

Circuit Under Test
(CUT)

3
Scan Chain I—DI Signature Reg.

Figure 2.1: Multi-polynomial BIST

This idea has been extended in [Hel0OO] where tbkling counter which
is a programmable Johnson counter, is used as a PRPG. Here the nurabdingf
seeds to be stored in ROM is even more minimized.

In spite of all these techniques reducing memory overhead, impldmoenta
of a ROM on a chip is still very area demanding and thus the ROfonyeshould be
completely eliminated in BIST.

2.4 Weighted Pattern BIST

To one of the approaches, where the pseudo-random patterns are nsmlifiexdt
better fault coverage is reached, belongswbk&ghted pattern testingdere the PRPG
patterns are being biased bysignal probabilityof some of the PRPG outputs (the



probability of a “1” value occurrence). In the weighted patternngstnethod two
problems have to be solved: first, the weight sets have to be commatatiem the
weighted signals have to be generated. Many weight set catigoutmethods were
proposed [Bar87] and it was shown that multiple weight sets a#edeto produce
patterns with sufficient fault coverage [Wun88]. These multipleghtesets have
to be stored on a chip and also the logic accomplishing switching bethem is
complicated, thus this method often implies a large area overhead.

Several techniques reducing the area overhead of a weighted pestieng BIST
were proposed - one of them ig&anerator of Unequiprobable Random T&&RT)
presented in [Wun87]. The area overhead is reduced, however itristedsto one
weight set only. Also the more general method based on modifying Wl [Har93]
uses only one weight set and thus it is also limited to speasals of the tested circuits
and cannot be used in general.

Special methods using multiple weight sets that can be easilemented were
proposed in [Pom93] and [AIS94]. In [Pom93] three different weight vatsss
be applied by adding a very simple combinational logic to the PRRBgEiteu[AIS94]
on the other hand uses specially designed PRPG flip-flops.

As the LFSR code words usually have very balanced weights, tlgnagdhe logic
generating a weighted signal can be rather difficult. Sapm@oaches using cellular
automata instead of an LFSR were studied, and good resultsreaafged using this
approach for some circuits [Alo03, Nov98, Nov99]. Methods using inhomogeneous
cellular automata to produce weighted pattern sets are presented in [Nee93].

In [Wan01] the weighted random BIST technique is accompanied pgcias ATPG
producing suitable test vectors. Such a combination yields a veryBI®V area
overhead.

2.5 Bit-Fixing and Bit-Flipping

The bit-fixing [Tou95, Tou96a, Tou01] arfit-flipping [Wun96] methods are based
on a modification of some LFSR bits by some additional logic, inrdodancrease the
fault coverage. Both of them introducemapping functiorthat transforms the LFSR
pseudo-random code words into deterministic patterns — see an example in Fig. 2.2.

This idea was generalized in [Tou96b], where the problem of findingaspimgy
function is transformed into finding a minimum rectangle cover oinaté matrix.
Procedures used in ESPRESSO [Bra84] were used to find a mapping logic.

General schemes of test-per-scan bit-flipping and bit-fixingrBitethods are shown
in Figures 2.3 and 2.4 respectively. The bit-fixing method modifiepsleedo-random
sequence by AND and OR gates, the bit-flipping method augmentsethgnce
by flipping some bits by a XOR gate.

Criginal Transformed

ajaas ajagas a; a, as
000 000 \

001 001 e

010 > 001 & |

011 > 001

100 100

101 101 ﬁ;]

110 110 &
111 111

Figure 2.2: Modifying the LFSR patterns
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Figure 2.3: Bit-fixing scheme
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Figure 2.4: Bit-flipping scheme

2.6 Row Matching

The row matchingapproach proposed in [Cha95, Cha03] is based on a similar idea.
A simple combinational function transforming some of the PRPG patteito test
patterns is designed in order to reach better fault coverage.titetest patterns are
independent on the PRPG code words in a sense of a similarity pditteens — proper
test vectors are pre-computed by an ATPG tool; they are not ddrosa the original
PRPG code words as it was being done in the previous methods.

The row matching comprises of finding an assignment of deterroinésti patterns
to the PRPG code words, as it is shown in Fig. 2.5. Each of thpatisins has to be
assigned to some PRPG pattern to generate the required testhélgmoblem to be
solved consists in finding such a row matching that the patterrfdraraion function
is as simple as possible.



0011100

0001110

0000111

1100011

1010001

1001000

0100100 0011001
0010010 0110101
0001001 0000100
1100100 0010011
0110010 - 1100000
0011001 0001111
1101100

0110110 TARGET PATTERNS
oo11011

1101101

1010110

0101011

1110101

1011010

LFSR PATTERNS
Figure 2.5: Row matching principle

The aim of the algorithm is to find a row matching that minesizhe cost
function, which is a rough measure of the complexity of the fin&TBdesign
[Cha95]. This is, unfortunately, an NP-hard problem and thus some heorist be
used. In the proposed algorithm the rows are being matched sequeotiahpy-
one) preferring the match that locally minimizes the aasttion. After the matching
is done, the result is in a form of a truth table, which has to bemmad by some
Boolean minimizer (ESPRESSO) to obtain the final solution. The ttakte
corresponding to the example from Fig. 2.5 is shown in Figure 2.6:

Input Output values required at |
Vector OJIJ2]3]4]5]6
O01TTIO00TJOJOJI]JTIJO]O IH
1110101 JJOf[1I[TI]JO]T]O]TI
OOOO0TIITHOJO[OTO[TI|OTO
OO0TOOTIOJOJO[TJOJOfT[TI
T11T000ITIJTTOJO[O]O0]0O
O00TTIONOJOJOJT|TITITTY

Figure 2.6: The resulting truth table

In addition to introducing a mapping function, a special kind of a PRRGploited
here — a GLFSR (generalized LFSR). In principle, it behavesilasiyn
to a weighted-pattern TPG, however the weighted patterns are bemayaigel
by a modification of a LFSR [Pra99]. However, this modification introduce
an additional logic to the whole BIST structure, and thus it distudbsrwise good
results.
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3 Aims of the Dissertation and Its
Contributions

The main aim of my research, described in this Dissertati@si$, was to develop
a new BIST design method, as a better alternative to othero$ttte-art techniques,
like bit-flipping, bit-fixing, etc. The designed method was prittyatargeted to the
test-per-clock BIST for combinational or full-scan circuits (ocuts provided by a
slight modification of a full-scan, respectively). Competitiveethods that are
commonly used in industrial applications are used for a comparison in this Thesis.

A big importance should be given to the scalability of the algoritfinere are four
antipodal aspects in the BIST equipment design:

» BISTE design time

* BISTE area overhead

» Duration of the BIST (number of clock cycles needed to test the circuit)
» Fault coverage

Different ASIC designers integrating BIST equipment into thgncuits have
different requirements. Sometimes there is a requirement tgndids& BIST equipment
as fast as possible, regardless the area overhead and thevatdige (to some extent,
of course). For low-power designs, the BISTE area overhead should beskeptll as
possible, while the BIST design time is not that important. Or, hrsdis the most
common case in practice, high fault coverage is important, whéteaBIST design
time plays a small role. This is underlain by a fact that design time of the tested
circuit is mostly significantly higher than the BIST equipment design.time

Thus, the aim of the Dissertation is to propose a flexible way toodesign test
pattern generators (TPGs) meetengyy of the above-mentioned restrictions (or, better,
quality measures). The designer should be able to freely adjusl$ieequipment
design runtime, BISTE area overhead and BIST run time, according his pregerence

The next contribution is the way how the mixed-mode TPG is designeahtains
no additional space-demanding memory elements (except of the PRP&pPE).
Methods described in Section 2 (bit-fixing, bit-flipping) require addai flip-flops
to store signatures, in order to be able to recognize pseudo-random péudérase
to be transformed into deterministic ones. On the other hand, the Migdd-M
Column-Matching method strictly divides the pseudo-random and deteimpiistses.
Their switching requires minimum of logics, namely only one additipatiern counter
stage, in the optimum case.

The proposed algorithm should serve as a basic guideline how to design mor
complex BIST designs, i.e., the multiple-scan chain based BIST,STHeMPS
architecture, etc. The method should be as general, like the ottierokthe-art
methods are (e.g., bit-flipping, bit-fixing).

BOOM, the two-level Boolean minimizer has been developed as afphis work.

It is a very efficient minimization tool able to efficienthandle functions having up
to thousands input variables. It offers a big scalability too — tha@trquality may be
improved by iterating the minimization process, thus for a cost of a longanaunti

11



4 Proposed BIST Method

A novel test-per-clock BIST design method is proposed in this Thebgs.tdst
patterns are applied to the primary inputs of the circuit-under@®sT) in parallel,
thus one test vector is being processed in one clock cycle. Tgensesis then drawn
from the primary outputs and analyzed in the response evaluatgrwRIEh is mostly
a multi-input shift register (MISR).

This method decreases the BIST area overhead by simplificattitthre test pattern
generator (TPG). Deterministic test patterns generatexbimg ATPG (Automatic Test
Pattern Generator) tool are used, thus the fault coverage achiedlg depends
on these patterns. The method is that universal, so that any testsetccan be used.
This implies that the method can be adapted to any fault modébngsas basic
requirements for the test vectors are held. For example, damlitg £annot be tested
using the simple Column-Matching, since test vector pairs lagéay together here.
However, after a slight algorithm modification, even this could besiples On the
other hand, e.g., IDDQ testing [Raj00] may be supported without aggrithim
modification.

No memory is used for storing test patterns, since the memornyynsasises a big
area overhead on a chip. From a global point of view [Str02], thhoshés based
on a synthesis of a finite state machine (FSM) that produces determessipatterns.

The test pattern generator consists of two blocks: the pseudo-rapdtiern
generator (PRPG) and the output decoder, which is a combinationaltifziosforming
the PRPG patterns into deterministic tests. The PRPG idyneosistructed as a linear
feedback shift register (LFSR) with an appropriate gemgrapolynomial, or as
a cellular automaton [Nee93, Nov98, Nov99, Alo03]. The basic structure of such
a test-per-clock BIST is shown in Fig. 4.1.

Test Pattern Generator

PRPG

Output Decoder

Circuit under Test

Figure 4.1: Test-per-clock BIST structure

The principles of the proposed mixed-mode BIST method are presentius
section. There are several aspects involved with the BIST deshgseTwill be
described in the following Subsections:

» The general mixed-mode BIST principles are shown in Subsection 4.1.
» Then the whole BIST design process is described, for the basic method.

12



» The BIST process is being executed in two separate phases: the
pseudo-random and the deterministic one. These two phases will be etiscuss
more thoroughly in Subsections 4.3, 4.4, 4.5 and 4.8.

 The Column-Matching principle exploiting test don’t cares is dlesdr
in Subsection 4.6.

» Section 4.7 describes the newest algorithm enhancement, namely the
Multiple-Vector Column-Matching.

» Experimental results are presented at the end of this Section.

4.1 Basic Principles of the Proposed Mixed-Mode BIST

Most of the mixed-mode BIST techniques involve using some kind of tramafion
and switching logic accompanying the pseudo-random pattern geméRRPG).
A general structure of the proposed mixed-mode BIST design is sinokig.i4.2. The
pseudo-random code words are produced by an LSFR (or any PRP&eraljgerhen
they are transformed by tH@ecoderinto deterministic vectors. The Switching logic
selects the patterns to be applied to the CUT. After thatcifoeit's response is
evaluated, usually in the multi-input shift register (MISR).

TPG LFSR

\ 4
Decoder

v
|—> Switch mode

|
L/

CUT
|

A 4
MISR

Figure 4.2: Mixed-mode BIST structure

The main difference between the proposed algorithm and competietaods
[Tou95, Tou96b, Wun96, Cha03] consists in a separation of the pseudo-random and
deterministic phases. In the other methods the LFSR patterns thett dtetect any
faults are identified and modified. Here the switching logic cissif coupled AND
and OR gates in the bit-fixing method [Tou95] — see Fig. 2.3, or a ¥&R for
bit flipping [Wun96] — See Fig. 2.4.

In practice, several initial pseudo-random vectors detect rfeaulis, but the fault
detection capability of the latter ones quickly drops to zero. Thusuld be more
advantageous to run the unmodified pseudo-random phase for severalydieskand
then to switch to the deterministic one at once, as it is béomg in the proposed
approach. The switching logic then consistsmiitiplexers, in the most general case
The area overhead caused by the switching logic needs not bargeo $ince even
these multiplexers can be efficiently eliminated by usingaaifed Column-Matching
method as well (see Subsection 4.6.4). Moreover, the size of a ewétiplwhen
implemented using transmission gates, is 1.5-times the sizestahdard NAND gate
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[DeM94]. Moreover, the array of multiplexers has to be preseaniyntest-per-clock
BIST design. If another layer of multiplexers is added by tkeéhod, the 2-1 MUXes
are changed to 3-1 MUXes only (see the Implementation section).

In the first, pseudo-random phase, all the multiplexers aresbeyg feed the circuit
with the unmodified LFSR patterns; the Decoder is cut off. Subsequentlthe
deterministic phase, all the MUXes switch to the Decoder outputs and omhothiged
patterns are applied to the CUT. Thede signal driving the multiplexers can be
generated externally (by ATE), or some kind of a counter carsée (internally). Even
in this case the area overhead of this logic can be negligibte 8ie BIST-controller
pattern counter can be exploited very efficiently here. For instamben the lengths
of the two phases are equal, tim@de signal can be driven by one additional stage
(D flip-flop) of a pattern counter only. If not, just extra compardtmic has to be
present. Hence, the separation of the two BIST phases comg@italyates the pattern
recognition logic.

4.2 The BIST Design Process

The Decoder logic is synthesized using the Column-Matching itdgor The
Output Decodeis a combinational block transforming some of the PRPG patterns into
deterministic patterns pre-computed by an ATPG. The aim issay the Decoder
to be as small as possible. Its design is based on “matchiaginum of the decoder
outputs with its inputs. Particularly, when the test vectors ameleeed and assigned
to the PRPG vectors in such a way that the values in the respeatieched columns
(i.e., input and output variables) are equal, the matched output willdgdenmanted by a
wired connection, thus without any logic involved. Since the BIST isgdedi
for combinational circuits, any reordering can be freely done. &dere the
deterministic test can be much longer than the computed test seq@eny few of the
PRPG patterns produce the required test vectors and the restergpraon-testing
“gaps”. This gives a big freedom to select appropriate matches.values of the
non-matched outputs have to be synthesized by some Boolean minimiz&QiGM
[Hla01, FisO3b] or ESPRESSO [Bra84]. The Column-Matching algorithm wil
be described into detail in Subsection 4.5).

The whole mixed-mode Column-Matching based TPG design process can
be summarized as follows:

1. Simulate severaRR) pseudo-random patterns for the CUT and determine the
undetected faults (by fault simulation)

2. Compute deterministic test patterns detecting these faults by an ATPG tool

3. Perform the Column-Matching using the subsequent LFSR pseudo-random
patterns Det) and the deterministic tests

4. Synthesize the unmatched decoder outputs using a two-level Boolean
minimizer.

An artificial illustrative example is shown in Fig. 4.3. A 5-WESR is run
for 5 cycles first and the easily testable faults are detedteen the fault simulation
was run to find the undetected faults, for which the test vectergemerated by an
ATPG. At the end, the decoder logic is synthesized for thete dad the subsequent
LFSR patterns. The resulting circuitry is shown in Fig. 4.4reHee can see that for
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some outputsyg, yi1) there is no decoder and switching logic needed, for some outputs
there is only the switching logic needed, {/3). Such cases should be preferred when
the BIST is being designed.

LFSR
v Final test sequence
(])%?8 10100
Pseudo-random 00107 Simulate INon-covered AIPG Test 01010
sequence 10110 faults Vectors ?8 1 (13(1]
01011 —> aianl
10001 — > 10100 - 1X000 W
Deterministc 11100 >11011 1010X 11011
sequence 01110 ——————> 01011 (non-det) 11011 01011
00111 — > 00001 ¢—————— %0001 00001
10111 — > 10000 10000
— —
XXy 7

Figure 4.3: Test sequence generation
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Yo Y, Y Ys Y.
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Figure 4.4: Resulting BIST circuitry

4.3 The Pseudo-Random Phase

The aim of the pseudo-random phase is to detect as many fapibssalsle, while
keeping the test time acceptable. Two aspects play rolethereFSR polynomial and
seed and the test length. Computing the LFSR polynomial andrseedkr to achieve
good fault coverage is an extremely computationally demanding prpties the seed
Is selected at random and its effectiveness evaluated experimentally.

