

Czech Technical University in Prague
Faculty of Electrical Engineering

Doctoral Thesis

June, 2007 Petr Fišer

Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Computer Science and Engineering

COLUMN-MATCHING BASED

MIXED-MODE BIST TECHNIQUE

by

Petr Fišer

A doctoral thesis submitted to
the Faculty of Electrical Engineering, Czech Technical University in Prague,

in partial fulfilment of the requirements for the degree of Doctor.

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of study: Information Science and Computer Engineering

June 2007

Thesis Supervisor:
Doc. Ing. Hana Kubátová, CSc.
Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nám

ě
stí 13

121 35 Prague 2
Czech Republic

Copyright © 2007 by Petr Fišer

Abstract
A novel test-per-clock built-in self-test (BIST) equipment design method

for combinational or full-scan circuits, together with necessary supplementary
algorithms, is proposed in this Thesis. This method is mostly based on a design of a
combinational block - the Decoder, transforming pseudo-random code words into
deterministic test patterns pre-computed by some ATPG tool. The Column-Matching
algorithm to design the decoder is proposed. Here the maximum of output variables
of the decoder is tried to be matched with the decoder inputs, yielding the outputs be
implemented as mere wires, thus without any logic. No memory elements are needed
to store the test patterns, which reduces the BIST area overhead.

Since quite a large number of test vectors is often needed to sufficiently test a
particular circuit, synthesizing all these vectors deterministically would involve a very
large area overhead. Thus, the basic Column-Matching method has been extended
to support the mixed-mode testing. Here the BIST execution is divided into two disjoint
phases – the pseudo-random phase, where the pseudo-random patterns are being
applied to the circuit unmodified, and the deterministic phase detecting all the yet
undetected faults. This enables us to reach high fault coverage in a short test time and
with a low area overhead. The novelty of this approach comprises of the fact that these
phases are disjoint. As a consequence of this, the BIST control logic is significantly
reduced, when compared to other state-of-the-art methods. The choice of the lengths
of the two phases directly influences the test time, BIST design time and BIST area
overhead. The Column-Matching algorithm is described in details in the Thesis and
several heuristic methods solving some of the major NP-hard problems involved are
proposed. The tradeoff between the duration of the execution of BIST, the solution
quality and runtime is discussed. The time complexity of the algorithm is studied and
experimentally evaluated.

A truth table description of a Boolean function is obtained as a result of the
Column-Matching algorithm. This function describes the Output Decoder logic.
In order to maximally reduce the BIST area overhead, the function has to be minimized.
Since it is usually a function of many input and output variables (hundreds, thousands),
available Boolean minimizers were not able to handle it in a reasonable time. Thus, an
efficient Boolean minimizer has been developed for this reason. BOOM, as a minimizer
capable to process functions having many input variables, is proposed. The implicants
of a function are generated by a top-down way: the universal hypercube is being
gradually reduced, until it becomes an implicant. This approach becomes very
advantageous for sparse functions, i.e., functions where values of only few minterms are
defined. This is exactly the case of the Column-Matching BIST design. The efficiency
of Boom for such functions is documented on standard benchmark circuit, as well as
on practical Column-Matching examples.

The proposed BIST design method was tested on ISCAS and ITC’99 benchmarks and
the results were compared with the results obtained by some of the state-of-the-art
methods. The complete resulting BIST equipment logic was synthesized and its
complexity evaluated. A complete (100%) stuck-at fault coverage was considered in all
the experiments performed.

The main contributions of this Thesis are the following:
• A new BIST design methodology is proposed
• The BIST process is divided into two separate phases, unlike in other methods
• A new and very efficient Boolean minimizer is proposed

Keywords
Built-in self-test, test pattern generation, pseudo-random testing, mixed-mode BIST,

logic functions, implicant generation, Boolean minimization.

Acknowledgement
First of all, I would like to express my gratitude to my former supervisor,

Prof. Jan Hlavič ka, who has, to a grief of all who has known him, deceased
in September, 2002. He has been my great guidance in my research and a big source
of motivation. He has introduced me into the scientific life and showed me the way how
to be acquainted in this area. I really appreciate the friendship that has been between us.

Then, I would like to give many thanks to Hana Kubátová, my Thesis supervisor. She

has been a constant source of encouragement and insight during my research. She
provided me with numerous opportunities for professional advancements. Her efforts as
the Thesis supervisor contributed substantially to the quality and completeness of the
thesis.

The staff of our department has provided me a pleasant and flexible environment for

my research. My work has been partially supported by grants from GACR grant
agencies.

Last but not least, I would like to thank to my family and to my friends for their

everlasting support and patience during my research.

Table of Contents
1 Introduction.. 1

1.1 Basic Principles of Built-In Self-Test ... 1
1.2 Structure of the Thesis .. 5

2 State-of-the-Art Methods ... 6
2.1 Exhaustive Testing.. 6
2.2 Pseudo-Random Testing ... 6
2.3 Reseeding-Based Techniques.. 7
2.4 Weighted Pattern BIST ... 7
2.5 Bit-Fixing and Bit-Flipping... 8
2.6 Row Matching... 9

3 Aims of the Dissertation and Its Contributions .. 11
4 Proposed BIST Method.. 12

4.1 Basic Principles of the Proposed Mixed-Mode BIST ... 13
4.2 The BIST Design Process ... 14
4.3 The Pseudo-Random Phase... 15

4.3.1 Influence of the Pseudo-Random Phase Length... 17
4.4 Influence of the LFSR Structure and Seed.. 18
4.5 The Deterministic Phase ... 19

4.5.1 Problem Statement ... 19
4.5.2 The Column-Matching Algorithm.. 20
4.5.3 One-to-One Assignment... 21
4.5.4 Generalized Column-Matching .. 22
4.5.5 Column Matching Process Example .. 23

One-to-One Assignment for c17 Benchmark ... 24
Generalized Column-Matching Example ... 24

4.6 Column-Matching Exploiting Test Don’t Cares ... 25
4.6.1 Row Assignment Algorithms ... 26
4.6.2 Column-Matching Algorithms ... 28
4.6.3 The Basic Fast Search Algorithm... 30
4.6.4 Overview of the Column-Matching Alternatives in Mixed-Mode BIST............................ 31

4.7 Multiple-Vector Column-Matching .. 32
4.7.1 ATPG Modes.. 32
4.7.2 Simple Test Set Compaction .. 33
4.7.3 Multiple-Vector Column-Matching Principles... 35
4.7.4 Multiple-Vector Test Set Compaction.. 35

Example.. 35
4.7.5 Modified Row Assignment... 36
4.7.6 Modified BIST Design Process.. 36

4.8 Influence of the Length of the Deterministic Phase .. 37
4.9 Summary Discussion on the Lengths of the Two Phases.. 37
4.10 Comparison with Other State-of-the-Art Methods.. 38
4.11 Column-Matching Results for Standard Benchmarks... 39

5 BOOM – The Boolean Minimizer.. 44
5.1 Motivation... 44
5.2 Introduction... 44
5.3 Problem Statement .. 45
5.4 BOOM Structure ... 46
5.5 Coverage-Directed Search .. 47

5.5.1 Basis of the Method.. 47
5.5.2 Immediate Implicant Checking .. 48
5.5.3 CD-Search Example ... 49

5.6 Iterative Minimization... 50
5.6.1 The Effect of the Iterative Approach.. 50
5.6.2 Accelerating the Iterative Minimization... 51

5.7 Implicant Expansion.. 52
5.7.1 Checking the Removal of a Literal... 53
5.7.2 Expansion Strategy... 53

5.7.3 Evaluation of Expansion Strategies.. 54
5.8 Minimizing Multi-Output Functions ... 55
5.9 Implicant Reduction (IR) .. 56
5.10 Solution of the Covering Problem... 56
5.11 The BOOM Algorithm.. 57
5.12 BOOM Experimental Results.. 58

5.12.1 Standard MCNC Benchmarks .. 58
5.12.2 Test Problems Having n ≥ 50 ... 59
5.12.3 Solution of Very Large Problems... 61
5.12.4 Column-Matching Practical Examples... 61

5.13 Time Complexity Evaluation .. 63
5.13.1 Influence of the Problem Size .. 63
5.13.2 Influence of Don't Cares... 65

5.14 BOOM Conclusions.. 67
6 Implementation .. 68

6.1 Implementation of Column-Matching BIST Equipment Design Method 68
6.2 Implementation of BOOM .. 71

7 Conclusions and Future Work.. 72
7.1 Future Work .. 73

List of Figures
Figure 1.1: BIST structure.. 1
Figure 1.2: LFSR structure... 2
Figure 1.3: Example of a cellular automaton ... 3
Figure 1.4: Test-per-clock BIST structure.. 3
Figure 1.5: Test-per-scan BIST structure ... 4
Figure 1.6: Multiple scan chain BIST structure ... 4
Figure 1.7: STUMPS structure... 4
Figure 2.1: Multi-polynomial BIST ... 7
Figure 2.2: Modifying the LFSR patterns .. 8
Figure 2.3: Bit-fixing scheme... 9
Figure 2.4: Bit-flipping scheme ... 9
Figure 2.5: Row matching principle... 10
Figure 2.6: The resulting truth table... 10
Figure 4.1: Test-per-clock BIST structure.. 12
Figure 4.2: Mixed-mode BIST structure .. 13
Figure 4.3: Test sequence generation ... 15
Figure 4.4: Resulting BIST circuitry.. 15
Figure 4.5: Pseudo-random fault coverage... 16
Figure 4.6: Fault coverage saturation curve ... 16
Figure 4.7: Assignment of the rows ... 20
Figure 4.8: Column matching example .. 21
Figure 4.9: The first assignment to the submatrices... 21
Figure 4.10: ISCAS c17 test vectors .. 23
Figure 4.11: One-to-one exact Column-Matching example ... 24
Figure 4.12: BIST implementation for c17 circuit ... 24
Figure 4.13: Assignment of rows for c17 circuit.. 25
Figure 4.14: Row assignment histograms .. 27
Figure 4.15: Close-up view of Fig. 4.14... 28
Figure 4.16: Thorough search progress.. 29
Figure 4.17: Repetitive fast search... 30
Figure 5.1: Structure of the BOOM system.. 46
Figure 5.2: Growth of PI number and decrease of SOP length during iterative minimization................... 51
Figure 5.3: Iterative minimization schematic plan ... 52
Figure 5.4: I-buffer tree structure ... 52
Figure 5.5: Growth of time for different IE methods... 54
Figure 5.6: Growth of PIs for different IE methods ... 55
Figure 5.7: Growth and fall of the number of non-primes ... 56
Figure 5.8: Time complexity (1) .. 64
Figure 5.9: Time complexity (2) .. 64
Figure 5.10: Time complexity (3) .. 65
Figure 5.11: Runtimes for ESPRESSO (dashed lines) and for BOOM (solid line) 66
Figure 5.12: Relative slowdown [%] for various percentages of DCs ... 66
Figure 6.1: BIST equipment synthesis dataflow .. 69
Figure 6.2: BIST structure.. 70