Selection of a LFSR and a seed might significantly influencdathlé coverage. The
frequency distribution of covering a particular number of fasliustrated by Fig. 4.5.
Here sets of 50, 100, 500 and 1000 LFSR patterns were applied to the c354 ISCA
circuit [Brg85], 1000 samples for each test size (see theciowes in Fig. 4.5). Each
LFSR polynomial and seed were selected randomly. The distributioheofiumber
of faults which remained undetected is shown. We can see thatlifollelvs the
Gaussian distribution. For a low number of patterns many faultéefirendetected,
while also their number varies a lot. When increasing the numlbke ¢ést patterns the
number of undetected faults rapidly decreases, while the ivariaf this number
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decreases as well. This means that when a high fault coveragg®ined by a long test
sequence, the influence of the LFSR polynomial and seed on thecésgltage is
negligible.

8004 . 1000 patterns
700+
] c3540
600

3 5004 500 patterns

4004

Frequen

300+ 100 patterns

2004

50 patterns
100+

O Ll Ll I Ll Ll Ll 1
0 200 400 600 800 1000 1200 1400

Undetected Faults

Figure 4.5: Pseudo-random fault coverage

The number of the covered faults as a function of the number of LFS&s @pplied
to the CUT follows the saturation curve shown in Fig. 4.6 (for the cIH#it
[Brg85]). First few vectors detect the majority of faultadahen the fault coverage
increases only slightly. The total number of detectable stuchdtsfis 3428. This
number was not reached even after applying 50 000 LFSR cycles.
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Figure 4.6: Fault coverage saturation curve

A conclusion can be made from these two graphs: in order to reaatisi@actory
fault coverage in the pseudo-random phase, the fault coverage satunat@rioc the
CUT should be determined by a fault simulation. The appropriatéhlesfgthe PR
phase can be easily derived from it. The pseudo-random phase should be wtogped
the fault coverage does not improve for a given number of cyides.number can be
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freely adjusted, according to the application specific requiremé@hes trade-off
between the test time and area overhead). Usually, thshtiiceis set to 1000 cycles.
Thus, for the c3540 benchmd?PikR = 2500cyclesis determined (see Fig. 4.6).

4.3.1 Influence of the Pseudo-Random Phase Length

To illustrate the importance of properly choosing the parametdrsthe
pseudo-random phase, the BIST structure was designed for seved&8 nchmarks
[Brg85, Brg89]. The length of the pseudo-random phase was varied, tiwailength
of the deterministic phase was kept constant, 1000 cycles. As aifaulator FSIM
[Lee91] was used, as an ATPG Atalanta tool [Lee93]. For all thehbearks a test
covering all the irredundant faults was produced by this tool.

The results are shown in Table 4.1. The benchmark name is shown iisthe f
column. Thé'PR” column indicates the length of the pseudo-random phasé)bie
column shows the number of s-a faults that were left undetectéusbghase®vct.”
gives then the number of deterministic vectors testing theses,fauttduced by an
ATPG. The length of the deterministic phase was set constantl§00 cycles, except
of the s38417 benchmark, where it was set to 2000 cycles (because of the size pf the tes
set). The GEs” column shows the total complexity of the BIST design, in tevhihe
gate equivalents [DeM94]. The time needed to complete the Colunuohiigt
procedure is indicated in the last column. The experiment was rufP@Gnvath 1 GHz
Athlon CPU, Windows XP.

Table 4.1: Influence of the pseudo-random phase on the result

bench PR UD| vct. GEs| Time [fg]
c2670 1K 309 | 86 199.5 166
2K 306 | 86 189.5 166
5K 216 | 73 194.5 143
10K |154 | 69 166.5 123
c3540 300 165 | 66 109.5 10.26
500 92 42 56.5 3.88

1K 36 26 28 1.02
2K 9 9 13.5 0.19
5K 1 1 15 0.02
s1196 200 228 | 104| 110.5 5.05
500 141 | 79 77 3.87
1K 90 51 50.5 2.00
2K 52 37 37 1.20
5K 23 17 17 0.48
10K |9 4 6 0.04

s5378 5K 89 49 65.5 2259
10K |63 23 31.5 767

20K |48 8 16.5 104

$9234.1 | 1K 1674 215| 883 52 300
S0K | 773 | 99 333.5 4 400
200K | 599 | 52 212.5 1 600
s13207.1| 1K 1793 197 699 208 K
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bench PR UD| vct. GEs| Time [fg]
10K | 617 | 74 280 3480
50K |182 | 21 36 128
s38417 10K | 2067, 1391 151065 3417
100K | 780 | 520 | 3259.5| 2263

A big trade-off between the test length and the areaheaercan be seen here. The
longer the pseudo-random phase runs, the less area overhead is I€ankeduently,
the BIST synthesis time reduces as well.

It can be concluded from this table that the pseudorandom phase plary a
important role. If its length is selected so that many easletect faults are covered by
it, only few faults are to be covered by the deterministic phthsis the Decoder logic
would be negligible. However, for circuits having a large number avfl-to-detect
faults (c2670) the size of the Decoder logic cannot be influencetidyphase that
much.

The influence of the length of the pseudo-random phase on the final i®sult
discussed more thoroughly in [FisO4c].

4.4 Influence of the LFSR Structure and Seed

The fault coverage reached in the first phase is not influencedeblength of the
pseudo-random test only. The number of detected faults also depeth@spoaperties
of the pseudo-random sequence, thus it is influenced by the LFSR polyaothiseed.
Significantly different results are produced for different LFS®&n when the lengths
of the phases are retained equal. For illustration, see the d@Sigin for the c1908
ISCAS benchmark circuit [Brg85] results shown in Table 4.2. The pseudoira
phase was run for 2000 cycles, the LFSR polynomial was set nbr{dtéap, see
[FisO4b, Fis05a]), the LFSR was repeatedly randomly reseeded.tit deterministic
phase was run for 1000 clock cycles. Thel.” column indicates the number
of undetected faults in the first pha%et.” gives the number of deterministic vectors,
“GEs” shows the complexity of the resulting BIST structure, in teohshe gate
equivalents [DeM94]. The entries are sorted by the number of faatlidetected in the
pseudo-random phase.

It can be seen that the complexity of the final circuit $yridepends on the LFSR
seed selected — it varies from 7.5 GEs up to 69 GEs.

It is impossible to compute the proper LFSR seed and/or generatingopoa)
analytically for practical examples, due to the complexity lo§ tproblem. Thus,
in praxis the LFSR is repeatedly reseeded several timeshanthult simulation is
conducted. Then the best seed (covering most of faults) iseskld@tte fault simulation
is often a very fast process, thus it does not significantlyanfla the BIST design
time.

Table 4.2: Influence of the LFSR seed

Run# ud.| vct.| GEY |Run# ud. | vct.| GES
1 (19 |10 | 75 11| 33| 15| 37
2 121 |9 19.5 12| 34| 16| 33
3 |24 |13 | 235 13| 36| 18| 38
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Run# ud.| vct.| GEY |Run# ud. | vct.| GESg
4 |26 |15 | 28 14| 37| 20| 40.p
5 |26 |13 | 25 15| 39| 22| 53
6 |28 |15 | 375 16| 44| 26| 40
7 28 | 14 22.5 17| 46| 22 42.b
8 |30 (14 | 36 18| 48| 24| 44
9 |32 |16 | 31 19| 52| 28| 63.b
10 |33 | 17 | 27.5 20| 62| 34| 69

4.5 The Deterministic Phase

In the deterministic phase deterministic vectors are syntlie$ioen some of the
LFSR patterns that follow the pseudo-random phase. To do s@othenn-Matching
algorithm is used.

First, let us state the problem formally.

4.5.1 Problem Statement

Let us have an-bit PRPG running fop clock cycles in the deterministic phase. The
code words generated by this PRPG can be describedynatrix code matrix
of dimensions [§, n). These code words are to be transformed into test patterns
pre-computed by some ATPG tool. They are described Bynaatrix ¢est matriy.

For an r-input CUT and the test consisting sfvectors theT matrix will have
dimensionsg, 1). The rows of the matrices will be denotedrastors

The tests can be presented either in a form of determinidterma (minterms) or
they may contain don’t care values, depending on the ATPG algangkohfor the test
set generation. These don't cares can be very efficientlpiéag)| since they give more
freedom to select the column matches.

There are some obvious restrictions for the matrices dimensionswifhiger of test
patternsp must be 2— 1 at most (the maximum number of distinct patterns generated
by a LFSR) ang =>s, because there must be enough patterns to implement all the tes
vectors generated by the ATPG. On the other hand, there are aiorefirements
regarding the relationship of andr, since the number of LFSR stages can be even
smaller than the number of CUT inputs.

The output decoder logic modifies tkk matrix vectors in order to obtain all the
T matrix vectors. As the proposed method is restricted to combinatiwoaits; the
order in which the test patterns are fed to the CUT is ingignif. Thus, thd matrix
vectors can be reordered in any way. Finding a transformationthe@ matrix to the
T matrix means finding a coupling of each of r®ws of T matrix with rows of theC
matrix — thus finding aow assignmentsee Fig. 4.7), i.e., to determine whiChmatrix
rows will be transformed t® matrix rows and how. The excessive patterns do not
disturb testing; they only extend the test length. If a low-poestimnyg is required, some
pattern inhibition techniques may be used - see [Gir99]. The proposed methbd ca
easily modified under these considerations.

The Output Decoderis a combinational block that convegsa-dimensional vectors
of theC matrix intosr-dimensional vectors of the matrix. The decoder is represented
by a Boolean function having inputs andr outputs, where only values sterms are
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defined and the rest are don’'t care values. Such a Boolean functiope caasily
described by a truth table, where the output part corresponds Tontlagrix, while the
input part consists &fC matrix vectors assigned to tliematrix rows. The set of such
vectors will be denoted agpaunedC matrix (see Fig. 4.7).

C-Matrix

n
10001
00110\T-Matrix Pruned C-Matrix
r
10111\01001 10001 01001

(1’(1’%% 10010 00110 10010\
P 15000 01111 = 00101 01111 &
1000011100 " 10000 11100
o 11001 11001 11001

11001 Test Patterns  Output Decoder PLA
10010

PRPG Patterns

Figure 4.7: Assignment of the rows

4.5.2 The Column-Matching Algorithm

The task is now, how to assign the rows to each other to reach umaxarea
overhead reduction. The aim of the Column-Matching method is to adsitre &
matrix rows to some of thé matrix rows so that some columns of thenatrix will be
equalto some of the prune@ matrix columns in the result. This would yield no logic
necessary to implement theBematrix columns (outputs of the decoder); they would be
implemented as mere wires.

In most cases the PRPG outputs are drawn directly from the owtpflig-flops.
These flip-flops often also have the negative value of their ouppotsded. Then, also
the negativematchingshould be considered as a possibility to implement some variable
of the output decoder as a simple wire. This happens when the value nattigeed
output variable is complement to the value of some input variable ¢aralterms. The
possibility of a negative Column-Matching should be then considered.

An illustrative example is shown in Fig. 4.8. The matched columnbefruned
C matrix andT matrix from Fig. 2 are shown here. Thanatrix columny, is matched
with the C matrix columnxz (negatively), therys with x; (negatively) andy, with x4
(positively).

Thus, the outputy;, ys andy, are implemented without any combinational logic,
while the remaining outputs have to be synthesized using some standalevel
Boolean minimization tools, like ESPRESSO [Bra84] or BOOM [HIa01, Fis03b].
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X% Y - ¥ Yo= X4 * X1
100 y1= X3’
o151 V2= Xo Xg' + X2’ X4
110 ¥3= X0

Ya= X4

Output Decoder PLA

Figure 4.8: Column matching example

4.5.3 One-to-One Assignment

As a one-to-one assignment will be denoted the case whes: thus all the PRPG
vectors are to be assigned to the test vectors and no idle PRPG cygpiesang. In this
case the possible minimum number of PRPG vectors is needed to tgetiera
deterministic test vectors, however, the amount of logic neededtenmant the output
decoder is often large.

Generally, when doing the Column-Matching, some restrictions forCttend T
matrix rows that are to be assigned to each other must bedappéey time a column
match is done. If theth C matrix column is matched with theh T matrix column, the
C matrix rows containing “1” value in thieth column can be assigned only to the
matrix rows containing “1” value in thjeth column and vice versa.

The most important feature of the one-to-one assignment isahehda all the PRPG
vectors that are to be transformed into test patterns are kmowadvance; there are
no excessiv& matrix vectors. Determining a column match is then a sitgsle it is
possible to make a match if the counts of ones (and zeros) iartesponding columns
are equal In the previous example (Fig. 4.8) the counts of ones inCthaatrix
for columnsxe-x4 are {6, 7, 5, 7, 6}, the counts of ones in Thenatrix for columnsy/o-y,
are {7, 5, 5, 4, 5}, thus there are five possible column matcheg.{X-Yo, X-Y1, X%-Y2,
X2-y4}.

After selecting the column match the two matrices are dpoeet into two disjoint
parts containing the rows with zeros and ones respectively in tiohingacolumns, let
the submatrices be denotedGsC, andTy, T1. Then any vector from thEy; submatrix
can be assigned to any vector fr@y as well as any vector from tfig submatrix can
be assigned to any vector froBi, but not otherwise. In our example, when xae/,
match is selected firs€o = {B, F, G, I, J},C; ={A, C, D, E, H}, To={a, b, d, g, j},
andT1={c, e, f, h,i}.

C-Matrix T-Matrix

H0-x4 v0-v4

—= —
o 11ffo1 -» c1 a 0011 -> TD
B 11010 -> CO b 11100 -> TO
¢ oo —» €1 o 1011fif -> T1
D 11111 -> C1 d 10100 -> TO
E 11110 -> C1 e 1101 -> T1
F 00011 -> CO £ 1000 - T1
G 11011 ->= CO g 10000 -> TO
H 01111 -> C1 h o100f -» T1
I 10001 -> CO i 11008 - T1
J 00000 -> €O j o111 - TO

Figure 4.9: The first assignment to the submatrices
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Finding all possible column matches consists in a successive decbamposithe
matrices into set systems until no further decomposition is pes3ibis happens when
no more columns with equal one and zero counts are available in any; tand T;
submatrices.

The number of combinations of possible column matches grows exponewiilly
r (number ofT matrix vectors). Particularly, there arepossible combinations (where
n is the number ofC matrix columns). Thus, the selection of the candidate columns
for a match is driven by a heuristic, measuring the ratio raszand ones in both the
candidate columns. The most balanced decomposition is then seléctether
possibility is to use arexhaustive column match searciWwhere all the possible
combinations of column matches are tried. This method is applicablécopigblems
with a low number of possible column matches.

As the output of this algorithm two systems of subsets ofCtlad T matrices are
obtained. Each two corresponding subsets contain vectors that can bedssigach
other in any order. The final assignment is done at random, simfliénces the final
result only negligibly (it influences only the final minimization).

4.5.4 Generalized Column-Matching

In practice, it is often more advantageous to let the PRPG rua oyates than
needed and pick out only several suitable vectors (see Fig. 4.7). Thasstdigcles are
present, however this method significantly reduces the complexittheofoutput
decoder.

The Column-Matching principle is very efficiently applicable hddmlike in the
method described in the previous subsection, we cannot determine a cuohtoin
by comparing the number of ones (and zeros) in the corresponding coheunasse it
is not known in advance whic& matrix vectors will be included in the final row
assignment. However, we can freely choose among the code wqods>(is). Finding
a column match is then a trivial problem: for several initiatahes practically any two
columns can be successfully matched.

Making an assignment of tlematrix rows to the&C matrix rows is then very similar
to the set system based method proposed above. BoG d@ne T matrices are being
divided into two disjoint parts, while in this case their sizesddneat be equal; the
number of vectors in eadd; must begreater or equato the number of vectors in the
correspondind’;. If not, there would be some test patterns that cannot h@veatrix
vector assigned and then the matching procedure ends. Afterikbat the original
algorithm, some row-matching method is used to accomplish the dsmgjnment
of vectors.

The set system based Column-Matching algorithm is shown belwmvinputs to the
algorithm are th&€ andT matrices, the output is a valid system of s&tdescribing the
total decomposition of th€ andT matrix vectors. From this decomposition, the rows
are assigned to each other randomly and then the final result ameubtafter
completing a Boolean minimization.
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Algorithm 4.1: Set System Based Column-Matching

ColumnMatching(C, T) {

o={C, TI}; [/l initialize system of sets
do
{(i, )= SelectTwoColumnsToBeMatched(C, T);
& =0;
for( u=0; u<]| o u++){ // for all items in set
system
cC°= 0O; /I generate subsets
c'= 0O;
for ( k=0; k < C_matrix_rows; k ++)
if ( STk ]1==0C °=C° 0 Tk];
elseC '=Cc! 0O 9k
T%°= 0O;
Ti'= 0O
for ( | =0; | < T_matrix_rows; | ++)
if ( L) 1==0T °=T ° 0 &I
elseT =70 4TI,
if(C % <|IT 9 |IC Y<|T 1) return F
& = 0{C °T ;[[Cc 5Ty /I add the split sets
=
}
}

4.5.5 Column Matching Process Example

To illustrate the principles of the method, the c17 ISCAS benchfBag85] was
chosen for its simplicity. As an input to the algorithm we haveomplete test set
generated by an ATPG tool. The test consists of 10 test pafsmad-ig. 4.10). The
goal is to implement a BIST structure applying the givendesto the c17 benchmark

circuit.

It should be mentioned that the test set shown in Fig. 4.10 is usedohgnarely
illustrative purposes. It is known that c17 can be completely testeddvwpatterns and
that, onthe other hand, if an exhaustive test was used (which wouldade
to implement due to the small size of the circuit), the output deamaelitry would

completely disappear.

01111
00001
01101
10001
01110
10111
00101
10011
00011
01000

Figure 4.10: ISCAS c17 test vectors
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A 5-stage LFSR with generating polynomidl#x® + 1 seeded with a vector 00010
was selected as a PRPG. In the following two subsections Wélwsgitrate both the
one-to-one assignment and the generalized matching process.

One-to-One Assignment for c17 Benchmark

In this example the decomposition of matrices into set systenshiawn for the
one-to-one assignment. There are two matrices as an input: tlari€ mepresents the
patterns generated by the LFSR, Theatrix contains pre-generated test patterns shown
in Fig. 4.10.

First, the counts of ones in all columns in both matrices are entederfor the
C matrix these counts are {4, 4, 5, 5, 4}, fomatrix {3, 4, 5, 5, 8}. Thus, all possible
column matches arex{-yi, Xi-Yi, %Yz, %-Ys, Xa-Y2, Xs-Ya3, X-Y1}. At the beginning we
selectxs-y> match and perform the decomposition of the matrices. Then the veegati
column matchx',-y; is chosen and at the end we select the meatgh. No exact
matches are possible any more, thus there has been three exact columnfoadhes

»H0-x4 y0-y4
——

— - _
A 00010 a 0111d] B 00001 b 00001 c 10100 b oo0b1 < 10100 B 00001
B 00001 b DOODY] € 10100 4 10001 Col[E 00101 d 10001|pgg €010 |p po1g1 a 1000a|T°"°
c 10100 c 01101 co |E 00101 h 10011|pg L 11100 3 01000 co11]I 111005 oioon|roo1
D 01010 4 10001 #3-y2 H 10001 i 00011 %3-y3 cqp[B 00001 K LOGIi[, - xi-yl cogdB ODODL h 10011 ..
E 00101 e 01110 | I 11100 5 01000 M 10001 i oooi1 H 10001 i 00011

¢ [F 10110 £ 10111 A 00010 a 01111 F 10110 ¢ 01101 €11dF 10110 g 00101| T100
6 01011 g 00101 p 01010 c 01101 €11}y p1110 g oo1o1|Tt? c111]T 01110 c© 01101] T101
H 10001 h 10011 c1|F 10110 e 01110|T1 s 00010 a 01111 c100[& 00010 £ 10111 T110
I 11100 i opO11 6 01011 £ 10111 C10(p 01010 e 01110711 c1paP 01010 a 01111
7 01110 j 01000 T 01110 00101 ¢ 01011 £ 10111 G 01011 e 0111p| T111

Figure 4.11: One-to-one exact Column-Matching example

In all the subsets th€; vectors are assigned 16 vectors and the remaining logic is
minimized by BOOM or ESPRESSO. The resulting schematic is shown in Fig. 4.12.

Remaining Logic LFSR
®x0-x4
—*— ¥0 ¥4 =0 xl x2 =3 w4
10110 01 T T
10100 01 ¥0 = x0'x1! . |
ooiol 11 minimization ¥l = xl | e i
01011 00 |::> ¥2 = %3 oo m
01010 01 ¥3 = x2! m 2
opooio 11 ¥4 = H0'xd'+H1' —| -
11100 00
00001 11 0 ¥l ¥2 ¥3 vd
10001 01
01110 01 cuT

Figure 4.12: BIST implementation for c17 circuit

Generalized Column-Matching Example

Three exact column matches have been found for the one-to-one asgigmrie
previous example, whereas the decoder for the remaining two variahhg$ llad to be
synthesized. Now let’s try to let the LFSR run for more thamtimemum required 10
cycles and see if more exact matches will be achieved.

It can be found experimentally, that when the LFSR generating@oiial and seed
are retained from the previous example, 19 LFSR cycles arecheednatchall the
columns. Thus, no additional logic is needed to build the output decoder. khF3g
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one of the possible assignments of the test patterns is shownoifbeational logic
of the Output Decoder is completely eliminated, since the decodemied just as a
permutation of wires in this case. For comparison, let us notathexthaustive test set
having an equally simple output decoder would require 32 patterns. Thecekaun
matches found for our example are obvious from the final solution.

x0-x4

——

00010

00001

10100

01010 ¥0-yd Final Assignment R’ i i
00101 — esulting Logic
10110 01111 10110 01111

01011 oooo1 00011 00001

10001 01101 10111 01101 y0 = =l
11100 10001 01011 10001 ¥l = x0
01110 01110 10100 01110 ¥2 = x2
00111 10111 01110 10111 ¥3 = xd
10111 00101 00111 00101 yd = %3
11111 10011 01010 10011

11011 00011 00010 00011

11001 01000 10001 01000

11000

01100
00110
oooi1

Figure 4.13: Assignment of rows for c17 circuit

4.6 Column-Matching Exploiting Test Don't Cares

Until now, we have assumed that thematrix contains only test patterns in their
compacted form, i.e., minterms. Some ATPG tools produce test patientening
don’t care values (DCs). Such a test is often significantlgdothan the compacted
one, but on the other hand, the don’t cares can be advantageously exploited in the output
decoder design, since they give more freedom to the matching process.

The process of constructing the output decoder is in this casarsimthe previous
one: all theT matrix vectors are to be assigned to @enatrix vectors, whiles< p.
TheT matrix contains don’t care values, tBematrix contains only minterms, since
particular vectors are produced by the PRPG.

When the don’t cares are not present in the test set, each ekthesttors can be
assigned to a set of PRPG patterns at every instant, whileeak sets are disjoint.
When the test don’t cares are present, these sets become non-dibjgiid because it
cannot be decided what values should be assigned to the don’t cae uatiell the
matches are performed. Thus the algorithm consists of two linkekdakPproblems.
Using the set system approach here is rather time-consumtingugh using it is not
impossible. The disadvantage of this approach consists in the needichtilugplof the
C matrix vectors after every column match, if they are assign T matrix vectors
containing don't cares.

An efficient heuristic based onbdocking matrixB has been proposed in [Fis03a].
The blocking matrix is a binary matrix (it contains only “0” anti’ values)
of dimensions, s). Thus, it has as many columns as thereTareatrix rows and as
many rows as there a@matrix rows. The value "1" in the c@lk, I] indicates that the
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k-th C matrix row may be assigned to théh T matrix row, "0" value indicates the
contrary.

At the beginning of the algorithm all tiiBematrix cells are filled with "1" value, since
there are no restrictions for row assignments. After-theC matrix column is matched
with thej-th T matrix column, thé8 matrix cells k, I] are set to "0" when thieth input
row contains in tha-th column the opposite value to th¢h output row in thg-th
column. Thus, rows that contain opposite values in the matched columns bannot
assigned to each other.

B[k, I] := “0” when C[k i] # T[l, j] OT[l, j] # don’t care) 4.1)

If the negative column match is to be performed, Bhmatrix cells are set to “0”
when equal values are present in the respective positions.

When making the row assignment, distinct rows have to be assmmeedh other. It
is a trivial problem for a test without don’t cares, since tldees not exist 8 matrix
row having “1” value in more than one column (one PRPG code word caenot b
assigned to more than one test pattern). The final assignmentahgsts in selecting
one row from the possible ones for each of the columns. Unfortunatehe iColumn-
Matching exploiting don't cares th® matrix rows may have ones in more than one
column, since some values in the test patterns will be deternmteedhee assignment.
This makes the assignment NP-hard. An example of an assignnstwe in Table
4.2. Here all the output vectorst§ are to be assigned to the LFSR vectarsscThere
are two possible solutions to this problem:

Table 4.2: Row assignment using a B matrix

|| t3|ts] s
ol 110] 0] 1] 0 h-a
|0l 1] 0] o] 0 -gorg
|0 1] 0] 0] 0O ts— g
wlo| o] 1] o] o th— G
|0 0] 1] 0] 1 ts— G
lo| 0] 0] 1] 1

Since theB matrix is mostly rather large, solving this problem exabtidomes
impossible. Thus some heuristic has to be used. Selecting a plgmethm is of a key
importance for reaching good results. For instance, if an assigmiento t, in Table
4.2 was chosen at the beginning, the algorithm would yield no solutione~ibert be
any possible assignment for t

4.6.1 Row Assignment Algorithms

It would be often extremely time-consuming to solve the row assgt problem
exactly, thus greedy incremental heuristic is used. Since them@eMatching
algorithm needs to solve this problem after performing every colmaich, the row
assignment heuristic should be as fast as possible. Moreover, treepubogss is being
guided by the result of the assignment. If the assignment tladsColumn-Matching
will stop. Thus, the algorithm should be precise enough as wellhiSoreason several
methods has been proposed and the results compared.
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One method (LCLR 4east in column, least in rows a simple greedy heuristic. The
B matrix column with the least number of “1” values is found (bseahe respective
T matrix vector could be difficult to assign) and the row having avdlue in this
column and the least “1”s in other columns is assigned to it (be¢hasespectivE€
matrix vector is not so “useful” for other assignments). lfourmn without any “1”
value is found at some instant, the algorithm returns a faihdehee Column-Matching
process is stopped (when no backtracking is used). The algorithm hasconeeded
in finding an assignment in this case, however, there is still dogibgshat there exists
a solution.

The second, more sophisticated heuristic construst®@ng matrix from which the
best row assignments are being picked-up. It is similar t@® thetrix, but any values
can be contained in its cells. Each cell contains a value defirfisgpre” of a particular
row assignment. It is computed by dividing the number of onesaspectiveB matrix
row by the number of ones in a respect®anatrix column. An assignment having
a biggest score is done, the matched row and column is removed fr@mtaeix and
all the values are recomputed. The process is repeated urgdtaibtumns are assigned
or an all-zero column is encountered.

The efficiency of the algorithms is shown on the results obtaiggatdcessing the
s526 ISCAS benchmark [Brg89] having 24 inputs, 1000 LFSR vectors were to be
matched with 20 tests. We have run the Column-Matching algo8@0ntimes in its
thorough search mode (see later), while in each step a rommssigwas performed
repeatedly 1000 times, using both methods, plus a purely random assigniseanea
just for a comparison. In those 300 iterations 80 000 runs of the roywasst
algorithm were required, from which 6500 were successful (these aasolution).
Figures 4.14 and 4.15 show the histograms of the frequencies of thesfulchés
in the 6500 row assignment passes for the three algorithms. Figuresal&ase-up
view on the unsuccessful tries.

N
6000 1 SULCIR
| Scoring matrix
5000 E—= Random
2 4000 4
c
5 ]
o 3000 4
(0]
L‘E B
2000 4
1000 4
! S = = = = .
0 200 400 600 800 1000
Hits

Figure 4.14: Row assignment histograms
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Figure 4.15: Close-up view of Fig. 4.14

We can see that in most cases both the LCLR and scoring rhated heuristics
found a solution, while the randomized method was not that successfutuRastj
LCLR found an assignment in 97.3% of the possible cases, thegcoatrix based
method in 97.6% and the random method in 57.2% only. The average runtiimésewit
percentage of the efficiency of all the heuristics are showiable 4.3. All the
experiments were run on a PC with a 1200 MHz Athlon processor.

Table 4.3: Row assignment algorithms

algorithm successfulnessRuntime
LCLR 97.3% 0.28 ms
scoring matrix | 97.6% 2.94 mg
random 57.2% 0.09 ms

It can be concluded from these results that both the LCLR anmhgauatrix based
algorithms are quite efficient, unlike the random approach. Both tiwithins are
almost equally successful, however the scoring matrix basétbdé more than 10
times slower. For this reason, the LCLR row assignment #hgotias been chosen as a
good compromise. Since for all the columns ofBhmatrix rows values in all the rows
have to be examined in a case of a successful assignment anartherpossible
assignments, the asymptotic time complexity of the algorith®(ps’). The algorithms
are described in [Fis04d] more thoroughly.

4.6.2 Column-Matching Algorithms

Three major algorithms driving the whole Column-Matching process haee be
developed:

 Exact search

* Thorough search
» Fast search
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In theexact searctlall the possibilities for all the matches are explored, whiwiays
yields the optimum solution, in terms of the number of matches achiélowever, the
time complexity of this algorithm grows exponentially with the bemof output
variables, thus it is not feasible for practical problems amdoit’t be discussed any
more in this Thesis.

The “simplest” possible column matching method can be describedl@ss: when
a non-valid column match is encountered (during the row assignment prabess
whole process is stopped. This is the fastest algorithm developsdoften suitable
for problems with a large number of variables. Because of the smigrement is
repeated after each column match and there coulddmumn matches at most, the
asymptotic complexity of this algorithm is IQ¢s%). It corresponds to a case where all
ther column matches were found. This algorithm will be denotedfast @earch

The result may be further improved by trying other possitslitee a column match
if one column match fails. This would significantly increase theime. This algorithm
was named thorough search The asymptotic complexity increases tonﬁi%p-sz),
however the best-case complexity is equal toféis¢ searchcase. A typical progress
of a thorough search is shown in Fig. 4.16. Here the s526 ISCAS beakclBrg89]
having 24 inputs was solved. The test set consisted of 20 vectors amdhadeto be
matched to 1000 LFSR vectors. A simfast searchwould end after 3 column matches
only (after 30 ms), while thilnorough searchan for 198 cycles, but reached 21 column
matches (in 200 ms). It is obvious from this example that the thoroegiths
significantly outperforms the fast search in the quality.

20-
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20 tests
o 1000 LFSR vectors
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Figure 4.16: Thorough search progress

Several modifications can be yet done to improve the result quality.s&lection
of column matches is being done purely at random. Thus, when the whole
Column-Matching process is repeated several times, therechsrace that a better
solution will be obtained. After every repetition the number of coluratches reached
iIs compared with the previously reached one, and if it is biggerréicorded as the so
far best solution. For thiast searchit is the only possibility to reach good solutions.
Here the Column-Matching can be even further sped up: it is notsaegde perform
arow assignment after each column match — the number of up to nowedbtai
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maximum of the column matches is performed (randomly) and tafént is checked
for validity (by making a row assignment). When it is not valid whole solution is
rejected, since it cannot improve the overall solution. rBpetitive fast searcimight

be a good way to improve the result quality for problems withrgelaaumber
of variables, however it often never outperforms the thorough searchms térthe
number of column matches reached.

The improvement of the number of column matches reached is visualized
by Fig. 4.17. Here the same problem as in the previous examplsolvas by a fast
search repetitively 1000 times. Only 5 column matches were obtainge first run,
however in the 462 pass 19 matches were found. More matches were not found in the
following passes.

The whole process had run 11.5 seconds. Let us remind for comparison that the
thorough search had found 21 matches in 200 ms.

204

16+ s526, 24 inputs
20 tests
1000 LFSR vectors
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Figure 4.17: Repetitive fast search

4.6.3 The Basic Fast Search Algorithm

The summary of the basifast searchColumn-Matching algorithm is presented
in this subsection.

Since the number of thé matrix rows is often much higher than the number of the
T matrix rows, finding several initial column matches is a tripiblem: almost any
two columns can be matched, because there is a big choice of pessigements
for theC matrix rows. Thus the selection of the rows to be matched is done at random.

When two columns to be matched are selected, the match must tieecthe
for validity using aB matrix (by performing the row assignment). Thus, after each
column match the row assignment has to be performed to determine mthetheatch
is valid. If the assignment fails the Column-Matching proces$srminated and the last
valid assignment is considered as the final result. The rownassig forms a truth
table, which has to be further processed. Firstly, the test dares in the matched
matrix columns are substituted by “0” and “1” values accordinghe values of the
correspondindgC matrix columns. Since most of the tests including don’t caresare
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in a compacted form (e.g., there is one test pattern for each sfaliaults), some test
compaction technique [Ham98] should be applied after the Column-Matchimg). T
often reduces the length of the BIST, and it reduces the amoum olutput decoder
logic as well. Then the matched output variables are removed lfr@rmnuth table and
the values of the remaining output variables are synthesized &y standard Boolean
minimizer [Bra84, Fis03b].

The algorithm can be described by the following pseudo-code. The ioptle
algorithm are the&C andT matrices, the output is in the form of a minimized Boolean
function.