List of Tables
Table 4.1: Influence of the pseudo-random phase on the result ... 17
Table 4.2: Influence of the LFSR seed... 18
Table 4.3: Row assignment algorithms .. 28
Table 4.4: Test compaction results... 34
Table 4.5: Influence of the deterministic phase length on the result .. 37
Table 4.6: Influence of the test lengths .. 38
Table 4.7: Comparison results.. 39
Table 4.8: ISCAS & ITC benchmarks.. 41
Table 5.1: Immediate implicant checking effects... 48
Table 5.2: CD-Search Example (1) .. 49
Table 5.3: CD-Search Example (2) .. 49
Table 5.4: CD-Search Example (3) .. 49
Table 5.5: CD-Search Example (4) .. 50
Table 5.6: Runtimes and minimum solutions for the standard MCNC benchmarks 59
Table 5.7: Solution of Boom Benchmarks - comparing the result quality ... 60
Table 5.8: Solution of Boom Benchmarks - comparing the runtime.. 61
Table 5.9: Time for one iteration on very large problems.. 61
Table 5.10: Output Decoder design examples.. 62

List of Algorithms
Algorithm 4.1: Set System Based Column-Matching .. 23
Algorithm 4.2: Fast Search Column-Matching .. 31
Algorithm 4.3: Multiple-vector row assignment .. 36
Algorithm 5.1: The CD-Search .. 48
Algorithm 5.2: Minimization of a group of functions.. 58

List of Abbreviations
ATE ...Automatic Test Equipment
ATPG...Automatic Test Pattern Generator
BIST...Built-in Self-Test
BISTE ..Built-in Self-Test Equipment
CA..Cellular Automaton
CD-Search ...Coverage-Directed Search
CM...Column-Matching
CP ..Covering Problem
CUT ...Circuit under Test
DC..Don’t Care
FSM ...Finite State Machine
GE..Gate Equivalent
GLFSR...Generalized Linear Feedback Shift Register
GURT ..Generator of Unequiprobable Random Tests
IE ... Implicant Expansion
IR ... Implicant Reduction
LFSR.. Linear Feedback Shift Register
MISR ...Multiple-Input Shift Register
MP-LFSR...Multi-Polynomial Linear Feedback Shift

Register
PI..Prime Implicant
PRPG ...Pseudo-Random Pattern Generator
RE ..Response Evaluator
TPG..Test Pattern Generator

List of Symbols
A..........................Covering matrix
C..........................PRPG code words matrix
Det the length of the deterministic phase
Di.........................Don’t care set
eNumber of rows of A
fNumber of columns of A
FFFFiSingle-output Boolean function
FiOn-set
ia particular C matrix column (to be matched); general index
ja particular T matrix column (to be matched); general index
ka particular C matrix row
la particular T matrix row
mnumber of column matches
nnumber of PRPG bits; number of C matrix columns; number

of input variables
pnumber of PRPG cycles; number of C matrix rows
PR the length of the pseudo-random phase
RiOff-set
r...........................number of CUT inputs; number of T matrix columns
s...........................number of deterministic test vectors; number of T matrix rows
T..........................Test vectors matrix
vnumber of output variables
xi.......................... input variable (LFSR output, Decoder input)
yj..........................output variable (Decoder output, CUT input)

 1

1 Introduction

With the ever-increasing complexity of present VLSI circuits, their testing is
becoming more and more important. There often arise faulty chips during the
manufacturing process due to an inaccurate technology and such chips should be
detected and eliminated. Using only external test equipment (ATE) to test the chips is
becoming impossible, mainly due to a huge amount of test vectors, long test time and
very expensive test equipment. Incorporating the Built-in Self-Test Equipment (BISTE)
becomes inevitable. It requires no external tester to test the circuit, since all the circuitry
needed to conduct the test is included in the very circuit. This is paid by an area
overhead, long test time and often low fault coverage. Up to now, many BIST methods
have been developed [Aga93, Tou96a, Tou96b], all of them trying to find some
trade-off between these four aspects that are mutually antipodal:

• Fault coverage, i.e., the percentage of detected faults, in a chosen fault model
• Test time
• BIST area overhead
• BIST design time

To reach a high fault coverage, either a long test time (exhaustive test), or a high area
overhead (ROM-based BIST) is involved. A pseudo-random testing established the
simplest trade-off between all these criteria. With an extremely low area overhead the
circuit can be tested usually up to more than 90% in a relatively small number of clock
cycles. To improve the fault coverage and to reduce the test time, many enhancements
of this pseudo-random principle have been developed. Of course, all of them are
accompanied by some additional area overhead. Here the BIST design time comes
to importance – a design of a BIST structure achieving high fault coverage with a low
area overhead often takes a long time to synthesize.

1.1 Basic Principles of Built-In Self-Test

The general Built-in Self-Test structure consists of three main parts [McC85] – see
Figure 1.1. The TPG (Test Pattern Generator) produces test patterns that are fed to the
inputs of a Circuit under Test (CUT) and the responses of a circuit are then evaluated
in a Response Evaluator (RE).

Figure 1.1: BIST structure

 2

Test patterns are sequentially applied to the inputs of a logic circuit and the response
at the primary outputs is checked during the test. If the response is different from the
expected value, a fault is detected.

There are two basic testing strategies: functional testing and structural testing. The

functional testing checks the circuit’s response to the input patterns to test the
functionality of the circuit, while its inner structure needs not be known. On the other
hand, the structural test tries to find physical defects of the circuit by propagating faults
to the output (by finding a sensitive path). There are several kinds of faults caused
by various physical defects, like the stuck-at faults (stuck-at-one, stuck-at-zero),
bridging faults, opens and other technology dependent faults. Most of the faults are easy
to detect, as they can be propagated to the circuit’s outputs by many possible vectors
applied to the input (of their total number 2n, where n is the number of the primary
inputs of the circuit). However, there are faults that are hard to detect (random pattern
resistant faults, hard faults), as only few test vectors propagate these faults to the
outputs. Thus, the amount of faults that can be detected by a particular test set depends
on the test patterns. Thus we always have to specify the set of faults on which we
concentrate. If a test set detects all faults from the given fault set, it is denoted as
complete. The most commonly accepted fault set consists of all stuck-at faults.

In most of cases, some kinds of pseudo-random pattern generators (PRPGs) are used

as test pattern generators (TPGs), either stand-alone or modified somehow. Generally,
PRPGs are simple sequential circuits generating code words, according to the
generating polynomial [Str02]. These code words are then either fed directly to the CUT
inputs, or they are modified by some additional circuitry.

The most common PRPG structures are linear feedback shift registers (LFSRs) or
cellular automata (CA). An n-bit (n-stage) LFSR is a linear sequential circuit consisting
of D flip-flops and XOR gates generating code words (patterns) of a cyclic code. The
structure of an n-stage LFSR-I (with internal XORs) is shown in Fig. 1.2.

Figure 1.2: LFSR structure

The register has n parallel outputs corresponding to the outputs of the D flip-flops,
and one flip-flop output can be used as a serial output of a register.

The coefficients c1 – cn-1 express whether there exists (1) a connection from the
feedback to the corresponding XOR gate or no connection (0). Thus it determines
whether there is a respective XOR gate present or the flip-flops are connected directly.
The feedbacks leading to the XOR gates are also called taps.

The sequence of code words produced by an LFSR can be described by a generating
polynomial g(x) in GF(2n), [Ada91].

g(x) = xn

 + cn-1x
n-1 + cn-2x

n-2 + ... + c1x
1 + 1

 3

If the generating polynomial is primitive, the LFSR has a maximum period 2n-1, thus

it produces 2n-1 different patterns.
The initial state of the register (initial values of the flip-flops) is called the seed.
The second LFSR type, the LFSR-II is implemented with XORs in the feedback. Its

generating polynomial is dual to the LFSR-I polynomial. Only LFSR-I will be
considered in this Thesis, since these two LFSRs types are mutually convertible.

Cellular automata [Hor90, Alo93] are sequential structures similar to LFSRs. Their

periods are often shorter, but code words generated by CA are sometimes more suitable
for test patterns with preferred numbers of ones or zeros at the outputs.

An example of a CA performing multiplication of the polynomials corresponding
to code words by the polynomial x+1 (rule 60 for each cell [Cha97]) is shown
in Fig. 1.3.

Figure 1.3: Example of a cellular automaton

Since the TPG can be constructed to have both parallel and/or serial outputs, the
BIST can be designed in two general ways: the test-per-clock and test-per-scan BIST.
In the test-per-clock BIST the CUT is being fed by parallel outputs of the TPG, which is
mostly the linear feedback shift register (LFSR) or a cellular automaton (CA). Each test
pattern is processed in one clock cycle. The response of the CUT goes to the response
evaluator in parallel, which is often a Multi-Input Shift Register (MISR). A general
structure of the test-per-clock BIST is shown in Fig. 1.4.

Figure 1.4: Test-per-clock BIST structure

The second typical structure, suitable especially to test sequential circuits, is denoted

as a test-per-scan BIST (Fig. 1.5). It is used in connection with CUTs having a scan
chain, i.e., the circuit’s flip-flops are connected into a chain making one scan register
for testing purposes. Here the test patterns are shifted into the scan register of the CUT
and applied by activating the functional clock after every full scan-in of one test pattern.

 4

The response is then scanned out and typically evaluated by a serial signature analyzer
(signature register).

In this work only the test-per-clock is considered, however the method can be adapted
to test-per-scan as well [Cha03].

Figure 1.5: Test-per-scan BIST structure

The two above-mentioned methods suffer from their specific drawbacks: in the
test-per-clock BIST case there is often a very “wide” PRPG register and heavy wiring.
On the other hand, the test application time is the shortest possible. When the test is
applied using the test-per-scan method, there is a big test time overhead, since each
of the test patterns has to be serially loaded into the scan chain. Moreover, the circuit
often cannot be tested at its work frequency, since the flipping activity on the signals
exceeds the activity occurring during its normal operation. This would cause the tested
chip dissipate more heat, which could “burn” the chip during the test.

The present trend in the BIST design area is a combination of these two approaches:
the multiple scan chain BIST [Kei98]. Here the CUT registers form more than one scan
chains, which are fed in parallel, see Fig. 1.6.

Figure 1.6: Multiple scan chain BIST structure

The state-of-the-art serially-parallel BIST trend is the STUMPS (Self-Test Using
MISR and Parallel Shift-Register Sequence Generators) architecture [Bar87], where the
PRPG code words are modified by so called “phase shifter” (PS) and then fed in parallel
into multiple scan chains. The output response is evaluated in MISR. See Fig. 1.7.

Figure 1.7: STUMPS structure

 5

1.2 Structure of the Thesis

After a brief introduction to the BIST in Section 1, a survey of state-of-the-art BIST
design methods follows (Section 2). Section 3 describes the aims of the Dissertation.
The proposed BIST design method is presented in Section 4. Section 5 describes
BOOM, the Boolean minimizer which has been developed as a necessary part of the
proposed BIST design process. The Implementation section (Section 6) describes the
engineer work done, thus the programs developed in the process. Section 7 concludes
the Dissertation and proposes several ways of future research.

 6

2 State-of-the-Art Methods

Before describing the principles of the state-of-the art methods, namely the
Reseeding, Weighted pattern testing, Bit-fixing, Bit-flipping and Row-marching
methods, the basic BIST methods will be introduced, for better understanding to the
latter ones.

2.1 Exhaustive Testing

There are several testing approaches differing in their successfulness, in terms of the
BIST area overhead, design time and test duration. In the most naive method – the
exhaustive testing – the circuit is fed with all the possible 2n (where n is the number
of CUT inputs) patterns and the responses is checked. Obviously, for a combinational
circuit the exhaustive test provides complete fault coverage, and it can be very easily
implemented (an area overhead is often the lowest possible), but it is extremely time
consuming and thus inefficient and practically unusable. It is applicable to circuits with
up to 30 inputs (109 patterns, which takes cca. 1 sec on the frequency of 1 GHz), for
more inputs the exhaustive testing is not feasible. The test patterns are mostly generated
by an LFSR (Linear Feedback Shift Register), since it produces 2n-1 different patterns
during its period and it can be very easily implemented on the chip.

A slight modification of this method called a pseudo-exhaustive testing [McC84]
allows us to test a circuit exhaustively without a need to use all the 2n test patterns. The
circuit is divided into several possibly overlapping cones, which comprise of logic
elements that influence individual outputs of the circuit. Then, all the cones are
separately tested exhaustively, and hereby also the whole circuit is completely tested.
The only fault type not covered by pseudo-exhaustive tests are bridging faults between
elements belonging to different non-overlapping cones. If such an efficient
decomposition is possible, the circuit can be tested with much less than 2n test patterns.
However, for more complex circuits the cones are rather wide (the cones have a large
number of inputs) and thus the pseudo-exhaustive testing is often not feasible either.

2.2 Pseudo-Random Testing

In a simple pseudo-random testing the test patterns are generated by a pseudo-random
pattern generator (PRPG) and led directly to the circuit’s inputs. It differs from the
exhaustive testing by a test length. If the PRPG structure and seed are properly chosen,
only several test patterns (less than 2n) are needed to completely test the circuit. The
pseudo-random testing is also widely used in a case where the complete fault coverage
is not required, since pseudo-random patterns often successfully detect most of the
easy-to-detect faults. Linear feedback shift registers (LFSRs) or cellular automata (CA)
are usually used as PRPGs. As an improvement of an LFSR, a generalized LFSR
(GLFSR) has been proposed [Pra99], however it involves an increase of the area
overhead.

 7

A combination of a pseudo-random and deterministic BIST is being referred to as a

mixed-mode BIST. The easy-to-detect faults are tested by pseudo-random test patterns,
and the deterministic patterns are generated to test the remaining, undetected faults. The
popular bit-fixing [Tou95, Tou96a, Tou01] and bit-flipping [Wun96] techniques belong
to this category.

2.3 Reseeding-Based Techniques

In the basic reseeding technique, the LFSR is seeded with more than one seeds during
the test, while the seeds need to be stored in ROM [Koe91]. The seeds are sometimes
smaller than the test patterns themselves and, most importantly, more than one test
patterns are derived from one seed. This significantly reduces memory requirements.

One problem is that if a standard LFSR is used as a pattern generator, it may always
not be possible to find the seed producing the required test patterns. A solution of this
problem is using a multi-polynomial LFSR (MP-LFSR), where the feedback network
of an LFSR is reconfigurable [Hel92, Hel95]. Both the seeds and polynomials are stored
in a ROM memory and for each LFSR seed also a unique LFSR polynomial is selected.
The structure of such a TPG is shown in Fig. 2.1.

Figure 2.1: Multi-polynomial BIST

This idea has been extended in [Hel00] where the folding counter, which

is a programmable Johnson counter, is used as a PRPG. Here the number of folding
seeds to be stored in ROM is even more minimized.

In spite of all these techniques reducing memory overhead, implementation
of a ROM on a chip is still very area demanding and thus the ROM memory should be
completely eliminated in BIST.

2.4 Weighted Pattern BIST

To one of the approaches, where the pseudo-random patterns are modified so that
better fault coverage is reached, belongs the weighted pattern testing. Here the PRPG
patterns are being biased by a signal probability of some of the PRPG outputs (the

 8

probability of a “1” value occurrence). In the weighted pattern testing method two
problems have to be solved: first, the weight sets have to be computed and then the
weighted signals have to be generated. Many weight set computation methods were
proposed [Bar87] and it was shown that multiple weight sets are needed to produce
patterns with sufficient fault coverage [Wun88]. These multiple weight sets have
to be stored on a chip and also the logic accomplishing switching between them is
complicated, thus this method often implies a large area overhead.

Several techniques reducing the area overhead of a weighted pattern testing BIST
were proposed - one of them is a Generator of Unequiprobable Random Tests (GURT)
presented in [Wun87]. The area overhead is reduced, however it is restricted to one
weight set only. Also the more general method based on modifying the GURT [Har93]
uses only one weight set and thus it is also limited to special cases of the tested circuits
and cannot be used in general.

Special methods using multiple weight sets that can be easily implemented were
proposed in [Pom93] and [AlS94]. In [Pom93] three different weight values can
be applied by adding a very simple combinational logic to the PRPG outputs, [AlS94]
on the other hand uses specially designed PRPG flip-flops.

As the LFSR code words usually have very balanced weights, the design of the logic
generating a weighted signal can be rather difficult. Some approaches using cellular
automata instead of an LFSR were studied, and good results were reached using this
approach for some circuits [Alo03, Nov98, Nov99]. Methods using inhomogeneous
cellular automata to produce weighted pattern sets are presented in [Nee93].

In [Wan01] the weighted random BIST technique is accompanied by a special ATPG
producing suitable test vectors. Such a combination yields a very low BIST area
overhead.

2.5 Bit-Fixing and Bit-Flipping

The bit-fixing [Tou95, Tou96a, Tou01] and bit-flipping [Wun96] methods are based
on a modification of some LFSR bits by some additional logic, in order to increase the
fault coverage. Both of them introduce a mapping function that transforms the LFSR
pseudo-random code words into deterministic patterns – see an example in Fig. 2.2.

This idea was generalized in [Tou96b], where the problem of finding a mapping
function is transformed into finding a minimum rectangle cover of a binate matrix.
Procedures used in ESPRESSO [Bra84] were used to find a mapping logic.

General schemes of test-per-scan bit-flipping and bit-fixing BIST methods are shown
in Figures 2.3 and 2.4 respectively. The bit-fixing method modifies the pseudo-random
sequence by AND and OR gates, the bit-flipping method augments the sequence
by flipping some bits by a XOR gate.

Figure 2.2: Modifying the LFSR patterns

 9

Figure 2.3: Bit-fixing scheme

Figure 2.4: Bit-flipping scheme

2.6 Row Matching

The row matching approach proposed in [Cha95, Cha03] is based on a similar idea.
A simple combinational function transforming some of the PRPG patterns into test
patterns is designed in order to reach better fault coverage. Here the test patterns are
independent on the PRPG code words in a sense of a similarity of the patterns – proper
test vectors are pre-computed by an ATPG tool; they are not derived from the original
PRPG code words as it was being done in the previous methods.