Algorithm 4.2: Fast Search Column-Matching

ColumnMatching(C, T) {

for( k=0; k< C_matrix_rows; k ++) I initiallize B matrix
for( 1 =0; | < T_matrix_rows; | ++)
B[k, I ]="1"
A= 0O;
do{
i =random( C_matrix_columns ), 1l randomly select columns
j= random( T_matrix_columns );
for(  k=0; k< C_matrix_rows; k ++) 1 modify blocking matrix
for( | =0; | < T_matrix_rows; | ++)
if(T[ Lj ] #DC&&C[ k,i 1 #T[ I,j DB[ kI ]1="0%
A =A; 1l make a backup of the row assignment
A = MakeRowAssignment(B); // do a row assignment
} while (A # FAILED);
Substitute_DCs(T); 1l substitute test DCs with “0” or “1”
CompactTest(T); 1 make test compaction
ExtractMatches(C, T); I remove matched outputs
F = Minimize(A") 1l synthesize the remaining logic
return F;

The Thorough Search algorithm is very similar to this one, butne-step
backtracking is involved there.

4.6.4 Overview of the Column-Matching Alternatives
in Mixed-Mode BIST

It has been assumed up to now that applying the column match meansiwarbar
to implement one output. Obviously, when no column match for a particular asitput
found, some combinational logic has to be added to the Output Decoder. For a
mixed-mode BIST, namely when the test is divided into the pseudo-ra@atom
deterministic phase, the Switch is present as well. The aitm minimize both the
Output Decoder and the switching logic. There are five alterndtra@$an occur when
designing the logic for a particular output decoder output:

» There has been found a column match between the output vatiable the input
variable ;. Theny, will be implemented as a wire, without any output decoder
logic. Moreover, there will be no switching logic for this outpbe CUT is being
fed directly by an LFSR output. In the example in Fig. 4.4 it ic#dse of/y andy;.
Such a case will be denoted adir@ct column match

» There has been found a negative column match between the output waraatile
the input variablex. Then the decoder logic fof could be implemented as a
negator. The switching logic foy; will be a multiplexer. In praxis, it is more
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advantageous to join these two gates into a single XOR gatée lexample

in Fig. 4.4 it is the case ok. Such a case will be denoted amegative direct
column match

The variabley, has been matched with tlevariable, whilei # j. If the first BIST
phase weren't preseny, would be implemented as a wire. In mixed-mode BIST
there has to be a multiplexer switchipngoetweenx; andx LFSR outputs added.

In Fig. 4.4 it is they; case. Such a match will be denoted asnalirect column
match

An indirect negative column matcls a similar case. Here an inverter has to be
added to the matched LFSR output. However, D flip-flops used in the LESR a
often provided with the negated output as well, so no additional inverter Wweuld
needed in this case.

No Column-Matching was found for somg. Here the output decoder has
to synthesize proper output values, while an additional multiplexer has to be present
in the switching block. This is the caseypin Fig. 4.4.

The first case mentioned is, of course, the one with the 1e&3 Bilea overhead,

in the latter ones the overhead gradually increases. Thus, the intnti@algorithm
should be to prefer the direct matches, and only when no such are polsilohelirect
column matches should be made. This is the way how the Column-Matchinstibe
selects the candidates to match — it gradually scans all thatcimed output variables
for a possibility for a direct column match. When one is found, itifopeed and the
search continues. When there is no possibility for a directhmtte indirect ones are
being made. When no matches are possible, Column-Matching stops ansuttiegre
outputs are synthesized by BOOM [HIa01, Fis03b].

4.7 Multiple-Vector Column-Matching

The BIST area overhead becomes an essential issue now. For ASgGede the

area becomes more important than the design time, since thel chgpadlesign time
significantly surpasses the BIST design time. Thus, any impravewighe BIST

design methods, interms of the area overhead, is beneficial. Suchpasvément

of the Column-Matching algorithm is proposed in this Subsection. A signifiarea
overhead reduction is involved, for a cost of a longer design titme.iMprovement
consists in a generalization of the basic method, to fully exgdpabilities of ATPGs.
The ATPG generates more than one test vectors for each teslteoh the proposed
enhancement, thus the algorithm has more freedom in generatingstheetuence
[FisO6a].

4.7.1 ATPG Modes

The Column-Matching method is so universal, that any test vectocausde used.

Most of the available non-commercial ATPGs can be influenced, sahénatproduce
various sets of test vectors. The only and necessary requiremére #FPG tool used
is the capability to produce test vectors for a specified set of faults.

In the most general case, possible test sets that can be obtagdok divided as

follows:
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1. Noncompacted test without don’t careduch a test set is usually obtained by a
random-pattern simulation and subsequent deterministic test genefidie test
is usually long and far from optimum length.

2. Compacted test set without don't care valuétere the test comprises
of minimum of test vectors (in the optimum case), obtained after detstin
test set generation and compaction, followed by the don’t care substitution.

3. Compacted test set with don’'t caréfhe test comprises of minimum of test
vectors (in the optimum case), obtained after deterministicsetsgjeneration
followed by a compaction. The don't care values are retained. Howtheir
number is usually negligible.

4. Non-compacted test with don’t card$e test set is produced by a deterministic
test set generator only. No test compaction is executed.

5. One test vector for each faulthe test pattern generation is usually accompanied
by a fault simulation. Thus, after one test vector is produced glthia test
generation process, fault simulation is executed for this vesar faults
detected by it are removed from the processed fault liss WMais the case
assumed in the preceding cases. However, the ATPG may proceéé in t
simplest way, by generating one deterministic vector for déagh. No fault
simulation or test compaction is involved. Test vectors with manyt damé
values are usually obtained. The test set is often large, comparprgvious
cases, however many don't care values are present in theviésh is usually
beneficial.

6. More than one test vectors for each fadls a generalization of the previous
item, more test vectors for each fault can be produced, if posSitdetest is
then even longer, but offers much greater flexibility.

7. All the possible test vectors for each fadlhis is the most general case. Some
ATPGs are able to produce all the possible test vectors forfaagthHowever,
the test set size is then prohibitively large, thus such ausassly cannot be
used in practice.

The don't cares present in the test Jetatrix) are beneficial, since they bring more
freedom to the column matches choosing, and consequently reducdSheaia
overhead. Thus, the test generation alternatives 3-7 are more gewarstahan the
topmost ones.

Atalanta [Lee93] ATPG tool was used throughout this work. It is tbgenerate all
the test sets listed above. However, is has been found during tharexpsrithat the
test set compaction method, which is used in the Atalanta, does ranperéll, thus a
new static compaction method based on joining test vectors was introduced.

Then, the Column-Matching algorithm has been extended to be able te hesidl
sets having more than one test vectors for each fault, to improvgutiigy of its
results.

4.7.2 Simple Test Set Compaction
Due to the fact that the test set compaction performed BYT®E is often lacking
in quality, a new static compaction method was introduced to the BiSi§rdprocess.

Maximum of the don’'t care values in the test set should be rdtafter the
compaction. An exact test compaction algorithm is usually not apm@icsibke its time
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complexity is prohibitively large (it is an NP-hard problem). Trauseuristic method
has to be used.

The proposed algorithm is simple but effective. It is based on jopang of test
vectors. Two test vectors may be joined, when they have a non-artgrgection. The
result of their joining will be that intersection. Considering thégst vectot; detects a
fault setF; and a test vectdr detects a fault sdt,, their intersectiort; n t, detects
faultsF, O F».

Let us have a test set comprisingvofectors. Each vector is compared with each
other and the size (dimensionality) of their intersection is compufea vectors
having the “biggest” intersection will be joined. In other wordsy tectors differing
in at least one bit cannot be joined (since they have an emptyentiery; two vectors
having minimum collisions with a don’t care on one side and a ‘O’ ovalle on the
other side are joined. Test vectors loosing minimum number of dorgs dar their
joining are joined. This is being repetitively performed until thereo chance to join
any more vectors. The complexity of such an algorithm ig)Ogvhich sometimes
means a significant computational time increase. The numbestof/detors can be
significantly reduced by this method, see Table 4.4. FirsX, pseudo-random patterns
were simulated. Test sets for the undetected faults were camipyitalanta ATPG
[Lee93]. The ATPG was set to generatectvIt’ vectors for each fault. The total
number of test vectors is shown in tr®TPG' column. After the compaction, their
number was reduced tccdmpact. The amount of don’t care values in the final
compacted test set isshown in the last column. It can be wellrvedsehat
by increasing the number of test vectors the number of don’t caresades. This is
due to the fact that the compaction algorithm preferably selexdtors having many
don’t cares to be joined. However, this “disadvantage” is compenisgtdae freedom
offered by the number of vectors more than enough.

Table 4.4: Test compaction results

bench PR | vct/flt ATPG| compact DC
c1908 1000 | 1 42 36 50 9
10 382 340 25 %
c2670 10K | 1 201 74 83 %
10 1824 | 825 77 %
c3540 1000 | 1 31 25 729
10 117 101 65 %
100 | 663 555 56 %
c7552 10K | 1 215 106 69 9
10 2141 | 1206 68 %
$1196 1000| 1 93 55 59 ¢
100 | 392 259 56 %
s1238 3000 1 45 33 579
100 | 140 95 52 %
s5378 10K | 1 23 19 92 %
100 | 289 258 92 %
s9234.1 | 50K | 1 321 99 829
10 2899 | 1003 81 %
s13207.1] 10K | 1 466 74 96 %
10 1538 | 362 96 %

34



4.7.3 Multiple-Vector Column-Matching Principles

The more “freedom” has the Column-Matching algorithm in selectidgheomatches,
the better it performs. Particularly, more don’t care valuestientést set induce more
column matches and thus a less area overhead. Let us considangieewhere two
test vector sets are to be mapped onto PRPG patterns, oneneettepk by the 3-rd
APTG mode (compacted test set with don’t cares), the second ¢ine Bgh one (one
test vector for each fault, with don’'t cares). The second testils&e much larger than
the first one. On the other hand, more don’t care values will be presér second
one (in general). Practical examples have shown that even Wwlen dre more test
vectors to be generated by the Output decoder, the BIST ardeeagas less if the test
vectors have many don’t care values. Thus, the second case vathpéétter, in terms
of the area overhead.

The above-mentioned notion can be extended, so that there will bahlmarone test
vectors available to choose from. The aim of the Column-Matchimgitdom wouldn’t
be to synthesize all the test vectors then; the aim would be toesirghvectors that
cover all faults (from the given fault set), regardless bytwhkators. Thus, even more
freedom will be given to the matching algorithm, which yieldsdoetsults. This is the
main idea of thé/ultiple-VectorColumn-Matching

In order to adapt basic Column-Matching principles to be able to éxptoe test
vectors for each fault, several modifications have to be done. dfirall, each test
vector has to be accompanied byfaalt mask The fault mask is a binary vector
identifying faults that are detected by the test vectort,Ring fault list for the tested
circuit is determined. The size of the fault mask is then equdletmumber of faults,
each position in the fault list corresponding to one fault. A ‘1’ @ahdicates that the
respective fault is detected by the test vector, ‘O’ the raont The fault mask
is obtained by a fault simulation of the respective test vectoer Afe fault masks are
generated, all the test vectors are put together; there isedotmalistinguish between
them. Information on what vector was generated for what fault may be lost.

4.7.4 Multiple-Vector Test Set Compaction

Since the number of test vectors generated by an ATPG is aitge, Istatic test
compaction should be performed. Basically, the algorithm described ie&ins4.7.2
is used. The only modification is that after joining the test vedtair fault masks have
to be joined too. The resulting fault mask is obtained by OR-ingwbeault masks,
since faults detected by both joined vectors are detected by the resultimg vect

Even when the test set compaction reduces the freedom given tothe
Column-Matching, it has been found experimentally that it is advaouag®e perform
it. When the test set compaction is not performed, the Column-Matchirigne is
prohibitively long and usually there is no improvement in the quality of the result.

Example

Let us consider a 5-input CUT having 10 faults. The two examplevaetors
together with their fault masks will be joined as follows:

10-0- 1100101001
1-10- 0100100100
1010- 1100101101
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4.7.5 Modified Row Assignment

The basic Column-Matching algorithm remains unchanged but the rognmsst.
Since there are more test vectors detecting each faultfelieset is extremely
redundant. Thus, not all test vectors have to be synthesized by the @edpder; the
primary aim is to detect all faults now, regardless by whators. Not all th& matrix
columns have to be assigned then.

The heuristic used to solve the row assignment problem (see 4.&jliiged in this
way: the heuristic function for a selection oBamatrix column (test vector) is the
number of yet undetected faults it detects. At the beginning o&ldwithm, theB
matrix column detecting most of faults (i.e., test vector havingt M&s in the fault
mask) is selected. For this column a row having a ‘1’ value indbgertive position
in the B matrix is found, so that this row has a minimum number of ‘1’s herot
positions. It is the row@ matrix vector), that may be transformed into the required test
vector and simultaneously may be transformed into a minimum of otféesselected
column and row are assigned to each other, removed froBiriiegtrix and the detected
faults are removed from the fault list. The column selectiaepgated, until the fault
list is empty or an undetectable fault is encountered (which snean invalid
assignment). When an invalid assignment is returned, the lastrcohatch is taken
back and another column matches are tried.

Basic principles of the row assignment are outlined by the following pseudo-code

Algorithm 4.3: Multiple-vector row assignment

Assign {

set( fl );// create a complete fault list

do {
¢ = FindBestColumn(B, faultmasks, fl );
/l find column detecting most faults from fl
r = FindBestRow(B, c);

/I find a row, so that B[r, c] =1 and has a minimum of 1's

if ( r !=NULL){ /Il a row BI[r, c]=1 was found

MakeMatch( c,r );
RemoveFaults( fl , c);
I/l remove faults detected by ¢ from fl
RemoveColumn(B, c);
/l remove c from B matrix
} else return(FAIL);
} while(lempty( fl ));
return(SUCCEED);
}

4.7.6 Modified BIST Design Process

Summarizing all the modifications needed to be done to extend the d&Sgn
method to support Multiple-Vector Column-Matching, the whole process stensi
of these phases:

1. Simulation of several RR) pseudo-random patterns for the CUT and
determination of undetected faults.

2. Computation of the deterministic test patterns for these faules\byTPG tool,
generating more than one test pattern for each fault.

3. Fault simulation for each of the test vectors, i.e., computing fault masks.
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4. Test set compaction.
5. Performing the multiple-vector column-matching.
6. Synthesis of the decoder for the unmatched outputs.

4.8 Influence of the Length of the Deterministic Phase

In the deterministic phase deterministic vectors are sya#aksirom the PRPG
patterns (following the pseudo-random phase). By increasing the numi#RRG
patterns the chance to find more column matches increases. @his ie having more
freedom for selecting the PRPG vectors to be assigned to teandestic vectors.
Unfortunately, the Column-Matching runtime rapidly increases with nhenber
of vectors (see Subsection 4.6.2).

This is illustrated in Table 4.5. The benchmark name is shown inrgtecélumn.
The “PR and “Det” columns indicate the lengths of the pseudorandom and
deterministic phases, in th&W GES% and “OD GES$ columns the overhead of the
Switch and Output decoder are shown. These are then summed tdgetb&in the
total BIST combinational logic overhead, in terms of gate equivalg®M94]. The
BIST design time is shown in the last column. The experimentrwasn a PC with
Athlon CPU, on 1 GHz, Windows XP.

Table 4.5: Influence of the deterministic phase length on the result

bench| PR Det. | SWGEs OD GEs Total GEs Timqg[s]
c1908 | 1000/ 500 36 54.5 90.5 1.6
1000 | 33 48 81 4.88
2000 | 30 50 80 8.47
5000 | 30 38.5 68.5 25.78
c3540| 1000/ 200 28.5 5.5 34 0.32
500 28.5 1 29.5 0.52
1000 | 27 1 28 1.02
2000 | 16.5 0 16.5 1.47
5000 | 7.5 0 7.5 2.93
s1196 | 5000, 200 15 10.5 25.5 0.17
500 18 7 27 0.32
1000 | 10.5 6.5 17 0.48
2000 | 9 8 17 1.52
5000 | 7.5 1.5 9 2.16
10000 | 4.5 0 4.5 5.83

It can be well observed that a trade-off between theimstand area overhead can
be freely adjusted here too, according to demands of the BIST designer.

4.9 Summary Discussion on the Lengths of the Two Phases

In subsections 4.3.1 and 4.8 the influence of the lengths of the two [B1&3es
on the resulting logics and design time were discussed sdparetat was said in the
Introduction, four important aspects play role in the BIST design:
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* BIST design time

* Fault coverage

* BIST area overhead
* BIST run length

The method proposed in this Thesis offers a big scalability ithedle four aspects.
This is briefly summarized in the following table. The fault cager aspect is not
considered, since 100% s-a fault coverage is considered throughout this. The
Anyway, downgrading the requirements for the fault coverage wouckage all the
BIST design time, area overhead and BIST run length, accotigngeteds of the BIST
designer.

By increasing the length of the pseudorandom phase the number of wediéheittis
Is decreased. Thus, the number of deterministic test vectors rthateaded to be
generated in the deterministic phase is decreased as wellcéssequence of this, the
BIST design time is often significantly decreased (even ththglfiault simulation time
is higher) and the area overhead is reduced as well.

On the other hand, by prolonging the run of the deterministic phase t
Column-Matching algorithm runtime is increased, see Subsection 4l&2Zalgorithm
has more freedom in the selection of matches on the other han& ae#hoverhead
of the decoder is decreased.