The row matching comprises of finding an assignment of deterministic test patterns
to the PRPG code words, as it is shown in Fig. 2.5. Each of the test patterns has to be
assigned to some PRPG pattern to generate the required test. Here the problem to be
solved consists in finding such a row matching that the pattern transformation function
is as simple as possible.

 10

Figure 2.5: Row matching principle

The aim of the algorithm is to find a row matching that minimizes the cost
function, which is a rough measure of the complexity of the final BIST design
[Cha95]. This is, unfortunately, an NP-hard problem and thus some heuristic must be
used. In the proposed algorithm the rows are being matched sequentially (one-by-
one) preferring the match that locally minimizes the cost function. After the matching
is done, the result is in a form of a truth table, which has to be minimized by some
Boolean minimizer (ESPRESSO) to obtain the final solution. The truth table
corresponding to the example from Fig. 2.5 is shown in Figure 2.6:

Figure 2.6: The resulting truth table

In addition to introducing a mapping function, a special kind of a PRPG is exploited
here – a GLFSR (generalized LFSR). In principle, it behaves similarly
to a weighted-pattern TPG, however the weighted patterns are being generated
by a modification of a LFSR [Pra99]. However, this modification introduces
an additional logic to the whole BIST structure, and thus it disturbs otherwise good
results.

 11

3 Aims of the Dissertation and Its
Contributions

The main aim of my research, described in this Dissertation Thesis, was to develop
a new BIST design method, as a better alternative to other state-of-the-art techniques,
like bit-flipping, bit-fixing, etc. The designed method was primarily targeted to the
test-per-clock BIST for combinational or full-scan circuits (or circuits provided by a
slight modification of a full-scan, respectively). Competitive methods that are
commonly used in industrial applications are used for a comparison in this Thesis.

A big importance should be given to the scalability of the algorithm. There are four
antipodal aspects in the BIST equipment design:

• BISTE design time
• BISTE area overhead
• Duration of the BIST (number of clock cycles needed to test the circuit)
• Fault coverage

 Different ASIC designers integrating BIST equipment into their circuits have

different requirements. Sometimes there is a requirement to design the BIST equipment
as fast as possible, regardless the area overhead and the fault coverage (to some extent,
of course). For low-power designs, the BISTE area overhead should be kept as small as
possible, while the BIST design time is not that important. Or, and this is the most
common case in practice, high fault coverage is important, whereas the BIST design
time plays a small role. This is underlain by a fact that the design time of the tested
circuit is mostly significantly higher than the BIST equipment design time.

Thus, the aim of the Dissertation is to propose a flexible way how to design test
pattern generators (TPGs) meeting any of the above-mentioned restrictions (or, better,
quality measures). The designer should be able to freely adjust the BIST equipment
design runtime, BISTE area overhead and BIST run time, according his preferences.

The next contribution is the way how the mixed-mode TPG is designed: it contains
no additional space-demanding memory elements (except of the PRPG flip-flops).
Methods described in Section 2 (bit-fixing, bit-flipping) require additional flip-flops
to store signatures, in order to be able to recognize pseudo-random patterns that are
to be transformed into deterministic ones. On the other hand, the Mixed-Mode
Column-Matching method strictly divides the pseudo-random and deterministic phases.
Their switching requires minimum of logics, namely only one additional pattern counter
stage, in the optimum case.

The proposed algorithm should serve as a basic guideline how to design more
complex BIST designs, i.e., the multiple-scan chain based BIST, the STUMPS
architecture, etc. The method should be as general, like the other state-of-the-art
methods are (e.g., bit-flipping, bit-fixing).

BOOM, the two-level Boolean minimizer has been developed as a part of this work.
It is a very efficient minimization tool able to efficiently handle functions having up
to thousands input variables. It offers a big scalability too – the result quality may be
improved by iterating the minimization process, thus for a cost of a longer runtime.

 12

4 Proposed BIST Method

A novel test-per-clock BIST design method is proposed in this Thesis. The test
patterns are applied to the primary inputs of the circuit-under-test (CUT) in parallel,
thus one test vector is being processed in one clock cycle. The response is then drawn
from the primary outputs and analyzed in the response evaluator (RE), which is mostly
a multi-input shift register (MISR).

This method decreases the BIST area overhead by simplification of the test pattern
generator (TPG). Deterministic test patterns generated by some ATPG (Automatic Test
Pattern Generator) tool are used, thus the fault coverage achieved strictly depends
on these patterns. The method is that universal, so that any test vector set can be used.
This implies that the method can be adapted to any fault model, as long as basic
requirements for the test vectors are held. For example, delay faults cannot be tested
using the simple Column-Matching, since test vector pairs have to stay together here.
However, after a slight algorithm modification, even this could be possible. On the
other hand, e.g., IDDQ testing [Raj00] may be supported without any algorithm
modification.

No memory is used for storing test patterns, since the memory mostly causes a big
area overhead on a chip. From a global point of view [Str02], the method is based
on a synthesis of a finite state machine (FSM) that produces deterministic test patterns.

The test pattern generator consists of two blocks: the pseudo-random pattern
generator (PRPG) and the output decoder, which is a combinational block transforming
the PRPG patterns into deterministic tests. The PRPG is mostly constructed as a linear
feedback shift register (LFSR) with an appropriate generating polynomial, or as
a cellular automaton [Nee93, Nov98, Nov99, Alo03]. The basic structure of such
a test-per-clock BIST is shown in Fig. 4.1.

Figure 4.1: Test-per-clock BIST structure

The principles of the proposed mixed-mode BIST method are presented in this
section. There are several aspects involved with the BIST design. These will be
described in the following Subsections:

• The general mixed-mode BIST principles are shown in Subsection 4.1.
• Then the whole BIST design process is described, for the basic method.

 13

• The BIST process is being executed in two separate phases: the
pseudo-random and the deterministic one. These two phases will be discussed
more thoroughly in Subsections 4.3, 4.4, 4.5 and 4.8.

• The Column-Matching principle exploiting test don’t cares is described
in Subsection 4.6.

• Section 4.7 describes the newest algorithm enhancement, namely the
Multiple-Vector Column-Matching.

• Experimental results are presented at the end of this Section.

4.1 Basic Principles of the Proposed Mixed-Mode BIST

Most of the mixed-mode BIST techniques involve using some kind of transformation
and switching logic accompanying the pseudo-random pattern generator (PRPG).
A general structure of the proposed mixed-mode BIST design is shown in Fig. 4.2. The
pseudo-random code words are produced by an LSFR (or any PRPG in general). Then
they are transformed by the Decoder into deterministic vectors. The Switching logic
selects the patterns to be applied to the CUT. After that the circuit’s response is
evaluated, usually in the multi-input shift register (MISR).

LFSR

Decoder

Switch

CUT

MISR

TPG

mode

Figure 4.2: Mixed-mode BIST structure

The main difference between the proposed algorithm and competitive methods
[Tou95, Tou96b, Wun96, Cha03] consists in a separation of the pseudo-random and
deterministic phases. In the other methods the LFSR patterns that do not detect any
faults are identified and modified. Here the switching logic consists of coupled AND
and OR gates in the bit-fixing method [Tou95] – see Fig. 2.3, or a XOR gate for
bit flipping [Wun96] – See Fig. 2.4.

In practice, several initial pseudo-random vectors detect many faults, but the fault
detection capability of the latter ones quickly drops to zero. Thus, it could be more
advantageous to run the unmodified pseudo-random phase for several clock cycles and
then to switch to the deterministic one at once, as it is being done in the proposed
approach. The switching logic then consists of multiplexers, in the most general case.
The area overhead caused by the switching logic needs not be too large, since even
these multiplexers can be efficiently eliminated by using a Modified Column-Matching
method as well (see Subsection 4.6.4). Moreover, the size of a multiplexer, when
implemented using transmission gates, is 1.5-times the size of a standard NAND gate

 14

[DeM94]. Moreover, the array of multiplexers has to be present in any test-per-clock
BIST design. If another layer of multiplexers is added by the method, the 2-1 MUXes
are changed to 3-1 MUXes only (see the Implementation section).

In the first, pseudo-random phase, all the multiplexers are set so they feed the circuit
with the unmodified LFSR patterns; the Decoder is cut off. Subsequently, in the
deterministic phase, all the MUXes switch to the Decoder outputs and only the modified
patterns are applied to the CUT. The mode signal driving the multiplexers can be
generated externally (by ATE), or some kind of a counter can be used (internally). Even
in this case the area overhead of this logic can be negligible, since the BIST-controller
pattern counter can be exploited very efficiently here. For instance, when the lengths
of the two phases are equal, the mode signal can be driven by one additional stage
(D flip-flop) of a pattern counter only. If not, just extra comparator logic has to be
present. Hence, the separation of the two BIST phases completely eliminates the pattern
recognition logic.

4.2 The BIST Design Process

The Decoder logic is synthesized using the Column-Matching algorithm. The
Output Decoder is a combinational block transforming some of the PRPG patterns into
deterministic patterns pre-computed by an ATPG. The aim is to design the Decoder
to be as small as possible. Its design is based on “matching” maximum of the decoder
outputs with its inputs. Particularly, when the test vectors are reordered and assigned
to the PRPG vectors in such a way that the values in the respective matched columns
(i.e., input and output variables) are equal, the matched output will be implemented by a
wired connection, thus without any logic involved. Since the BIST is designed
for combinational circuits, any reordering can be freely done. Moreover, the
deterministic test can be much longer than the computed test sequence. Only few of the
PRPG patterns produce the required test vectors and the rest represents non-testing
“gaps”. This gives a big freedom to select appropriate matches. The values of the
non-matched outputs have to be synthesized by some Boolean minimizer, i.e., BOOM
[Hla01, Fis03b] or ESPRESSO [Bra84]. The Column-Matching algorithm will
be described into detail in Subsection 4.5).