Table 4.6: Influence of the test lengths

Longer PR phase| Longer Det. phase
BIST design time decreased increased
BIST area overhead decreased decreased
BIST run length increased increased

4.10 Comparison with Other State-of-the-Art Methods

In this section the proposed Column-Matching method is compared with four
different state-of-the-art methods, namely the basic bit-fixmgthod [Tou95], the
bit-fixing accompanied by a “bit-correlating” ATPG [Tou01], theWAight Weighted
Random BIST” proposed in [Wan01l] and the row matching method proposed
in [Cha03]. The comparison is shown in Table 4.7. THe columns indicate the total
length of the test, th6GES” columns give the number of gate equivalents (or 2-input
NAND gates) of the BIST combinational circuits and thie ™ columns indicate the
number of literals in the SOP form of the decoding logic (thétcBwogic is not
considered in Column-Matching here).

Let us note here, that a special kind of a PRPG (GLFSRe&inghe row-matching
approach [Cha03]. Such a circuit causes quite a large area ovémheabt cases,
formany XOR gates present. This overhead is not included in fthle. tAhe
Column-Matching method is independent on a PRPG used, in general, thilshe
cases an LFSR with one XOR gate only was used. Thus, somdiigges area
overhead of our method could be compensated by a small area of the PRPG used.

In the bit-fixing and weighted BIST methods several registiipsflops) are used.

In the Column-Matching method no flip-flops are needed.
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The Column-Matching results describe the overall test length amtuthber of gate
equivalents of the decoder. The number of GEs approximately corresfmorite
number of SOP literals, thus a comparison with the Bit-fixing andghted BIST
methods can be freely made.

The empty cells indicate that the data for the respective circuit wasaitdble.

The Column-Matching algorithm was run in the Thorough Search mode, aséng
test vector per one fault. The area overhead thus can be yet imgdrgvading
Multiple-Vector Column-Matching, for a cost of a longer algorithmtime (see Table
4.8).

Table 4.7: Comparison results

Bit-fixing Bit-fixing Weighted BIST | Row-matching Column-

[Tou95] [Tou01] [Wan01] [Cha03] Matching
Bench| TL GEs| TL lit. TL lit. TL GEs TL GEs
c880 [1K |27 |- - - - 640 21 [1K 15
c1355 [3K [11 |- - - - 1.8K [0 15K [15
c1908 |4 K 12 - - - - 4.7 K 8 3K 10.5
c2670 |5K 121 10K | 385 |8K 269 6 K 119 [5K 113

c3540 [45K |13 - - = = 48K |4 55K |15
c7552 |10K |186 | 10K | 806 |6.7K 641 | 8K 297 [8K 586

s420 |1K 28 10K |59 [14K 67 - 1K 24.5
s641 |10K |12 10K | 98 [ 768 45 77K | 6 4K 15
s713 |- > - - = = 48K |4 5K 16.5
s838 |10K |37 10K | 183 [3.1K 108 | - - 6 K 130
1196 |- - 10K | 97 16.8K |67 10K 36 [10K 6
51238 | - > - - 17K 33 - - 4K 26.5
s5378 | - > 10K [ 332 [184K |68 - - 11K 19.0

4.11 Column-Matching Results for Standard Benchmarks

Since the comparison shown in the previous table describes results fw
benchmark circuits only, a more exhaustive result table is preseete, for the ISCAS
[Brg85, Brg89] and ITC'99 [Cor99] benchmarks. For each benchmark the BIST
circuitry was synthesized in several different parametersngetGenerally, each
benchmark is processed in three ways: first, the testing sirkept low, thus the area
overhead is higher and the BIST design time is short. Then théhlehdhe BIST
phases is increased, yielding a reduction of the BIST logica forst of a longer test
time. The last result for each benchmark represents the Multgdtor
Column-Matching, where the BIST area overhead is reduced furthermoresdstraf a
bigger BIST design time. The trade-off between the testheray area overhead and
the BIST design time can be seen in the presented examples.

The “inps” column indicates the number of the benchmark inputs. TBES*
column shows the complexity of the benchmark circuit, in teoingate equivalents
[DeM94]. In the*PRand’ column the number of pseudo-random vectors needed to be
applied to the CUT to be completely tested is shown, just for cosmparlThe TL”
column gives the lengths of the pseudorandom and deterministic phaségctsHk”
column indicates the number of test vectors generated for each Taalthumber
of faults that were undetected by the pseudo-random phase is shown*umdled
column. After that the total number of deterministic test vectbes have to be
generated by the deterministic phase is shown."Wie and“DM” columns show the
number of total and direct column matches reached. The complexite @witching

39



logic is shown in théSW GES column, the complexity of the output decoder'@D
GEs”. These numbers are summed together in‘Tistal GES’ column. The runtime
needed to complete the Column-Matching process is indicated inriime “column.
The BIST area overhead is shown in the last column.

The experiments were run on a CPU AMD Athlon, 900 MHz.
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Table 4.8: ISCAS & ITC benchmarks

1%

5%

Bench | inpsf GEs PRand TL (PR + Detycts/flt| undet vcts M| DM SW GE®D GEs| Total GEs| Time [s] | Overhead
c880 60 3645 [25K 100 + 100 1 30 28 53 22 |57 12.5 69.5 0.50 19.0%
500 + 500 1 10 10 60 50 |15 0 15 0.4 4.12%
500 + 500 100 13 120160 51 |135 0 13.5 33.8 3.70%
c1355 41 |532 2K 500 + 500 1 40 13 24 6 52.5 27 79.5 3.26 15.0%
1000 + 500 1 10 1 41 31 |15 0 15 0.05 2.82%
1000 + 500 100 10 8 |41 33 |12 0 12 0.10 2.2%
c1908 33 |749 4 K 1000 + 1000 |1 51 36 28 15 |27 16 43 6.76 5.74%
2000 + 1000 |1 16 6 33 26 |10.5 0 10.5 0.27 1.40%
2000 + 1000 100 17 189| 33 31 |3 0 3 2.49 0.40%
c2670 233 [1038 |45M 4000 + 1000 |1 320 [104 |197 |166 [100.5 |146.5 247 606 23.80%
10 000 + 1000 |1 321 |74 201 [180 |79.5 77.5 157 896 15.13%
10 000 + 1000| 10 321 | 825 202 166 100.5 59.5 160 5880 15.4
c3540 50 [1469.5 |15K 1000 + 1000 |1 167 |21 50 40 |15 0 15 1.60 1.02%
2000 + 1000 |1 147 |9 50 43 110.5 0 10.5 0.35 0.71%
2000 + 1000 10 147 | 9 |50 45 | 7.5 0 7.5 3.33 0.51%
c7552 207 |3072 |>100M |5000 + 1000 |1 416 |207 |135 |28 |268.5 |417 685.5 3892 22.31%
10 000 + 1000 |1 362 |106 |152 |25 |273 250.5 523.5 1105 17.04%
10 000 + 1000| 10 362 | 1206 159 33 261 192.% 453.5 161K 14.7
s420.1 |34 |1915 |165K |1000+ 1000 |1 61 32 29 20 (21 14.5 35.5 4.34 18.54%
5000 + 1000 |1 46 19 34 21 |19.5 0 19.5 1.48 10.18%
5000 + 1000 10 46 50 |34 22 |18 0 18 5.01 9.40%
s641 54 1269.5 |200K |500 + 500 1 20 13 54 36 |27 0 27 1.16 10.02%
1000 + 1000 |1 15 14 54 40 |21 0 21 2.27 7.79%
1000 + 1000 10 15 14 |54 42 |18 0 18 14.02 6.68%
s713 54 13525 |300K |500 + 500 1 61 15 52 37 |25.5 3 28.5 1.29 8.09%
1000 + 1000 |1 53 11 54 40 |21 0 21 1.90 5.96%
1000 + 1000 10 53 126|54 41 195 0 19.5 13.36 5.53%
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Bench | inpsf GEs PRand TL (PR + Detycts/flt| undet| vcts M| DM SW GE®OD GEs| Total GEs Time [s] | Overhead

s838 67 [393.5 |[>100M |5000 + 1000 |1 101 |61 43 18 |735 33.5 107 50.3 27.19%

50 000 + 1000 | 1 91 50 51 13 |91 22 113 34.23 28.72%

50 000 + 1000| 10 91 510, 52 10 85.5 25 110.5 348 28.08%
s953 45 14585 |15K 500 + 500 1 156 |45 41 34 |16.5 11 27.5 3.43 6.0%

1000 + 1000 |1 70 25 43 39 |9 4.5 13.5 2.47 2.94%

1000 + 1000 10 70 73 44 37 12 2 14 16.83 3.05¢9
1196 32 |504.5 |200K 1000 + 1000 |1 93 55 27 25 |[10.5 45.5 56 5.53 11.10%

3000 + 1000 |1 114 |33 27 24 |12 26.5 38.5 2.96 6.70%

3000 + 1000 100 114 | 95 28 25 10.5 16 26.5 16.68 4.61%0
1238 32 |5745 |20K 1000 + 1000 |1 171 |60 27 21 |16.5 28.5 65 7.85 11.31%

3000 + 1000 |1 114 |45 27 24 |12 26.5 38.5 2.96 6.70%

3000 + 1000 10 114 | 140 28 25 105 16 26.5 16.69 4.61%0
s5378 214 121345 |50 K 5000 + 1000 |1 89 31 213 |171 |64.5 1 64.5 22.59 3.07%

10 000 + 1000 |1 63 19 214 |193 |31.5 0 31.5 7.68 1.48%

10 000 + 1000| 100 64 258 213 203 15 4 19 181.5 0.89%
s9234.1 |247 |3985.5 |10 M 1000 + 1000 |1 1674 |215 |172 |86 [2415 |6415 883 5238 22.16%

200 000 + 100(¢ 1 599 |52 224 147 |150 62.5 212.5 161 5.33%

200 000 + 100010 509 | 564 | 225 | 162 1255 66 193.5 3509 4.86%
s$13207.1|700 |5596.5 |100 K 10 000 + 1000 |1 617 |74 696 |532 |252 28 280 348 5.00%

50 000 + 1000 | 1 182 |21 700 |676 |36 0 36 12.86 0.64%

50 000 + 1000| 100 182| 31 (700 |678 | 33 0 33 42.50 0.59%
s15850.1|611 {6824 (>10M |10000 + 1000 |1 940 |313 |515 |407 |306 188 494 152 K |7.24%

100 000 + 10001 674 | 180 | 563 | 444 250.5 78.5 329 21 K 4.82%
s38584.1|1464|16454 [>1G 10 000 + 1000 |1 1890 |307 |1000 |949 |772.5 155 927.5 5600 5.64%

100 000 + 10001 1558 | 45 1000 961 754.5 16.5 771 146.18 4,689
b04 77 5455 |[15K 1000 + 1000 |1 56 37 68 54 |34.5 19.5 54 16.6 9.90%

2000 + 1000 |1 34 24 75 51 |39 4 41 7.79 7.88%

2000 + 1000 10 34 253| 76 60 255 1 26.5 71.11 4.86%
b05 35 |[518 10K 1000 + 1000 |1 65 33 28 21 |21 36 57 5.25 11.00%

2000 + 1000 |1 32 20 30 20 |225 15 37.5 2.24 7.24%
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Bench | inpsf GEs PRand TL (PR + Detycts/flt| undet vcts M| DM SW GE®D GEs| Total GEs| Time [s] | Overhead
2000 + 1000 10 32 200| 33 24 165 4 20.5 19.81 3.96%0
b07 50 |378 200 K |1000 + 1000 |1 45 41 45 29 |31.5 10 41.5 10.65 10.98%
1000 + 1000 100 45 26250 33 [255 0 25.5 148K | 6.75%
b12 126 |940.5 [5M 1000 + 1000 |1 172 128 |115 |106 |30 94 124 7730 13.18%
1000 + 1000 10 172 | 955 119 108 27 44.5 71.5 108 K 7.604
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5 BOOM — The Boolean Minimizer

5.1 Motivation

The last phase of the proposed BIST synthesis method consistsiynthesis of the
Output decoder. It is a combinational block “producing” the unmatched @Gputs.
In particular, the decoder is a multi-output combinational block haviimguts (where
n is the number of PRPG outputs) anth outputs (where is the number of CUT
inputs andm the number of column matches reached). Such a multi-output Boolean
function is described by a truth table.

This function usually has a large number of input variables, sindeRR& width is
equal to the number of CUT inputs (both the primary and pseudo-primahy$ work.
The number of its outputs is usually not that large, since manyi@uits is matched
in the previous (Column-Matching) phase. The number of inputs sonseteaehes
hundreds or thousands. Thus, standard Boolean minimizers (like ESPRB&84))
are unusable here, since their runtime is prohibitively largeudn functions. For this
reason a novel Boolean minimizer BOOM was developed. It is @apabhandle
functions having thousands of input variables in a very reasonable time.

5.2 Introduction

The problem of two-level minimization of Boolean functions is old, buelgunot
dead. It is encountered in many design environments like PLA desidti|exel logic
design, design of control systems, or design of built-in seiffBdST) equipment, and
also in software engineering, artificial intelligence problems, &he systematic
Boolean minimization methods mostly copy the structure of theinafignethod
by Quine and McCluskey [Qui52, McC56], implementing two basic phases kaswn
prime implicant (PIl) generation and covering problem (CP) soluti@meSmore
modern methods, including the well-known ESPRESSO [Bra84, Hac96], toyrtoice
these two phases because the problems encountered in up-to-date applicatioreareas oft
require minimization of functions with a prohibitively large numbgmputs. Also the
number of don't care states is mostly very large, hence thderm minimization
methods must be able to take advantage of all don’t care statemitwnumerating
them.

One of the most successful Boolean minimization methods is ESRREBS84,
Hac96] and its later improvements. ESPRESSO-EXACT [Rud87] waslaped
in order to improve the quality of the results, mostly at the expehseuch longer
runtimes. Finally, ESPRESSO-SIGNATURE [McG93] was developealaating the
minimization by reducing the number of prime implicants to be psecks
by introducing the concept of a “signature”, which is an intei@eodf all primes
covering one minterm. This in turn was an alternative name givethetaconcept
of “minimal implicants” introduced in [Ngu87]. Other Boolean minimiaatimethods
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exploiting the implicit set manipulation techniques were proposed in, [Egu92,
Cou93]. The idea of meta-products was proposed, which allows the mawoipuwiéi
extremely large sets of PIs.

A sort of a combination of prime implicant (PI) generation vétisolution of the
covering problem (CP), leading to a reduction of the total numbelsafdnherated, is
also used in the BOOM (BOOlean Minimizer) approach proposed heranpartant
difference between the approaches of ESPRESSO and BOOMhis waty how they
work with the on-set received as a function definition. ESPRESS®ituase an initial
solution, which has to be modified (improved) by expansions, reductionspetthe
other hand BOOM uses the input sets (on-set and off-set) onlyreferance that
determines whether a tentative solution is correct or not. Thagvsalreducing the
dependence on the original function coverage. The second main differetice is
top-down approach in implicant generation. Instead of expanding the stules
in order to obtain better coverage (like in ESPRESSO), BOOM redheesniversal
n-dimensional hypercube until it no longer intersects the off-set, while it€agemany
1-terms of the source function as possible. This phase is denoteGx$Seaarch and
represents the most innovative idea of the proposed method. Beyond thisgtekeme
commonly known algorithms (Implicant Expansion, Covering Problem solutior), et
are used together with the CD-Search to obtain the final solution.

The algorithm is efficient above all for functions with a &rgumber of input
variables, where other minimization tools often fail to give a result in amabke time.

The principles of the proposed minimization method were published sO(Fi
FisOla, FisO1b, FisOlc, FisO2c, Fis03b, Fis03c].

5.3 Problem Statement

Let us have a set ®fBoolean functions af input variablesFi (X1, X%, ... %), F2(X1, X,
ce K)y - B(X1, %, ... 2%), Whose output values are defined by truth tables. These truth
tables describe then-setF(xi, X, ... %) and off-setRi(x1, X, ... %) for each of the
functions /. The terms not represented in the input field of the truth tablémplicitly
assigned don't care values for all output functions. ddwt care seDi(x1, X, ... %)
of the functionF is thus represented by all the terms not used in the inpubfptre
truth table and by the terms to which don't care values argnassin thei-th output
column. The don’t care values can be also specified explicitlyeirirtith table. Listing
the two care sets instead of an on-set and a don't care set, which is usualMGNC
benchmarks [MCNC], is more practical for problems with adangmber of input
variables, because in these cases the size of the don’t clweasdy exceeds the two
care sets. We will assume timais of the order of hundreds and that only a few of the 2
minterms have an output value assigned, i.e., the majority of thermsare don't care
states. Moreover, using off-set in the function definition simglitbecking whether
a term is an implicant of the given function. Without the exptiffiset definition, more
complicated methods using, e.g., tautology checking as in ESPRES&84]Bmust
be used, which slows down the minimization process. And, most importaxdist/ye
such many-input incompletely defined functions specified by onasdsoff-sets are
to be minimized to design the Output Decoder.

The task is to minimize the multi-output functioff so that the output of the
algorithm will be an SOP (sum-of-products) expression describmdutiction, while
the complexity of the resulting SOP form should be kept minimal.riiéasure of the
complexity is sometimes vague, since it depends on the final ireptation,
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technology mapping, etc. Almost any quality criterion can be Spedn the proposed
method, since it is very flexible.

5.4 BOOM Structure

Like most other Boolean minimization algorithms, BOOM consistéwaf major
phases:generation of implicant{PIs for single-output functions, group implicants
for multi-output functions) and the subsequeatution of the covering problenThe
generation of implicants for single-output functions is performeavindteps: first the
Coverage-Directed Search (CD-Sear@®nerates a sufficient set of implicants needed
for covering the on-set of the source function, and the subselquglitant Expansion
(IE) phase converts them into PlIs.

Multi-output functions are minimized in a similar manner. Each of ahgput
functions is first treated separately; the CD-Search amh#Ses are performed in order
to produce primes covering all output functions. However, to obtain sfasatiry
solution, we may need implicants of more than one output function thabapimes
of any (group implicants). Herémplicant Reductior{IR) takes place. Then ti@roup
Covering Problemis solved and th®utput Reductions performed. Fig. 5.1 shows
a block diagram of the BOOM system, where each block correspandsné
minimization step and the data sets described between these tbockspond to the
products of these steps.

CD-Search

T
Implicants
p\l-

Implicant Expansion

Pls

Implicant Reduction

Group implicants

Covering Problem Solution

[
Neoessar},\/blmplioants

Output Reduction

. T
MInImUT Caover

Figure 5.1: Structure of the BOOM system

The BOOM system may improve the quality of the solution by temeahe
implicant generation phase several times and recording alteftfenplicants that has
been found. At the end of each iteration a set of implicants tkaffisient for covering
all the output functions is obtained. In each of the following itemati another
sufficient set is generated and new implicants are addeuetprevious ones (if the
solutions are not equal). This process is treated more thoroughly in Section 5.6.
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5.5 Coverage-Directed Search

5.5.1 Basis of the Method

The idea of combining implicant generation with the solution of the covering problem
was the basis of the Coverage-Directed Search (CD-Searthyanesed in the BOOM
system. This consists in a search for the most suitablalditénat should be added
to some previously constructed term. Thus, instead of increasing tle@sion of an
implicant starting from a 1-minterm, ardimensional hypercube is being gradually
reduced by adding literals to its term, until it becomes anigaoi of /. This happens
at the moment when the resulting hypercube does not intersect any O-term.

The search for suitable literals that should be added to a tedimetded towards
finding an implicant that covers as many 1l-terms as possible. Tusidhe implicant
generation starts with selecting the most frequent literal tf@rgiven on-set, because
the (-1 dimensional hypercube covering most of 1-minterms is describdiehynast
frequent literal appearing in the on-set. Thel) dimensional hypercube found in this
way may be an implicant, if it does not intersect any O-tdfnthere are some
O-minterms covered, another literal is added and it is verifieetiver the new term
already corresponds to an implicant by comparing it with Odehat may intersect this
term. Again, the literal appearing in most of 1-terms is sadecAfter each literal
selection the terms that cannot be covered by any term cowgfdéing selected literal are
temporarily removed from the on-set, for more efficient searblesd@ are the terms
containing that literal with the opposite polarity. Literals gradually added to a term
under construction, until an implicant is generated. Then the teretasded and the
1-terms that are covered by this term are removed fronotk&et. Thus, a reduced
on-set containing only yet uncovered terms is obtained. Now the wholedprecs
repeated from the beginning. The search for implicants continogkthe whole on-set
is covered.

The output of this algorithm is a set of product terms covering-tdfms and not
intersecting any O-term. This algorithm is greedy and thesbtained implicants need
not be prime. In order to expand them into primes, the IE phase mpstfbemed after
the CD-Search.

The basic CD-Search algorithm for a single-output function eaddscribed by the
following function in pseudo-code. The on-set (F) and the off-set @&}hesr inputs
to the algorithm; the output is the sum of products (H) that covers the given on-set.
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Algorithm 5.1: The CD-Search

CD_Search(F, R) {

H= 0O /I H is being created
do
F =F I/l F'is the reduced on-set
t =1, I tis the term in progress
do
v =most_frequent_literal(F )
t =t.v;
F' =F’ —cubes_not_including( t);
while( t nR # 0O)
H=H O t;
F=F -F;
until (F == [);
return H;

5.5.2 Immediate Implicant Checking

When selecting the most frequent literal, it may happen that twwoe literals have
the same frequency of occurrence. In these cases either sekedted at random or
another decision criterion is applied — namely ithenediate implicant checkin@ he
iIdea consists in constructing terms as candidates for impliogmsiltiplying all newly
selected literals (those with the same frequency) by the qudyi selected one(s).
Among these terms only implicants (if any) are selected lamdetst is rejected. When
there are still more possibilities to choose from, one is taken at random.

Sometimes this feature prevents a term from being unnecgsSardlonged”,
because it would have to be “shortened” during the IE phase. Tdwtsefif using this
immediate implicant checking are as follows:

* The runtime of CD-Search and the whole minimization runtime is decreased
* The number of Pls that are generated is slightly reduced.

This can be illustrated by Tab. 5.1. A single-output function having 20 input variables
and 500 defined terms was minimized in 1000 iterations (see Subs&djorin the
first experiment, immediate implicant checking was not usedeviimithe second it was
used.

Table 5.1: Immediate implicant checking effects

not used used
Total CD-Search time [s] 318,9 265,1
Total minimization time [s]| 6688,3| 4782|8
Number of Pls found 27194 | 21741
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5.5.3 CD-Search Example

Let us have a single-output incompletely defined Boolean functiorerofirtput
variables xp..xp and ten defined minterms given by a truth table Tab. 5.2. The
1-minterms are highlighted.

Table 5.2: CD-Search Example (1)

var: 0123456789

0000000010 1
1000111011 1
0000011001 1
1111011000 0
10110011000
1111000100 1
0100010100 0
00110110110
0010111100 1
1110111000 1

CoNOUOMWNEO

In the first step the occurrence of literals in the 1-mimgeis counted. The “0”-line
and “1’-line in Tab. 5.3 give the counts yf andx; literals respectively. The most
frequent literal is selected.

Table 5.3: CD-Search Example (2)

var: 0123456789
0: 343 322444
1: 3231344222

The most frequent literal iss' with five occurrences. This literal alone describes a
term that is not an implicant, because it covers tAenBiterm (0-minterm) in the
original function. Hence another literal must be added. When searfdririge next
literal, we can reduce the scope of the search by suppressingekms containing the
selected literal with the opposite polarity (in Tab. 5.4 shaded dark)in#licant
containing a literaks' cannot cover the"s5minterm, because it contains tkeliteral.
Thus, this minterm is temporarily suppressed. In the remainingntemms the most
frequent literal is found.

Table 5.4: CD-Search Example (3)

var: 0123456789
0000000010 1
1000111011 1
0000011001 1
1111011000 0
1011001100 0
0100010100 0
0011011011 0
0010111100 1
1110111000 1

©CoNoGA~MWNEO

var: 0123456789

0: 3 @M3-211 @33
1. 212-3 122
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As there are several literals with maximum frequency of occurrengé, &s( Xs, X7'),
the second selection criterion (immediate implicant checking) mispplied. These
literals are tentatively used as implicant builders and four prddutis are generated
(using the previously selected literal: X3'X1’, X3'Xs, X3'Xs, X3'X7"). Then it is checked
for which of them are already implicants. The te@ws is not an implicant (it covers
the 6" minterm), so it is discarded and among the remaining thnews teme is selected
at random, e.gxs'Xs. This implicant is stored and the search continues.

The search for literals of the next implicants is describedah. 5.5. We omit
minterms that are covered by the selected impliggxg (dark shading) and select the
most frequent literal in the remaining minterms.

Table 5.5: CD-Search Example (4)

var: 0123456789
. 0000000010 1

0

1 10001110111
2 0000011001 1
3. 1111011000 0

4. 10110011000

5. 1111000100 1

6. 01000101000

7. 00110110110

8
9

0010111100 1
1110111000 1
var: 0123456789

0: 1111 EEA1E
1: 1111000110

As seen in the lower part of Tab. 5.4, there are four equal poss#ilgd one is
chosen randomly — e.gs'. In a similar way we can find another literab'{ needed
to create an implicant covering the remaining two 1-minterms.

The resulting expression covering the given functiog'g + Xs'Xg'.

5.6 Iterative Minimization

Most of current heuristic Boolean minimization tools use detertiangggorithms.
The minimization process then always leads to the same solutioer, mend how
many times it is repeated. On the contrary, in the BOOMeBysthe result
of minimization depends to a certain extent on random events, becaus¢heteare
several equal possibilities to choose from, the decision is mademdy. Thus there is
a chance that repeated application of the same procedure to therséeen instance
would yield different solutions and thus we can pick out the best seldéoreover,
the Pls and group implicants can be cumulated during the process andraftetive CP
solved using all of them, which sometimes yields a better final result.

5.6.1 The Effect of the Iterative Approach

The iterative minimization concept takes advantage of the fattetch iteration
produces a new set of implicants sufficient for covering all rihde This set
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of implicants gradually grows until a maximum reachableiseibtained. The typical
growth of the size of a Pl set as a function of the numbereddtibns is shown
in Fig. 5.2 (thin line). This curve plots the values obtained during theimolof a
single-output function having 20 input variables and 200 care minterms. Tibalbye
the more primes we have, the better is the solution that can be dfiendolving the
covering problem, but the maximum set of primes is often extrelagdg. In reality,
the quality of the final solution, measured by the number o&lgen the resulting SOP
form, improves rapidly during first few iterations and then remaimshanged, even
though the number of PIs grows further. This fact can be obseméd.i5.2 (thick
line).

16000

I Pls - 120
14000 | /
12000 | 4110

10000

8000 -

SISy

6000

Prime Implicants

4000 - 80

2000

Literals

0 . 1 . 1 . 1
o ™ 10000 20000 30000

lterations

Figure 5.2: Growth of Pl number and decrease of SOP length during iterate
minimization

It is obvious from curves in Fig. 5.2 that selecting a suitable monid

for terminating the iterative process is of key importancetiier efficiency of the
minimization. The approximate position of the stopping point can be found
by observing the relative change of the solution quality duringrakewensecutive
iterations. If the solution does not change during a certain numb&raitions (e.g.,
twice as many iterations as were needed for the last impemtgnthe minimization is
stopped. The amount of elapsed time may be used as an emergerioy e case

of unexpected problem size and complexity.

5.6.2 Accelerating the Iterative Minimization

When the CD-Search phase is being repeated, identical impliasntguite often
generated in different iterations. These are then passed to the Impkpanisin phase
(see Subsection 5.7), which might be unnecessarily repeated. To ptieenall
implicants that were ever produced by the CD-Search are storede I-buffer
(Implicant buffer). A diagram of the whole minimization algoritfion a multi-output
function is shown in Fig. 5.3.
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Figure 5.3: Iterative minimization schematic plan

Each newly generated implicant is first looked up in the I-bufet, if it is already
present, its further processing is stopped. Otherwise it is Stotsath the I-buffer and
E-buffer (Expansion buffer). The E-buffer serves as a storagemicants that are
candidates for expansion into Pls. After the expansion, they areveenfrom the
E-buffer. Then they are reduced to group implicants and, after du@imitylominance
checks, the newly created group implicants are stored in the R-KiR&xuced
implicants buffer). Finally, the covering problem is solved usihthe implicants from
the R-buffer. There are separate |- and E-buffers for eagbutodidr multioutput
functions. The R-buffer is common for all.

The main implementation requirement for the I-buffer is a high -lgpkspeed,
enhanced especially by early detection of an absence of a term. A nogelrstrwhich
was named &ree bufferis proposed here. The buffer is structured as a ternary iitee w
depthn. During the search in the tree, the direction akthielevel is chosen according
to the type of occurrence (0,-,1) of tke¢h variable in the searched term. The presence
of an implicant is represented by the existence of its correspprieiaf. The tree is
dynamically constructed during the addition of implicants into theebufn example
of such a tree fon = 3 is shown in Fig. 5.4. The buffer contains implicants 0-0, 10- and
11-. If, e.g., an implicant 0-1 is looked for, the search will failhe node 0-, where no
path leading to O-1 is present.

Figure 5.4: I-buffer tree structure

5.7 Implicant Expansion

As mentioned above, the implicants constructed during the CD-Seaechnot be
prime. To reduce the number of implicants needed to cover athmk-tef the given
function, their dimension has to be increased by the implicant expafi&). The
expansion is done by removing literals (variables) from the teiien no literal can
be removed from the term any more, we get a prime implicant (PI).
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There are basically two problems to be solved in connection withicampl
expansion. One of them is the mechanism that effectively chelckther a tentative
literal removal is acceptable. The other is the selection ofittrals and the order
in which they are to be removed from the implicant term. First letissuss the
checking mechanism.

5.7.1 Checking the Removal of a Literal

Removing a variable from a term doubles the number of mintermsetbby the
term. The newly covered minterms may be 1-minterms or DC-mistebut none
of them should be a 0-minterm. In BOOM, individual literals are titedemoval and
checked whether the expanded term does not intersect the ¢ffiesetfore the DC
terms need not be enumerated explicitly). If a non-empty intevsewith a O-term is
found, the removal is rejected. The checking is done by a simplgacson of the term
with all the off-set terms, thus in a linear time.

5.7.2 Expansion Strategy

The second problem to be solved is the selection strategy foiteéhalsl to be
removed. The expansion of one implicant may yield several differané pmplicants.
To find them all, we have to try systematically to remove d&itatal, whereas the order
of the literals selected plays an important role. Tryinlg palssible combinations
of literals to be removed is denoted as Exhaustive Implicant ExpansiotJsing
recursion or queue, all possible literal removals are sysitsita tried until all primes
are obtained. Unfortunately, the complexity of this algorithnexponential with the
number of input variables. Hence this method is usable only for proetimsup
to cca. 20 input variables.

Two local heuristic IE methods, differing in speed and qualitesilts are proposed
here.

The simplest one, namely $equential Expansigrsystematically tries to remove
from each term all literals one by one, starting from a rang@mbsen position. Each
removal is checked against the off-set as above, but if the rémsosaccessful, it is
made permanent. If, on the contrary, some O-minterm is coveredettad ikt put back
and the algorithm proceeds to the next one. After removing all podiédri@s one
prime implicant covering the original term is obtained. This algor is greedy and we
stay with one PI even if there is more than one PI that canrbedérom the original
implicant. The complexity of this algorithm is linear with thember of input variables
and the number of processed terms.

A sequential expansion obviously cannot reduce the number of product bertnis
reduces the number of literals. The experimental results have shatwhis reduction
may reach approximately 25%.

With a Multiple Sequential Expansiaall the possible starting positions are tried and
each implicant thus may expand into several Pls. The upper bound of therrafrls
that can be produced from one implicant4id, wheren is the number of input variables
andd is the dimension of the original implicant. The complexity of @igorithm is
O(n.p), wherep is the number of processed terms.
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5.7.3 Evaluation of Expansion Strategies

The properties of the proposed IE methods and their influence on the patimi
process (runtime and quality of the final solution) will be discussed in this swinsect

Fig. 5.5 shows the time of the minimization of a single-output fanadif 30 input
variables and 500 defined minterms as a function of the numberrafiates. The
growth for the sequential expansion is linear, which means that ahtiegias needed
for each iteration. The time needed for the multiple sequentialnsipa and the
exhaustive expansion grows faster at the beginning and then tutimedo with a
slower growth. At this point the CD-Search no longer produces mgv¥icants and thus
the IE and the following phases are not executed. This causese ssaglential
expansion, which is seemingly the fastest one, to become the stoveeafter a certain
number of iterations.

Fig. 5.6 illustrates the growth of the Pl set as a function &d.tWWie can see that the
Sequential Expansion achieves the lowest values, although it isttestf implicant
expansion method. This is because it cannot take advantage of thierl-Qife
implicants are repeatedly expanded, even when they have alrezeXyganded in all
possible ways. The two other methods achieve higher values, becaysguthan
implicant into the E-buffer only once and then they are blocked bisttbé&er. Hence
when the same implicants are generated repeatedly by thee@DRS they are not
processed any more, which speeds up the whole minimization. Wee#mas the most
complex method, namely exhaustive expansion, produces Pls at the fastest rate.

Practice shows that the more complex IE methods are advantagedusctions
with large care sets, where the number of implicants in thé dolation is big, while
the simplest sequential expansion is better for very sparse functions.