The whole mixed-mode Column-Matching based TPG design process can

be summarized as follows:

1. Simulate several (PR) pseudo-random patterns for the CUT and determine the
undetected faults (by fault simulation)

2. Compute deterministic test patterns detecting these faults by an ATPG tool
3. Perform the Column-Matching using the subsequent LFSR pseudo-random

patterns (Det) and the deterministic tests
4. Synthesize the unmatched decoder outputs using a two-level Boolean

minimizer.

An artificial illustrative example is shown in Fig. 4.3. A 5-bit LFSR is run

for 5 cycles first and the easily testable faults are detected. Then the fault simulation
was run to find the undetected faults, for which the test vectors are generated by an
ATPG. At the end, the decoder logic is synthesized for these tests and the subsequent
LFSR patterns. The resulting circuitry is shown in Fig. 4.4. Here we can see that for

 15

some outputs (y0, y1) there is no decoder and switching logic needed, for some outputs
there is only the switching logic needed (y2, y3). Such cases should be preferred when
the BIST is being designed.

10100

01010

00101

10110

01011

10001

11100

01110

00111

10111

Pseudo-random
sequence } Simulate Non-covered

faul ts

ATPG Test
Vectors

1X000

1010X

11011

0001X

10100

11011

01011

00001

10000

(non-det)
Deterministic

sequence

} }

x -x0 4 y -y0 4

LFSR

10100

01010

00101

10110

01011

10100

11011

01011

00001

10000

Final test sequence

Figure 4.3: Test sequence generation

LFSR

CUT

1

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

Deterministic
mode

y = x0 0

y = x

y = x

y = x

y = x +x

1 1

2 2

3 1

4 0 1

’

’+

Figure 4.4: Resulting BIST circuitry

4.3 The Pseudo-Random Phase

The aim of the pseudo-random phase is to detect as many faults as possible, while
keeping the test time acceptable. Two aspects play role here: the LFSR polynomial and
seed and the test length. Computing the LFSR polynomial and seed in order to achieve
good fault coverage is an extremely computationally demanding problem, thus the seed
is selected at random and its effectiveness evaluated experimentally.

Selection of a LFSR and a seed might significantly influence the fault coverage. The
frequency distribution of covering a particular number of faults is illustrated by Fig. 4.5.
Here sets of 50, 100, 500 and 1000 LFSR patterns were applied to the c3540 ISCAS
circuit [Brg85], 1000 samples for each test size (see the four curves in Fig. 4.5). Each
LFSR polynomial and seed were selected randomly. The distribution of the number
of faults which remained undetected is shown. We can see that it well follows the
Gaussian distribution. For a low number of patterns many faults are left undetected,
while also their number varies a lot. When increasing the number of the test patterns the
number of undetected faults rapidly decreases, while the variation of this number

 16

decreases as well. This means that when a high fault coverage is obtained by a long test
sequence, the influence of the LFSR polynomial and seed on the fault coverage is
negligible.

0 200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800

50 patterns

100 patterns

500 patterns

1000 patterns

c3540
F

re
qu

en
cy

Undetected Faults

Figure 4.5: Pseudo-random fault coverage

The number of the covered faults as a function of the number of LFSR cycles applied
to the CUT follows the saturation curve shown in Fig. 4.6 (for the c3540 circuit
[Brg85]). First few vectors detect the majority of faults, and then the fault coverage
increases only slightly. The total number of detectable stuck-at faults is 3428. This
number was not reached even after applying 50 000 LFSR cycles.

0 1000 2000 3000 4000 5000 6000 7000 8000

500

1000

1500

2000

2500

3000

3500

c3540

C
ov

er
ed

 F
au

lt
s

Cycles

Figure 4.6: Fault coverage saturation curve

A conclusion can be made from these two graphs: in order to reach a satisfactory
fault coverage in the pseudo-random phase, the fault coverage saturation curve for the
CUT should be determined by a fault simulation. The appropriate length of the PR
phase can be easily derived from it. The pseudo-random phase should be stopped when
the fault coverage does not improve for a given number of cycles. This number can be

 17

freely adjusted, according to the application specific requirements (the trade-off
between the test time and area overhead). Usually, this threshold is set to 1000 cycles.
Thus, for the c3540 benchmark PR = 2500 cycles is determined (see Fig. 4.6).

4.3.1 Influence of the Pseudo-Random Phase Length

To illustrate the importance of properly choosing the parameters of the
pseudo-random phase, the BIST structure was designed for several ISCAS benchmarks
[Brg85, Brg89]. The length of the pseudo-random phase was varied, while the length
of the deterministic phase was kept constant, 1000 cycles. As a fault simulator FSIM
[Lee91] was used, as an ATPG Atalanta tool [Lee93]. For all the benchmarks a test
covering all the irredundant faults was produced by this tool.

The results are shown in Table 4.1. The benchmark name is shown in the first
column. The “PR” column indicates the length of the pseudo-random phase, the “UD”
column shows the number of s-a faults that were left undetected by this phase. “vct.”
gives then the number of deterministic vectors testing these faults, produced by an
ATPG. The length of the deterministic phase was set constantly to 1000 cycles, except
of the s38417 benchmark, where it was set to 2000 cycles (because of the size of the test
set). The “GEs” column shows the total complexity of the BIST design, in terms of the
gate equivalents [DeM94]. The time needed to complete the Column-Matching
procedure is indicated in the last column. The experiment was run on a PC with 1 GHz
Athlon CPU, Windows XP.

Table 4.1: Influence of the pseudo-random phase on the result

bench PR UD vct. GEs Time [s]
c2670 1 K 309 86 199.5 166
 2 K 306 86 189.5 166
 5 K 216 73 194.5 143
 10 K 154 69 166.5 123
c3540 300 165 66 109.5 10.26
 500 92 42 56.5 3.88
 1 K 36 26 28 1.02
 2 K 9 9 13.5 0.19
 5 K 1 1 1.5 0.02
s1196 200 228 104 110.5 5.05
 500 141 79 77 3.87
 1 K 90 51 50.5 2.00
 2 K 52 37 37 1.20
 5 K 23 17 17 0.48
 10 K 9 4 6 0.04
s5378 5 K 89 49 65.5 2259
 10 K 63 23 31.5 767
 20 K 48 8 16.5 104
s9234.1 1 K 1674 215 883 52 300
 50 K 773 99 333.5 4 400
 200 K 599 52 212.5 1 600
s13207.1 1 K 1793 197 699 208 K

 18

bench PR UD vct. GEs Time [s]
 10 K 617 74 280 3 480
 50 K 182 21 36 128
s38417 10 K 2067 1391 15106.5 3 417
 100 K 780 520 3259.5 2 263

A big trade-off between the test length and the area overhead can be seen here. The

longer the pseudo-random phase runs, the less area overhead is reached. Consequently,
the BIST synthesis time reduces as well.

It can be concluded from this table that the pseudorandom phase plays a very
important role. If its length is selected so that many easy-to-detect faults are covered by
it, only few faults are to be covered by the deterministic phase, thus the Decoder logic
would be negligible. However, for circuits having a large number of hard-to-detect
faults (c2670) the size of the Decoder logic cannot be influenced by this phase that
much.

The influence of the length of the pseudo-random phase on the final result is
discussed more thoroughly in [Fis04c].

4.4 Influence of the LFSR Structure and Seed

The fault coverage reached in the first phase is not influenced by the length of the
pseudo-random test only. The number of detected faults also depends on the properties
of the pseudo-random sequence, thus it is influenced by the LFSR polynomial and seed.
Significantly different results are produced for different LFSRs, even when the lengths
of the phases are retained equal. For illustration, see the BIST design for the c1908
ISCAS benchmark circuit [Brg85] results shown in Table 4.2. The pseudo-random
phase was run for 2000 cycles, the LFSR polynomial was set constant (1-tap, see
[Fis04b, Fis05a]), the LFSR was repeatedly randomly reseeded. Then the deterministic
phase was run for 1000 clock cycles. The “ud.” column indicates the number
of undetected faults in the first phase, “vct.” gives the number of deterministic vectors,
“GEs” shows the complexity of the resulting BIST structure, in terms of the gate
equivalents [DeM94]. The entries are sorted by the number of faults not detected in the
pseudo-random phase.

It can be seen that the complexity of the final circuit strictly depends on the LFSR
seed selected – it varies from 7.5 GEs up to 69 GEs.

It is impossible to compute the proper LFSR seed and/or generating polynomial
analytically for practical examples, due to the complexity of this problem. Thus,
in praxis the LFSR is repeatedly reseeded several times and the fault simulation is
conducted. Then the best seed (covering most of faults) is selected. The fault simulation
is often a very fast process, thus it does not significantly influence the BIST design
time.

Table 4.2: Influence of the LFSR seed

Run # ud. vct. GEs Run # ud. vct. GEs
1 19 10 7.5 11 33 15 37
2 21 9 19.5 12 34 16 33
3 24 13 23.5 13 36 18 38

 19

Run # ud. vct. GEs Run # ud. vct. GEs
4 26 15 28 14 37 20 40.5
5 26 13 25 15 39 22 53
6 28 15 37.5 16 44 26 40
7 28 14 22.5 17 46 22 42.5
8 30 14 36 18 48 24 44
9 32 16 31 19 52 28 63.5
10 33 17 27.5 20 62 34 69

4.5 The Deterministic Phase

In the deterministic phase deterministic vectors are synthesized from some of the
LFSR patterns that follow the pseudo-random phase. To do so, the Column-Matching
algorithm is used.

First, let us state the problem formally.

4.5.1 Problem Statement

Let us have an n-bit PRPG running for p clock cycles in the deterministic phase. The
code words generated by this PRPG can be described by a C matrix (code matrix)
of dimensions (p, n). These code words are to be transformed into test patterns
pre-computed by some ATPG tool. They are described by a T matrix (test matrix).
For an r-input CUT and the test consisting of s vectors the T matrix will have
dimensions (s, r). The rows of the matrices will be denoted as vectors.