Sequential Expansion //

Exhaustive Expansion

Multiple Sequential Expansion

2000 -

1500 -

1000 -

Time [s]

500 -

T T T T T T T T v 1
0 1000 2000 3000 4000 5000
Iterations

Figure 5.5: Growth of time for different IE methods
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Multiple Sequential Expansion

/xhaustive Expansion

Sequential Expansion

4000 +
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I ' I ' I ' I ' I
0 2000 4000 6000 8000 10000

Time [s]

Figure 5.6: Growth of Pls for different IE methods

5.8 Minimizing Multi-Output Functions

To minimize multi-output functions, only a few modifications of the ibas
single-output algorithm must be done.

At the beginning, each of the output functioRsis treated separately, and the
CD-Search and IE phases are performed. After that, a set oéspsnificient for
covering allv functions is obtained. However, for obtaining the (theoreticatiypimal
solution we may need implicants of more than one output function thabapimes
of any F. Here the next part of the minimizatienimplicant ReductiorfIR) finds its
place. After the IR phase is performed, the group covering proldesolved. Its
solution is a set of implicants needed to cover each of the outpuiohséy ... Fn.
These implicants are assigned to the individual output functions, sddh®yt intersect
the functions’ off-sets. However, to generate the required output vatmse, & these
implicants may not be necessary. These implicants would aedte@dant inputs into
the output OR gates (when implemented as a two-level AND-@Rore. Sometimes
this is harmless (e.g. in PLAs), moreover it could prevent hazaidgertheless,
for hardware-independent minimization the redundant outputs should be teribise
is done at the end of the minimization by solvingpvering problems for ail functions
independently. This phase corresponds to ESPRESSO’s MAKE_SPARSE peocedur
[Bra84].
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5.9 Implicant Reduction (IR)

All the obtained prime implicants are tried for reduction by addltegals to them,
in order to become implicants of more than one output functions. The method
of implicant reduction is similar to CD-Search. Literals agquentially being added
to the previously obtained implicants until there is no chance thamiigant will be
used for more output functions. Preferably, literals that prevensaaing with most
of the terms of the off-sets of a#; ... F, (i.e., yielding reduced terms that cover the
least zeros in all the functions) are selected. When no furtdactren leads to any
possible improvement, the reduction is stopped and the term is recérterm that no
longer intersects with the off-set of a#y becomes its implicant. All implicants that
were ever found are stored and output functions are assigned to thenthkeitked for
each term produced, what output functions frant is an implicant of.

Then simple dominance checks are performed in order to eliminateamtgl that
are dominated by other implicants. Fig. 5.7 shows the typical grofvtheonumber
of group implicants (non-primes) as a function of the number of beatiHere the
function of 13 input variables, 13 output variables and 200 defined termsiseds
for demonstration. We can see that the number of the reduced impficantrows
rapidly, but then it falls to approx. 15% of the maximum value. Bhéue the fact that
new prime implicants are being constantly produced and they absotbomitse
previously generated group implicants in the preliminary dominance checks.

300
250
200

150 4

Non-primes

100 +

50

T T T T T 1
0 200 400 600 800 1000 1200
Iterations

Figure 5.7: Growth and fall of the number of non-primes

5.10 Solution of the Covering Problem

It was shown in subsection 5.6.1 that even a small subset of implagptgive the
minimum solution. However, the quality of the final solution stronglyetels on the
covering problem (CP) solution algorithm. With a large number oficapls it is
impossible to obtain an exact solution, since the covering problévi4sard. Thus
some kind of a heuristic must be used.
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Moreover, a large number of implicants may sometimes misgheleCP solution
algorithm and thereby lead to a solution, which is even worse thaoltiteon obtained
using only few implicants.

An exact CP solution is mostly rather time-consuming, esibeciehen it is
performed after several iterations during which many impteehad accumulated.
In this case, a heuristic approach is the only possible solution. Oatverfat possible
approaches two has been used in BOOM. The first one, denote@NsS (Least
Covered, Most Covering) is a common greedy heuristic algorithnsdiution of the
covering problem. The implicants covering minterms covered by @& leumber
of other implicants are preferred. If there are more than oneisydicants, implicants
covering the highest number of yet uncovered 1-minterms are selected.

More sophisticated heuristic methods for CP solution are based on aognfhe
contributions (scoring functions) of terms as a criterion forrthglusion into the
solution [Ser75, Rud89, Cou94]. Such a method is also used in BOOM as ishas be
found very efficient and not too time-consuming.

Here the covering matri& is constructed, its dimension will be denotedea$)(The
columns correspond to the implicants, rows to the on-set termsréhtd be covered.
Ali, j] =1 if the implicanf covers the on-set termA[i, j] = 0 otherwise. For each row
its strength of coverags computed as

SC(Xi ) = f;

. 1)
> Al i]
=1

Then thecolumn contributions computed for each column:

CC(y;) = Y_Ali, i108Q1%) 2)
i=1

The implicant (column) with the maximum contribution value is setkédhto the
solution, the contribution values are recomputed and the process itedepatl the
whole on-set is covered.

5.11 The BOOM Algorithm

The iterative minimization algorithm for a group of functigh¢i = 1, 2,...,v) can be
described by the following pseudo-code. The inputs are the onisatsl foff-sets R
of the v functions, and the output is a minimized disjunctive form G 5 (&,...G),
where G stands for a particular implicant.
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Algorithm 5.2: Minimization of a group of functions

BOOM(FL..v] ,R [1.v] ){
G= [,
do
| = 0O;
for( i =1, i <= v;itt)
I’ =CD_Search(F [i] ,R ] )
Expand(l *, R[] );
Reduce(l ' ,R [1..v] );
I =1 0Ol 7
DominanceCheck(l);
G = Group_cover(l, F [1.v] )

Reduce_output(G ', F[1..v] );
if (Better(G ",G))thenG =G
until (stop);
return G;

}

5.12 BOOM Experimental Results

Extensive experimental work has been done to evaluate the efficiency of theepropos
algorithm, especially for problems of large dimensions. Both thementi seconds and
result quality were evaluated. The quality of the results massured by three
parameters: total number of literals, output cost and number of praduns
(implicants). One of them or the combination of two (sum of the nuofdéerals and
output cost) had always to be chosen as a minimization criterion.€eBh#sr of the
experiments are listed in the following subsections. All the @xeats were performed
on a standard PC with a 900 MHz Athlon processor and 256 MB RAM.

5.12.1 Standard MCNC Benchmarks

A set of 139 standard MCNC benchmarks [Yan91l, MCNC] was solved
by ESPRESSO v2.3, ESPRESSO-EXACT and BOOM. As the benchmark functions
were specified by the on set and don't care set (type fd Phé)xdurce files had to be
converted into the format where the on-set and off-set are ddfigge fr PLA). This
was done by ESPRESSO (using the -ofr switch) before the mationz was
performed. Thus, both ESPRESSO and BOOM could use the same inpuflfike
presented runtimes do not include the time needed for the conversion.

Of all the 139 standard problems, 67 (48.2%) were solved by BOOM in tershor
time than by ESPRESSO. In all cases only one iteration ofB@@s used, and thus
the results may not be optimal. However, this option was chosen in tordhe@ve a
better comparison of the results. In 52 cases (37.4%) BOOM gavartie result as
ESPRESSO, while 30 (57.7%) ofthese equal results were reaaséet than
by ESPRESSO.

Table 5.6 shows the minimization results of a selected sdiavflér” benchmarks.

The benchmarks were also solved by ESPRESSO-EXACT in ordebtwn the
minimum solution for comparison. Note that in this case the minynaliterion is the
number of terms only and thus some "exact" solutions are even wm@asethose
reached by ESPRESSO or BOOM. Some benchmarks were not solved
by ESPRESSO-EXACT because of its extremely long runtim@danK entries
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in Tab. 5.6). ESPRESSO solutions that are equal to the exact ongisadesl in the
ESPRESSO column. The colunfo/p describe the number of input/output variables
and care terms of a particular benchmark,titme columns indicate the computational
time in seconds, thét/out/terms columns show the quality of the results, i.e., the
number of literals in the final SOP form, the output cost and the auoflterms. The
shadowed cells indicate that the benchmark was solved by BOOKhiortzr time than
by ESPRESSO, or the same result was reached respectively.

Since the MCNC benchmark circuits mostly have a relatil@hynumber of inputs
and many care terms defined, the features of BOOM couldn’t beduploited here.
Thus, the results are not that promising, when compared with ESPREBS@ver,
BOOM is much more efficient for more complex problems (see fti®wing
Subsections), which ESPRESSO often cannot solve in a reasonable time at all.

Table 5.6: Runtimes and minimum solutions for the standard MCNC benchiarks

ESPRESSO ESPRESSO-EXACT BOOM - 1it.
bench ilolp time lit/out/terms time litfout/terms ime litfout/terms

alu2 10/8/241 0.07 |268/79/68 0.18 | 268/79/68 0.02 | 268/79/68

alu3 10/8/273 0.08 279/70/65 0.19 278/74/64 |0.02 279/68/66

alu4 14/8/1184 | 0.59 |4445/644/575 | 12.24| A4495/648/574 1.07 4449/636/57f
b9 16/5/292 0.08 |754/119/119 0.89 754/119/119 0.09 754/119/119

brl 12/8/107 0.05 | 206/48/19 0.07 206/48/19 0.02 215/45/20

br2 12/8/83 0.06 |134/38/13 0.07 134/38/13 0.01 |134/38/13

chkn 29/7/370 0.14 |1598/141/140 | 0.25 1602/142/14Q  0.471598/141/140

cordic 23/2/2105 | 1.86 |13825/914/914] 3.59 13843/914/914 4.0§13825/914/914

ex4 128/28/654| 0.62 1649/279/279 14.(1649/279/279
e64 65/65/327 | 0.11 | 2145/65/65 0.11 2145/65/65 15.0] 2145/65/65
exep 30/63/643 | 0.17 1175/110/119 0.55% 1170/108/10866 |1175/110/110
ibm 48/17/499 | 0.11 882/173/173 0.82 882/173/173
markl 20/31/72 0.25 |97/57/19 1.45 97/57/19 0.04 93/46/23
misex2 | 25/18/101 | 0.07 | 183/30/28 0.06 183/30/28 0.10] 183/30/28
misex3c | 14/14/1564 0.98 1306/253/19) 0.59 1335/242/209
mis;j 35/14/55 0.07 54/48/35 0.03 | 54/48/35

shift 19/16/200 | 0.07 388/105/100 0.06 | 388/105/100
spla 16/46/837 | 0.71 2558/643/25]1  6.6% 1564/450/181L54 2821/517/285
vg2 25/8/304 0.08 |804/110/110 0.54 804/110/110 0.15 804/110/110

x9dn 27/7/315 0.08 [1138/120/120 | 0.49 1138/120/12Q 0.221138/120/120

5.12.2 Test Problems Havingn = 50

The MCNC benchmarks have relatively few defined terms, few wgmisdbles (only
for 9 standard benchmarksexceeds 50) and also a small number of don't care terms.
To compare the performance and result quality achieved by the matiom programs
on larger problems, a set of problems having up to 200 input variablagpad200
terms was solved. In order to accomplish this, a set of artibelachmark problems is
proposed, which was named as BOOM Benchmarks [Fis02, BOOMBenchiruthe
tables of these problems were generated by a random nunmeeatge, for which only
the number of input variables and the number of care terms werexpelthe number
of outputs was set equal to 5, and the input matrix contained 20% of dast The
on-set and off-set of each function were kept approximately ofaime size. Such a
type of problems usually occurs in the Output Decoder design as wighl an
exception of input don't cares present, since deterministic PRRCcansidered.
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However, introducing don’t cares makes the problem only harder to soivibe@ther
hand, the distribution of zeros and ones in the input matrix is pseudorandoemafged
by a PRPG), thus a random distribution nears to practical problenys well.
Moreover, the randomness of the benchmarks used here was chosen i beder t
functions with no special properties. This allows us to determinee raasily the
properties and scalability of the algorithms.

For each problem size (number of variables, number of terms) in Tab. 5.7 and 5.8, ten
different samples were generated and solved and average valthes teh solutions
were computed.

First the minimality of the result was compared. BOOM wiaggs run iteratively,
using the same total runtimas ESPRESSO needed to obtain the solution. In the
following three tables, the number of input variabtemcreases horizontally and the
number of input termg is increased vertically. The first row of each cell in Tad.
contains the BOOM results, the second row shows the ESPRESS0. rEke quality
criterion selected for BOOM was the sum of the number of lgenad the output cost,
which approximates the gate equivalents (GEs) [DeM94]. We cathaeéor all but
one problem size (shaded cell) BOOM found a better solution than ESPRESSO.

Table 5.7: Solution of Boom Benchmarks - comparing the result quality

p/n 50 100 150 200
50 | 110/41/25 (58) 96/35/23 (90) 90/32/21 (147) 84/29/20 (199)
122/54/27/3.89 104/45/23/10.29 | 92/41/21/24.87 89/39/20/41.99
100 | 284/86/52 (46) 220/68/42 (94) | 217/61/40 (140) | 207/57/38 (140)
289/104/51/19.31 | 231/84/42/77.07 |213/80/39/199.17 |201/74/37/246.21
150 | 474/132/76 (43) | 389/101/63 (101) |362/92/61 (116) | 381/90/64 (64)
481/158/76/54.76 | 384/125/62/282.80| 345/113/56/646.20 | 322/107/52/1066.14
200 | 678/177/101 (51) |553/137/83 (116) | 492/125/75 (207) | 469/110/71 (277)
686/209/101/162.62| 539/165/81/730.91| 480/149/72/1913.65| 450/136/68/3372.66

Entry format:. BOOM: # of literals / output cost / # of impliang# of
iterations)
ESPRESSO:

seconds

# of literals / output cost / # of implicants / time i

A second group of experiments for= 50 was performed to compare the runtimes.
Again, the randomly generated problems from [Fis02, BOOMBench] s@ved, but
this time BOOM was running until a solution ¢fie same or better qualitas
ESPRESSO was reached. The quality criterion selected waas #ge sum of the
number of literals and the output cost. The results given in Tab. 5.8tkhovor all
samples the same or better solution was found by BOOM in aeshorte than
by ESPRESSO.
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Table 5.8: Solution of Boom Benchmarks - comparing the runtime

p/n 50 100 150 200

50 170/0,64 (12) |145/1,89 (21) |131/14,52 (73) |126/3,26 (25)
176/3,89 149/10,29 133/24,87 128/41,99

100 | 388/7,15 (23) |313/25,5 (48) |291/38,91 (56) |273/86,51 (83)
393/19,31 315/77,07 293/199,17 275/246,21

150 | 631/20,38 (25)/506/153,84 (70)| 456/374,68 (105) |427/974,40 (161)
639/54,76 509/282,8 458/646,20 429/1066,14

200 | 890/71,97 (31) 697/467,63 (86)| 625/1026,28 (149) 582/1759,27 (220)
895/162,62  |704/730,91  |629/1913,65 586/3372,66

Entry format: BOOM: # of literalstoutput cost / time in seconds df
iterations)
ESPRESSO: # of literals+output cost / time in seconds

5.12.3 Solution of Very Large Problems

The third group of experiments aims at establishing the limitapgiicability
of BOOM. For this purpose, a set of very large test problemgemsrated and solved
by BOOM. Each problem was a single-output function in this casepriébiems with
more than 200 input variables ESPRESSO could not be used, because ofiyebhibit
long the runtimes (several hours). Hence when investigatingrtis lof applicability
of BOOM, it was not possible to verify the results by any othethod. The results
of this test are listed in Tab. 5.9 where the average time in seneadsd to complete
one iteration for various problem sizes is shown. We can see ginablem with 1000
input variables and 2000 care minterms was solved by BOOM in about 20 seconds.

Table 5.9: Time for one iteration on very large problems

p/n]200| 400 | 600 | 800/ 1000
200]0.06/0.11 | 0.17 | 0.26| 0.26
40010.25/0.34 | 0.52 | 0.77| 0.88
6000.45/0.80 | 1.15 | 1.44| 1.96
800]0.88/1.43 | 2.05 | 2.69| 3.35
1000]1.32|2.10 | 3.07 | 4.21| 4.42
1200]1.91|3.28 | 4.69 | 6.30| 7.27
1400]12.69|4.48 | 6.04 | 7.72| 8.96
1600]3.56/5.78 | 8.58 | 10.5711.69
1800{14.51|7.73 | 10.56| 12.5216.34
2000]5.64/10.02/13.17 | 17.4520.17

5.12.4 Column-Matching Practical Examples

In order to fully justify the need for BOOM in the proposed Bl§mtlsesis method
(Column-Matching), several Output Decoder design examples arenfedsin this
Subsection. Particular decoders were minimized both by BOOM &RRESSO and
the result quality and runtime compared. The results are shown in Table 5.10.
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In all the cases BOOM was run for 100 iterations. "Bench” column indicates the
name of the benchmark circuit, which is the Output Decoder to beesyrgd for a
particular benchmark (which name follows after “d_"). For most oichenark circuits
the Column-Matching procedure was run with different parametefsaetely lengths
of the phases), yielding different decoder complexities. In itbé" column are listed
the numbers of its inputs, outputs and defined terms. Then, the results abtaine
by BOOM and ESPRESSO are shown. The resulting Decoder compiexgiven
in terms of gate equivalents [DeM94]. The shadowed cells indieatsavhere BOOM
outperformed ESPRESSO, both for the result quality and runtime.