The tests can be presented either in a form of deterministic patterns (minterms) or
they may contain don’t care values, depending on the ATPG algorithm used for the test
set generation. These don’t cares can be very efficiently exploited, since they give more
freedom to select the column matches.

There are some obvious restrictions for the matrices dimensions. The number of test
patterns p must be 2n – 1 at most (the maximum number of distinct patterns generated
by a LFSR) and p ≥ s, because there must be enough patterns to implement all the test
vectors generated by the ATPG. On the other hand, there are no strict requirements
regarding the relationship of n and r, since the number of LFSR stages can be even
smaller than the number of CUT inputs.

The output decoder logic modifies the C matrix vectors in order to obtain all the
T matrix vectors. As the proposed method is restricted to combinational circuits, the
order in which the test patterns are fed to the CUT is insignificant. Thus, the T matrix
vectors can be reordered in any way. Finding a transformation from the C matrix to the
T matrix means finding a coupling of each of the s rows of T matrix with rows of the C
matrix – thus finding a row assignment (see Fig. 4.7), i.e., to determine which C matrix
rows will be transformed to T matrix rows and how. The excessive patterns do not
disturb testing; they only extend the test length. If a low-power testing is required, some
pattern inhibition techniques may be used - see [Gir99]. The proposed method can be
easily modified under these considerations.

The Output Decoder is a combinational block that converts s n-dimensional vectors
of the C matrix into s r-dimensional vectors of the T matrix. The decoder is represented
by a Boolean function having n inputs and r outputs, where only values of s terms are

 20

defined and the rest are don’t care values. Such a Boolean function can be easily
described by a truth table, where the output part corresponds to the T matrix, while the
input part consists of s C matrix vectors assigned to the T matrix rows. The set of such
vectors will be denoted as a pruned C matrix (see Fig. 4.7).

10001
00110
10111
00101
11111
10000
10011
11011
11001
10010

01001
10010
01111
11100
11001

10001
00110
00101
10000
11001

01001
10010
01111
11100
11001

⇒

C-Matrix

T-Matrix Pruned C-Matrix

PRPG Patterns

Test Patterns Output Decoder PLA

s

n

r

p

↓

Figure 4.7: Assignment of the rows

4.5.2 The Column-Matching Algorithm

The task is now, how to assign the rows to each other to reach maximum area
overhead reduction. The aim of the Column-Matching method is to assign all the T
matrix rows to some of the C matrix rows so that some columns of the T matrix will be
equal to some of the pruned C matrix columns in the result. This would yield no logic
necessary to implement these T matrix columns (outputs of the decoder); they would be
implemented as mere wires.

In most cases the PRPG outputs are drawn directly from the outputs of flip-flops.
These flip-flops often also have the negative value of their outputs provided. Then, also
the negative matching should be considered as a possibility to implement some variable
of the output decoder as a simple wire. This happens when the value of the matched
output variable is complement to the value of some input variable in all care terms. The
possibility of a negative Column-Matching should be then considered.

An illustrative example is shown in Fig. 4.8. The matched columns of the pruned

C matrix and T matrix from Fig. 2 are shown here. The T matrix column y1 is matched
with the C matrix column x3 (negatively), then y3 with x1 (negatively) and y4 with x4
(positively).

Thus, the outputs y1, y3 and y4 are implemented without any combinational logic,
while the remaining outputs have to be synthesized using some standard two-level
Boolean minimization tools, like ESPRESSO [Bra84] or BOOM [Hla01, Fis03b].

 21

1 0 0 0 1
0 0 1 1 0
0 0 1 0 1
1 0 0 0 0
1 1 0 0 1

0 1 0 0 1
1 0 0 1 0
0 1 1 1 1
1 1 1 0 0
1 1 0 0 1

Output Decoder PLA

x - x y - y40 0 4

y0 = x4’ + x1

y1 = x3’
y2 = x2 x3’ + x2’ x4’
y3 = x0’
y4 = x4

Figure 4.8: Column matching example

4.5.3 One-to-One Assignment

As a one-to-one assignment will be denoted the case where p = s, thus all the PRPG
vectors are to be assigned to the test vectors and no idle PRPG cycles are present. In this
case the possible minimum number of PRPG vectors is needed to generate the
deterministic test vectors, however, the amount of logic needed to implement the output
decoder is often large.

Generally, when doing the Column-Matching, some restrictions for the C and T
matrix rows that are to be assigned to each other must be applied every time a column
match is done. If the i-th C matrix column is matched with the j-th T matrix column, the
C matrix rows containing “1” value in the i-th column can be assigned only to the T
matrix rows containing “1” value in the j-th column and vice versa.

The most important feature of the one-to-one assignment is the fact that all the PRPG
vectors that are to be transformed into test patterns are known in advance; there are
no excessive C matrix vectors. Determining a column match is then a simple task: it is
possible to make a match if the counts of ones (and zeros) in the corresponding columns
are equal. In the previous example (Fig. 4.8) the counts of ones in the C matrix
for columns x0-x4 are {6, 7, 5, 7, 6}, the counts of ones in the T matrix for columns y0-y4
are {7, 5, 5, 4, 5}, thus there are five possible column matches {x1-y0, x3-y0, x2-y1, x2-y2,
x2-y4}.

After selecting the column match the two matrices are decomposed into two disjoint
parts containing the rows with zeros and ones respectively in the matching columns, let
the submatrices be denoted as C0, C1 and T0, T1. Then any vector from the T0 submatrix
can be assigned to any vector from C0, as well as any vector from the T1 submatrix can
be assigned to any vector from C1, but not otherwise. In our example, when the x2-y4

match is selected first, C0 = {B, F, G, I, J}, C1 = {A, C, D, E, H}, T0 = {a, b, d, g, j},
and T1 = {c, e, f, h, i}.

Figure 4.9: The first assignment to the submatrices

 22

Finding all possible column matches consists in a successive decomposition of the
matrices into set systems until no further decomposition is possible. This happens when
no more columns with equal one and zero counts are available in any two Ci and T i
submatrices.

The number of combinations of possible column matches grows exponentially with
r (number of T matrix vectors). Particularly, there are nr possible combinations (where
n is the number of C matrix columns). Thus, the selection of the candidate columns
for a match is driven by a heuristic, measuring the ratio of zeros and ones in both the
candidate columns. The most balanced decomposition is then selected. Another
possibility is to use an exhaustive column match search, where all the possible
combinations of column matches are tried. This method is applicable only to problems
with a low number of possible column matches.

As the output of this algorithm two systems of subsets of the C and T matrices are
obtained. Each two corresponding subsets contain vectors that can be assigned to each
other in any order. The final assignment is done at random, since it influences the final
result only negligibly (it influences only the final minimization).

4.5.4 Generalized Column-Matching

In practice, it is often more advantageous to let the PRPG run more cycles than
needed and pick out only several suitable vectors (see Fig. 4.7). Then idle test cycles are
present, however this method significantly reduces the complexity of the output
decoder.

The Column-Matching principle is very efficiently applicable here. Unlike in the
method described in the previous subsection, we cannot determine a column match
by comparing the number of ones (and zeros) in the corresponding columns, because it
is not known in advance which C matrix vectors will be included in the final row
assignment. However, we can freely choose among the code words (if p >> s). Finding
a column match is then a trivial problem: for several initial matches practically any two
columns can be successfully matched.

Making an assignment of the T matrix rows to the C matrix rows is then very similar
to the set system based method proposed above. Both the C and T matrices are being
divided into two disjoint parts, while in this case their sizes need not be equal; the
number of vectors in each Ci must be greater or equal to the number of vectors in the
corresponding T i. If not, there would be some test patterns that cannot have a C matrix
vector assigned and then the matching procedure ends. After that, like in the original
algorithm, some row-matching method is used to accomplish the final assignment
of vectors.

The set system based Column-Matching algorithm is shown below. The inputs to the
algorithm are the C and T matrices, the output is a valid system of sets S describing the
total decomposition of the C and T matrix vectors. From this decomposition, the rows
are assigned to each other randomly and then the final result is obtained after
completing a Boolean minimization.

 23

Algorithm 4.1: Set System Based Column-Matching
ColumnMatching(C, T) {

S = {[C, T]}; // initialize system of sets
do {

(i, j) = SelectTwoColumnsToBeMatched(C, T);
S‘ = ∅;

 for (u = 0; u < | S|; u++) { // for all items in set
system
 C 0 = ∅; // generate subsets
 C 1 = ∅;
 for (k = 0; k < C_matrix_rows; k ++)
 if (Su

C[k, i] == 0) C 0 = C 0 ∪ Su
C[k];

 else C 1 = C 1 ∪ Su
C[k];

 T 0 = ∅;
 T 1 = ∅;
 for (l = 0; l < T_matrix_rows; l ++)
 if (Su

T[l, j] == 0) T 0 = T 0 ∪ Su
T[l];

 else T 1 = T 1 ∪ Su
T[l];

if (|C 0| < |T 0| || |C 1| < |T 1|) return S;

 S‘ = S‘ ∪ {[C 0, T 0]; [[C 1, T 1]}; // add the split sets
 S = S‘ ;

 }
}

}

4.5.5 Column Matching Process Example

To illustrate the principles of the method, the c17 ISCAS benchmark [Brg85] was
chosen for its simplicity. As an input to the algorithm we have a complete test set
generated by an ATPG tool. The test consists of 10 test patterns (see Fig. 4.10). The
goal is to implement a BIST structure applying the given test set to the c17 benchmark
circuit.

It should be mentioned that the test set shown in Fig. 4.10 is used here for purely
illustrative purposes. It is known that c17 can be completely tested with 4 patterns and
that, on the other hand, if an exhaustive test was used (which would be easy
to implement due to the small size of the circuit), the output decoder circuitry would
completely disappear.