Table 5.10: Output Decoder design examples

BOOM ESPRESSO

Bench i/o/p GEs Time [s GEs Time [
d_c1355 (1) 41/18/13 315 0.69 37.0 0.19
d_c1355 (2) 41/21/14 35.0 0.74 42.5 0.26
d_c1908 33/3/29 17.0 0.49 18.0 0.12
d_c2670 (1) 233/32/60 113.0 165.95 313.0 4838.62
d_c2670 (2) 233/31/52 61.0 159.06 260.0 2329.44
d_c2670 (3) 233/36/104 | 159.5 740.18 344.5 24 710.07%
d_c7552 (1) 207/48/81 196.5 807.84 373.0 27 574.93
d_c7552 (2) 207/72/207 | 389.5 23 933.46 - > 24 h
d_s420.1 (1) 34/6/42 22.0 0.75 26.0 1.58
d_s420.1 (2) 34/5/33 19.5 0.75 24.5 0.95
d_s838 (1) 67/24/61 35.5 3.15 58.5 27.94
d_s838 (2) 67/15/46 29.0 1.65 44.0 14.94
d_s953 (1) 45/2/25 4.5 0.13 7.0 0.11
d_s953 (2) 45/4/45 10.5 0.42 10.5 0.16
d_s1196 32/4/48 29.5 2.12 37.0 1.04
d s1238 (1) 32/5/60 46.5 9.71 68.5 3.15
d_s1238 (2) 32/4/58 28.5 5.23 36.5 0.53
d_s5378 (1) 214/3/36 12.0 2.81 15.5 6.58
d_s5378 (2) 214/2/22 7.0 0.66 7.0 1.70
d_s9234 (1) 247/77/1216 | 655.0 18835.6 | - > 24 h
d_s9234 (2) 247/38/99 186.5 266.78 252.5 17 298.0
d_s9234 (3) 247/23/52 64.5 29.09 108.0 659.25
d_s13207.1 (1) | 700/8/96 88.5 93.65 95.5 1251.0
d_s13207.1 (2) | 700/58/197 | 293.5 1550.25 | 316.5 190 038.14
d s15850.1 (1)| 611/96/313 | 197.5 3416.4 - > 24 h
d_s15850.1 (2)| 611/48/180 | 78.5 516.3 120.0 37 818.65
d_s38417 1664/1454/52 759.0 1923.0 - >24h
d s38584.1 (1) | 1664/464/307 158.0 321.9 - > 24 h
d_s38584.1 (2) | 1664/464/45| 11.0 46.6 31.0 20 361.71
d_bo04 (1) 77/9/37 24.5 1.75 28.5 4.19
d_b04 (2) 77/4/29 9.0 0.32 11.0 0.58
d_b05 (1) 35/7/33 28.5 2.94 49.0 0.85
d_b05 (2) 35/2/15 4.0 0.07 4.5 0.06
d_b07 (1) 50/5/41 11.5 2.01 12.0 3.43
d b07 (2) 50/1/24 1.0 0.02 1.0 0.8
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BOOM ESPRESSO
Bench i/o/p GEs Time [s GEs Time [
d b12 (1) 126/11/128 | 95.0 118.14 118.0 379.93
d bl2 (2) 126/7/66 45.5 15.52 57.5 18.27

It can be seen that BOOM outperformed ESPRESSO in the reslity qouaall the
cases and mostly in the runtime as well. In some more compdes &5PRESSO did
not return a result in more than one day, thus the measurement was terminated.

5.13 Time Complexity Evaluation

As for most heuristic and iterative algorithms, it is diffictdt evaluate the time
complexity of the proposed algorithm analytically. A vast expental evaluation has
been therefore performed.

5.13.1 Influence of the Problem Size

The average time needed to complete one iteration of BOOM ffimugasizes of the
input truth table was measured here. The number of experimentshoinstance size
was 10. The truth tables were generated randomly, following thee gales as
in paragraphs 5.12.2 and 5.12.3. Fig. 5.8 shows the growth of an average rgniime a
function of the number of care minterms (20-300) where the number ofviapables
is changed as a parameter (20-300). The curves in Fig. 5.8 can be approxirtiatieel w
square of the number of care minterms.

The minimization time thus grows relatively rapidly with the numiiecare terms,
however, it is not exponential. This fact complicates the mintmizaf functions with
a large number of defined terms to some extent. Hence, BOOMoiie Buitable
for minimizing very sparse functions, where the number of care terms is low.

Fig. 5.9 shows the runtime growth as the function of the number of wapiatbles
(20-300) for varying number of defined minterms (20-300). Although theres@me
fluctuations, the time complexity is almost linear. Fig. 5.10 showsese-dimensional
representation of the above curves.

The fact that the time complexity growsearly with the number of input variables
(while keeping the number of defined terms) expresses the rdsantage of the
BOOM algorithm. As the size of the Boolean space of the fungtiows exponentially
with the number of input variables, the time complexity of mafsthe common
minimization algorithms grows exponentially too. In BOOM theraaschance for an
exponential time grow, as there are no algorithms with an expaheoinplexity used
in BOOM (except of the case when the exhaustive IE is used)alltngs to minimize
functions with an extremely large number of inputs very efficiently.
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5.13.2 Influence of Don't Cares

The influence of the number of don't care states in the fieldpot variables on the
runtime was studied on a set of problems generated by a random ngenieeator
forn=20, 50 and 80, with 5 output variables and 200 defined terms. The percentage
of don't cares was varied in the range from 0 to 35%. Here 0% dethetesituation
when only minterms were used in the function definition. At the other endp88&n't
cares means that slightly more than one third of all valuglseoinput variables were
undefined.

The growth of the runtime for ESPRESSO and for BOOM is showhig. 5.11,
where the number of input variables is indicated in parenthesescaWwesee that
although ESPRESSO runtime grows to 5000 s for 80 input variables, BQ@ivhe
remains almost constant within the used scale for all probless.slhe influence on
the runtime is visualized even more clearly in Fig. 5.12, showingetagve slowdown
of BOOM and of ESPRESSO caused by the don't cares. We cdhasdbe relative
slowdown of BOOM for the highest percentage of don't care®adstar.5, whereas
for ESPRESSO it is up to 100.

We can conclude from this observation that ESPRESSO is exyremrditive to the
dimensionality of the source terms; the minimization time grosmdly with the
growing number of input don’t cares. On the other hand, BOOM is alimastsitive
to the dimension of the terms. Thus, BOOM can be efficiently deethinimize
functions with a large portion of don’t cares in the source terms.
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5.14 BOOM Conclusions

The original Boolean minimization method, based on a new approach teanipl
generation has been proposed. Its most important features sarapplicability
to functions with several hundreds or thousands of input variables and hay s
minimization times for sparse functions. The function to be minidnigelefined by its
on-set and off-set (which may consist of minterms and termsgbehidimensions),
whereas the don't care set needs not be specified explicibyeies of the BOOM
minimization tool were demonstrated by many examples. Its apphcais
advantageous above all for functions with a large number of input variahtea large
number of don't care states where it beats other methods, likeHSSER as concern
to the quality of the results and in method runtime, too. The Pl dgemeraethod is
very fast and can easily be used by an iterative mannemdixtetests on different
benchmarks (MCNC, randomly generated problems, practical Columriiigtc
problems) were performed in order to determine the strengthsveakihesses of the
BOOM system.

The dimension of the problems that can be solved by BOOM can tieagbkands
input variables, since the runtime grows linearly with the nurobaput variables. For
problems of very high dimension, the success largely depends on the size of the care set
because the runtime grows roughly with the square of its size.

BOOM is applicable very efficiently to the design of the Outpec@ler needed
in the Column-Matching BIST design process. It overpowers ESPRES$§Enaral.
ESPRESSO is often completely unusable, due to its prohibitively tongme
for problems having a large number of inputs.
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6 Implementation

6.1 Implementation of Column-Matching BIST
Equipment Design Method

In order to accomplish the proposed BIST equipment synthesis presssal
programs had to be created. First of all, thelmatch tool has been developed
[Colmatch]. It implements the very Column-Matching algorithms. pregram takes
two matrices as an input — then@atrix and the T-matrix. The output of the program is
a PLA file describing the Output Decoder, and a report fietaining information
on the matched CUT inputs. Using this information it is possible tigrdéise BISTE
circuitry.

A simple progranLFSR generating code words of a given LFSR (i.e.,Ghmatrix)
has been made, to accomp&upiMatch

Then, additional tool has been programmeMBIST), producing the VHDL code
of the whole circuit, together with the BIST equipment. The input ® dlgorithm is
the circuit-under-test and the information obtained ®gimatch the output is a
synthesizable VHDL code of the circuit with BIST. This impligge scan-chain
insertion (or inserting MUXes into the circuit, respectively), atiag a sequential
circuit into a combinational one (by introducing pseudo-primary inputs and outputs), the
BIST controller design and, last but not least, the top-entitygdesiescribing the
whole circuitry.

The whole BIST design process is then described by the datdftmyram shown
in Fig. 6.1.

First, the sequential description of the CUT (in ISCAS'89 fornBtg39]) is
converted into a combinational one. Simultaneously, VHDL descriptidheotircuit,
including multiplexers, is generated. Then the LFSR seed and polyrammigenerated
and the C-Matrix produced. These pseudo-random vectors are simuld&&iMyand a
test for undetected faults is produced by Atalanta (the T-Matbhen the
Column-Matching process is run, using the two matrices. The Outpabder is
minimized by BOOM and the resulting data are put together to fosynthesizable
VHDL code describing the whole self-testable circuit.

The block schematic of the whole BIST, generate@B\BIST is shown in Fig. 6.2.
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Figure 6.1: BIST equipment synthesis dataflow
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6.2 Implementation of BOOM

BOOM has been implemented as a stand-alone tool and releagedblios in 2003,
for the first time [BOOM)]. Since that time is has overcamany improvements.
Nowadays (version 2.8), it supports these features:

PLA, type fr input (on-set and off-set specifiedype f output (on-set
specified)

Output in: PLA, BLIF, VHDL, Verilog, Equations, HTML table

Very fast minimization of functions having many input and output variables
Low memory demands

Adjustable tradeoff between runtime and result quality

Many different optimization criteria (terms, literals, output cost, GEs, ...)
Windows and Linux compatible versions are available
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7 Conclusions and Future Work

A mixed-mode BIST equipment design method based on a newly developed
Column-Matchingprinciple has been proposed. Here pseudorandom LFSR code words
are being transformed into deterministic test patterns comjytesh ATPG tool. The
transformation is being done by a purely combinational block; no additiegaters
are needed to perform the transformation. The algorithm tries &chh maximum
of decoder outputs with its outputs, which yields no logic necessanyplerment these
outputs. The Thesis primarily describes the method of a designeofeth pattern
generator producing test vectors for the tested circuit.

The method is primarily designed for a test-per-clock BIST, homiewan be easily
adopted to test-per-scan for full-scan or multiple-scan circuits.

The pseudo-random and deterministic phases are separated, which tnabéeh
less area overhead of the control logic. The method is based orga deaidecoder
transforming the LFSR code words into deterministic test vectesting the
hard-to-detect faults. In all the mixed-mode designs, some kind tdhsmg logic is
involved. A method reducing both the transformation and switching logic is proposed.

The test is divided into two phases, the pseudo-random and deternonistidhe
lengths of both phases can be freely adjusted, to find a trade-ofédretive test time
and area overhead. It has been shown that the length of the paaddoirphase has a
crucial impact on the result. This issue is discussed in this Thesis as well.

The length of the deterministic phase influences the resultelis though not that
significantly. The impact of the test lengths on the duration oBtB§ design process
Is considered too.

A big scalability of the method, in terms of the area overhead time and design
time is shown.

The BIST synthesis method may be used for almost any fadlelmif a proper fault
simulator and ATPG tool are provided. The fault coverage reacheddtepely on the
ATPG tool as well; a trade-off between the fault coverage a8d Btea overhead may
be adjusted too.

The method has been tested on standard ISCAS and ITC benchmarks iesdltee
were compared with other state-of-the-art methods.

The principles of the Column-Matching method were published in [Fidti283a,
FisO4a, Fis04b, FisO4c, Fis04d, FisO5a, FisO5b, FisO5d and Fis06a].

Not only the Column-Matching algorithm has been considered during skaro.
The “Coverage-Directed Assignment (CD-Aglgorithm has been developed as an
alternative to the Column-Matching. The aim of this algorithm is shaene as
in Column Matching is, i.e., to transform an excessive set of psamdom vectors
into a set of deterministic vectors. However, the principles ethad are completely
different. It is based on a generalization of Boolean minimizationepsocThe results
were published in [FisO3d and FisO3f]. However, this approach has been abandoned
after some time, due to prohibitively high time complexity of the CD-A #lgor

A novel Boolean minimizer BOOM has been developed as a neceswargf the
BIST test pattern generator synthesis process, since standaichizers, like
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ESPRESSO, were not able to handle functions having hundreds of inputs in a
reasonable time. The minimization method is based on a completelsedifapproach
to implicant generation: instead of processing the on-set tandgrying to increase
their size, the implicants are generated by reducing a univieyparcube, until it
becomes an implicant of the source function. The on-set provided servess jas
“guideline” to implicant generation, the on-set terms are not processeditbxpli

This idea yielded an efficient heuristic two-level Booleamimizer capable
to minimize functions having up to thousands of inputs in an acceptable time.

BOOM was tested on standard MCNC benchmarks, randomly generatsuhiaeks
and circuits that were generated by the Column-Matching methodreBads were
compared with results obtained by ESPRESSO. For a majoritheofbenchmark
circuits BOOM returned the result in a shorter time, while rdgult qualities were
equal. “Bigger” benchmarks (having hundreds of input variables) weheeds
by BOOM in a significantly shorter time than by ESPRES®RI|e the result obtained
by BOOM was better in quality. For PLAs obtained by the ColumteMag algorithm
ESPRESSO returned significantly worse results than BOOM, nrueh longer time.
Some PLAs could not be minimized by ESPRESSO at all, for alptigkly long
runtime.

The principles of BOOM (with later extensions supporting the decatigpos
of combinational circuits) have been published in [HIa00, Fis00, Hla0l&@)1kbila
FisOla, FisO1lb, FisOlc, Fis02b, FisO2c, Fis02e, Hla02, FisO3b and Fis03c].

Another Boolean minimizer has been developed as a more succegsfodumnt
of the CD-A algorithm developmerfEC-Min. Its principles were published in [FisO3e,
FisO3g and Fis04g, FisO5b]. Finally, BOOM and FC-Min have beerbic@u together
to obtain a universal Boolean minimiZOOM-II [FisO4e, Fis04f, FisO6b].

7.1 Future Work

As the future work several minor modifications are planned taldree, helping
to reduce the complexity of the resulting BIST. Namely it isube of cellular automata
or other more complex structures as PRPGs.

More essential modification of the algorithm will enable to adfbstwidth of the
PRPG. Until now, it has been assumed that the number PRPG outpgisligcethe
number of CUT inputs, at least in the mixed-mode version. If the widtihe PRPG is
different, there would be no modification of the algorithm involved. elmw, for a
wider PRPG the algorithm cannot decide what PRPG outputs shouldnbected
to the CUT inputs in the pseudo-random phase - until now they are conireced
ascending order, however it is possible to choose any other ohdemproblem gives a
hint for another possibility of improvement of the algorithm — to consad@roper
permutation of wires, not to just connect it straight.

This would be possible to do by incorporating the ATPG tool into theitdgomore
extensively. Particularly, the deterministic test won't be geed in one step, but
iteratively with a chance to change unwanted tests and to enalil®liman-Matching
algorithm to take hints from the ATPG. For example, for a pdaticset of faults it will
be possible to select a test vector having don't care values positions of the already
matched columns. Thus, the restrictions put on the following column maliche
reduced. Such a major modification could significantly reduce both &zecmerhead
and the test length.
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Incorporating the weighted pattern testing would enable the uséshbder” PRPG
as well, while the fault coverage reached by the pseudo-random ploase be
increased. This, however, would be paid by an overhead caused by the weighting logic.

To be able to cope with most of VLSI core designs the method téor i
implementation, respectively) should be modified to support the testaerBIST,
even for multiple scan-chains.

Larger circuits are often hard to test, especially for theige number of inputs
(arising from the scan-chain). Thus, a kind of partitioning should beeappb split
large circuits into smaller ones, for which the BIST would be coostd separately.
Such a partitioning should be done in such a way that the CUT perfagrahoald not
be affected, nor the area overhead would significantly increase.

Then, after all, it is planned to combine the proposed method with o#tbods,
namely to exploit the reseeding and weighted pattern testing principles.
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