01111
00001
01101
10001
01110
10111
00101
10011
00011
01000

Figure 4.10: ISCAS c17 test vectors

 24

A 5-stage LFSR with generating polynomial x5 + x2 + 1 seeded with a vector 00010
was selected as a PRPG. In the following two subsections we will illustrate both the
one-to-one assignment and the generalized matching process.

One-to-One Assignment for c17 Benchmark

In this example the decomposition of matrices into set systems is shown for the
one-to-one assignment. There are two matrices as an input: the C matrix represents the
patterns generated by the LFSR, the T matrix contains pre-generated test patterns shown
in Fig. 4.10.

First, the counts of ones in all columns in both matrices are enumerated: for the
C matrix these counts are {4, 4, 5, 5, 4}, for T matrix {3, 4, 5, 5, 8}. Thus, all possible
column matches are {x0-y1, x1-y1, x2-y2, x2-y3, x3-y2, x3-y3, x4-y1}. At the beginning we
select x3-y2 match and perform the decomposition of the matrices. Then the negative
column match x'2-y3 is chosen and at the end we select the match x1-y1. No exact
matches are possible any more, thus there has been three exact column matches found.

Figure 4.11: One-to-one exact Column-Matching example

In all the subsets the Ci vectors are assigned to T i vectors and the remaining logic is
minimized by BOOM or ESPRESSO. The resulting schematic is shown in Fig. 4.12.

Figure 4.12: BIST implementation for c17 circuit

 Generalized Column-Matching Example

Three exact column matches have been found for the one-to-one assignment in the
previous example, whereas the decoder for the remaining two variables (y0, y4) had to be
synthesized. Now let’s try to let the LFSR run for more than the minimum required 10
cycles and see if more exact matches will be achieved.

It can be found experimentally, that when the LFSR generating polynomial and seed
are retained from the previous example, 19 LFSR cycles are needed to match all the
columns. Thus, no additional logic is needed to build the output decoder. In Fig. 4.13

 25

one of the possible assignments of the test patterns is shown. The combinational logic
of the Output Decoder is completely eliminated, since the decoder is formed just as a
permutation of wires in this case. For comparison, let us note that an exhaustive test set
having an equally simple output decoder would require 32 patterns. The exact column
matches found for our example are obvious from the final solution.

Figure 4.13: Assignment of rows for c17 circuit

4.6 Column-Matching Exploiting Test Don’t Cares

Until now, we have assumed that the T matrix contains only test patterns in their
compacted form, i.e., minterms. Some ATPG tools produce test patterns containing
don’t care values (DCs). Such a test is often significantly longer than the compacted
one, but on the other hand, the don’t cares can be advantageously exploited in the output
decoder design, since they give more freedom to the matching process.

The process of constructing the output decoder is in this case similar to the previous
one: all the T matrix vectors are to be assigned to the C matrix vectors, while s ≤ p.
The T matrix contains don’t care values, the C matrix contains only minterms, since
particular vectors are produced by the PRPG.

When the don’t cares are not present in the test set, each of the test vectors can be
assigned to a set of PRPG patterns at every instant, while all these sets are disjoint.
When the test don’t cares are present, these sets become non-disjoint. This is because it
cannot be decided what values should be assigned to the don’t care values, until all the
matches are performed. Thus the algorithm consists of two linked NP-hard problems.
Using the set system approach here is rather time-consuming, although using it is not
impossible. The disadvantage of this approach consists in the need of duplicating of the
C matrix vectors after every column match, if they are assigned to T matrix vectors
containing don’t cares.

An efficient heuristic based on a blocking matrix B has been proposed in [Fis03a].
The blocking matrix is a binary matrix (it contains only “0” and “1” values)
of dimensions (p, s). Thus, it has as many columns as there are T matrix rows and as
many rows as there are C matrix rows. The value "1" in the cell B[k, l] indicates that the

 26

k-th C matrix row may be assigned to the l-th T matrix row, "0" value indicates the
contrary.

At the beginning of the algorithm all the B matrix cells are filled with "1" value, since
there are no restrictions for row assignments. After the i-th C matrix column is matched
with the j-th T matrix column, the B matrix cells [k, l] are set to "0" when the k-th input
row contains in the i-th column the opposite value to the l-th output row in the j-th
column. Thus, rows that contain opposite values in the matched columns cannot be
assigned to each other.

B[k, l] := “0” when (C[k, i] ≠ T[l, j] ∧ T[l, j] ≠ don’t care) (4.1)

If the negative column match is to be performed, the B matrix cells are set to “0”
when equal values are present in the respective positions.

When making the row assignment, distinct rows have to be assigned to each other. It

is a trivial problem for a test without don’t cares, since there does not exist a B matrix
row having “1” value in more than one column (one PRPG code word cannot be
assigned to more than one test pattern). The final assignment then consists in selecting
one row from the possible ones for each of the columns. Unfortunately, in the Column-
Matching exploiting don’t cares the B matrix rows may have ones in more than one
column, since some values in the test patterns will be determined after the assignment.
This makes the assignment NP-hard. An example of an assignment is shown in Table
4.2. Here all the output vectors t1-t6 are to be assigned to the LFSR vectors c1-c6. There
are two possible solutions to this problem:

Table 4.2: Row assignment using a B matrix

 t1 t2 t3 t4 t5
c1 1 0 0 1 0
c2 0 1 0 0 0
c3 0 1 0 0 0
c4 0 0 1 0 0
c5 0 0 1 0 1
c6 0 0 0 1 1

t1 – c1
t2 – c2 or c3
t3 – c4
t4 – c6
t5 – c5

Since the B matrix is mostly rather large, solving this problem exactly becomes

impossible. Thus some heuristic has to be used. Selecting a proper algorithm is of a key
importance for reaching good results. For instance, if an assignment of c1 to t4 in Table
4.2 was chosen at the beginning, the algorithm would yield no solution – there won’t be
any possible assignment for t1.

4.6.1 Row Assignment Algorithms

It would be often extremely time-consuming to solve the row assignment problem
exactly, thus greedy incremental heuristic is used. Since the Column-Matching
algorithm needs to solve this problem after performing every column match, the row
assignment heuristic should be as fast as possible. Moreover, the whole process is being
guided by the result of the assignment. If the assignment fails, the Column-Matching
will stop. Thus, the algorithm should be precise enough as well. For this reason several
methods has been proposed and the results compared.

 27

One method (LCLR – least in column, least in row) is a simple greedy heuristic. The
B matrix column with the least number of “1” values is found (because the respective
T matrix vector could be difficult to assign) and the row having a “1” value in this
column and the least “1”s in other columns is assigned to it (because the respective C
matrix vector is not so “useful” for other assignments). If a column without any “1”
value is found at some instant, the algorithm returns a failure and the Column-Matching
process is stopped (when no backtracking is used). The algorithm has not succeeded
in finding an assignment in this case, however, there is still a possibility that there exists
a solution.

The second, more sophisticated heuristic constructs a scoring matrix from which the
best row assignments are being picked-up. It is similar to the B matrix, but any values
can be contained in its cells. Each cell contains a value defining a “score” of a particular
row assignment. It is computed by dividing the number of ones in a respective B matrix
row by the number of ones in a respective B matrix column. An assignment having
a biggest score is done, the matched row and column is removed from the B matrix and
all the values are recomputed. The process is repeated until all test columns are assigned
or an all-zero column is encountered.

The efficiency of the algorithms is shown on the results obtained by processing the
s526 ISCAS benchmark [Brg89] having 24 inputs, 1000 LFSR vectors were to be
matched with 20 tests. We have run the Column-Matching algorithm 300 times in its
thorough search mode (see later), while in each step a row assignment was performed
repeatedly 1000 times, using both methods, plus a purely random assignment was done,
just for a comparison. In those 300 iterations 80 000 runs of the row-assignment
algorithm were required, from which 6500 were successful (there was a solution).
Figures 4.14 and 4.15 show the histograms of the frequencies of the successful hits
in the 6500 row assignment passes for the three algorithms. Figure 4.15 is a close-up
view on the unsuccessful tries.

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000 LCLR
 Scoring matrix
 Random

Fr
eq

ue
nc

y

Hits

Figure 4.14: Row assignment histograms

 28

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800 LCLR
 Scoring matrix
 Random

Fr
eq

ue
nc

y

Hits

Figure 4.15: Close-up view of Fig. 4.14

We can see that in most cases both the LCLR and scoring matrix based heuristics
found a solution, while the randomized method was not that successful. Particularly,
LCLR found an assignment in 97.3% of the possible cases, the scoring matrix based
method in 97.6% and the random method in 57.2% only. The average runtimes with the
percentage of the efficiency of all the heuristics are shown in Table 4.3. All the
experiments were run on a PC with a 1200 MHz Athlon processor.

Table 4.3: Row assignment algorithms

algorithm successfulness Runtime
LCLR 97.3% 0.28 ms
scoring matrix 97.6% 2.94 ms
random 57.2% 0.09 ms

It can be concluded from these results that both the LCLR and scoring matrix based

algorithms are quite efficient, unlike the random approach. Both the algorithms are
almost equally successful, however the scoring matrix based method is more than 10
times slower. For this reason, the LCLR row assignment algorithm has been chosen as a
good compromise. Since for all the columns of the B matrix rows values in all the rows
have to be examined in a case of a successful assignment and there are s possible
assignments, the asymptotic time complexity of the algorithm is O(p·s2). The algorithms
are described in [Fis04d] more thoroughly.

4.6.2 Column-Matching Algorithms

Three major algorithms driving the whole Column-Matching process have been
developed:

• Exact search
• Thorough search
• Fast search

 29

In the exact search all the possibilities for all the matches are explored, which always

yields the optimum solution, in terms of the number of matches achieved. However, the
time complexity of this algorithm grows exponentially with the number of output
variables, thus it is not feasible for practical problems and it won’t be discussed any
more in this Thesis.

The “simplest” possible column matching method can be described as follows: when
a non-valid column match is encountered (during the row assignment process), the
whole process is stopped. This is the fastest algorithm developed. It is often suitable
for problems with a large number of variables. Because of the row assignment is
repeated after each column match and there could be r column matches at most, the
asymptotic complexity of this algorithm is O(r·p·s2). It corresponds to a case where all
the r column matches were found. This algorithm will be denoted as a fast search.

The result may be further improved by trying other possibilities for a column match
if one column match fails. This would significantly increase the runtime. This algorithm
was named a thorough search. The asymptotic complexity increases to O(n·r2

·p·s2),
however the best-case complexity is equal to the fast search case. A typical progress
of a thorough search is shown in Fig. 4.16. Here the s526 ISCAS benchmark [Brg89]
having 24 inputs was solved. The test set consisted of 20 vectors and these had to be
matched to 1000 LFSR vectors. A simple fast search would end after 3 column matches
only (after 30 ms), while the thorough search ran for 198 cycles, but reached 21 column
matches (in 200 ms). It is obvious from this example that the thorough search
significantly outperforms the fast search in the quality.

0 50 100 150 200
0

5

10

15

20

s526, 24 inputs
20 tests
1000 LFSR vectors

M
at

ch
es

Step

Figure 4.16: Thorough search progress

Several modifications can be yet done to improve the result quality. The selection
of column matches is being done purely at random. Thus, when the whole
Column-Matching process is repeated several times, there is a chance that a better
solution will be obtained. After every repetition the number of column matches reached
is compared with the previously reached one, and if it is bigger, it is recorded as the so
far best solution. For the fast search it is the only possibility to reach good solutions.
Here the Column-Matching can be even further sped up: it is not necessary to perform
a row assignment after each column match – the number of up to now obtained

 30

maximum of the column matches is performed (randomly) and after that it is checked
for validity (by making a row assignment). When it is not valid, the whole solution is
rejected, since it cannot improve the overall solution. The repetitive fast search might
be a good way to improve the result quality for problems with a large number
of variables, however it often never outperforms the thorough search, in terms of the
number of column matches reached.

The improvement of the number of column matches reached is visualized
by Fig. 4.17. Here the same problem as in the previous example was solved by a fast
search repetitively 1000 times. Only 5 column matches were obtained in the first run,
however in the 464th pass 19 matches were found. More matches were not found in the
following passes.

The whole process had run 11.5 seconds. Let us remind for comparison that the
thorough search had found 21 matches in 200 ms.

0 200 400 600 800 1000

4

6

8

10

12

14

16

18

20

s526, 24 inputs
20 tests
1000 LFSR vectors

M
a

tc
h

es

Iteration

Figure 4.17: Repetitive fast search

4.6.3 The Basic Fast Search Algorithm

The summary of the basic fast search Column-Matching algorithm is presented
in this subsection.

Since the number of the C matrix rows is often much higher than the number of the
T matrix rows, finding several initial column matches is a trivial problem: almost any
two columns can be matched, because there is a big choice of possible assignments
for the C matrix rows. Thus the selection of the rows to be matched is done at random.

When two columns to be matched are selected, the match must be checked
for validity using a B matrix (by performing the row assignment). Thus, after each
column match the row assignment has to be performed to determine whether the match
is valid. If the assignment fails the Column-Matching process is terminated and the last
valid assignment is considered as the final result. The row assignment forms a truth
table, which has to be further processed. Firstly, the test don’t cares in the matched T
matrix columns are substituted by “0” and “1” values according to the values of the
corresponding C matrix columns. Since most of the tests including don’t cares are not

 31

in a compacted form (e.g., there is one test pattern for each of the s-a faults), some test
compaction technique [Ham98] should be applied after the Column-Matching. This
often reduces the length of the BIST, and it reduces the amount of the output decoder
logic as well. Then the matched output variables are removed from the truth table and
the values of the remaining output variables are synthesized by some standard Boolean
minimizer [Bra84, Fis03b].

The algorithm can be described by the following pseudo-code. The inputs of the
algorithm are the C and T matrices, the output is in the form of a minimized Boolean
function.

Algorithm 4.2: Fast Search Column-Matching

ColumnMatching(C, T) {
for (k = 0; k < C_matrix_rows; k ++) // initiallize B matrix

for (l = 0; l < T_matrix_rows; l ++)
B[k, l] = “1”;

A = ∅;
do {

i = random(C_matrix_columns); // randomly select columns
j = random(T_matrix_columns);
for (k = 0; k < C_matrix_rows; k ++) // modify blocking matrix
 for (l = 0; l < T_matrix_rows; l ++)

if (T[l, j] ≠ DC && C[k, i] ≠ T[l, j]) B[k, l] = “0”;
A’ = A; // make a backup of the row assignment
A = MakeRowAssignment(B); // do a row assignment

} while (A ≠ FAILED);
Substitute_DCs(T); // substitute test DCs with “0” or “1”
CompactTest(T); // make test compaction
ExtractMatches(C, T); // remove matched outputs
F = Minimize(A’) // synthesize the remaining logic
return F;

}

The Thorough Search algorithm is very similar to this one, but a one-step
backtracking is involved there.

4.6.4 Overview of the Column-Matching Alternatives
in Mixed-Mode BIST

It has been assumed up to now that applying the column match means no hardware
to implement one output. Obviously, when no column match for a particular output is
found, some combinational logic has to be added to the Output Decoder. For a
mixed-mode BIST, namely when the test is divided into the pseudo-random and
deterministic phase, the Switch is present as well. The aim is to minimize both the
Output Decoder and the switching logic. There are five alternatives that can occur when
designing the logic for a particular output decoder output:

• There has been found a column match between the output variable yi and the input

variable xi. Then yi will be implemented as a wire, without any output decoder
logic. Moreover, there will be no switching logic for this output; the CUT is being
fed directly by an LFSR output. In the example in Fig. 4.4 it is the case of y0 and y1.
Such a case will be denoted as a direct column match.

• There has been found a negative column match between the output variable yi and
the input variable xi. Then the decoder logic for yi could be implemented as a
negator. The switching logic for yi will be a multiplexer. In praxis, it is more

 32

advantageous to join these two gates into a single XOR gate. In the example
in Fig. 4.4 it is the case of y2. Such a case will be denoted as a negative direct
column match.

• The variable yi has been matched with the xj variable, while i ≠ j. If the first BIST
phase weren’t present, yi would be implemented as a wire. In mixed-mode BIST
there has to be a multiplexer switching yi between xi and xj LFSR outputs added.
In Fig. 4.4 it is the y3 case. Such a match will be denoted as an indirect column
match.

• An indirect negative column match is a similar case. Here an inverter has to be
added to the matched LFSR output. However, D flip-flops used in the LFSR are
often provided with the negated output as well, so no additional inverter would be
needed in this case.

• No Column-Matching was found for some yi. Here the output decoder has
to synthesize proper output values, while an additional multiplexer has to be present
in the switching block. This is the case of y4 in Fig. 4.4.

The first case mentioned is, of course, the one with the least BIST area overhead,

in the latter ones the overhead gradually increases. Thus, the intention of the algorithm
should be to prefer the direct matches, and only when no such are possible, the indirect
column matches should be made. This is the way how the Column-Matching heuristic
selects the candidates to match – it gradually scans all the unmatched output variables
for a possibility for a direct column match. When one is found, it is performed and the
search continues. When there is no possibility for a direct match, the indirect ones are
being made. When no matches are possible, Column-Matching stops and the resulting
outputs are synthesized by BOOM [Hla01, Fis03b].

4.7 Multiple-Vector Column-Matching

The BIST area overhead becomes an essential issue now. For ASIC designers the
area becomes more important than the design time, since the overall chip design time
significantly surpasses the BIST design time. Thus, any improvement of the BIST
design methods, in terms of the area overhead, is beneficial. Such an improvement
of the Column-Matching algorithm is proposed in this Subsection. A significant area
overhead reduction is involved, for a cost of a longer design time. The improvement
consists in a generalization of the basic method, to fully exploit capabilities of ATPGs.
The ATPG generates more than one test vectors for each tested fault in the proposed
enhancement, thus the algorithm has more freedom in generating the test sequence
[Fis06a].

4.7.1 ATPG Modes

The Column-Matching method is so universal, that any test vectors set can be used.
Most of the available non-commercial ATPGs can be influenced, so that they produce
various sets of test vectors. The only and necessary requirement for the ATPG tool used
is the capability to produce test vectors for a specified set of faults.

In the most general case, possible test sets that can be obtained may be divided as
follows:

 33

1. Non-compacted test without don’t cares. Such a test set is usually obtained by a
random-pattern simulation and subsequent deterministic test generation. The test
is usually long and far from optimum length.

2. Compacted test set without don’t care values. Here the test comprises
of minimum of test vectors (in the optimum case), obtained after deterministic
test set generation and compaction, followed by the don’t care substitution.

3. Compacted test set with don’t cares. The test comprises of minimum of test
vectors (in the optimum case), obtained after deterministic test set generation
followed by a compaction. The don’t care values are retained. However, their
number is usually negligible.

4. Non-compacted test with don’t cares. The test set is produced by a deterministic
test set generator only. No test compaction is executed.

5. One test vector for each fault. The test pattern generation is usually accompanied
by a fault simulation. Thus, after one test vector is produced during the test
generation process, fault simulation is executed for this vector and faults
detected by it are removed from the processed fault list. This was the case
assumed in the preceding cases. However, the ATPG may proceed in the
simplest way, by generating one deterministic vector for each fault. No fault
simulation or test compaction is involved. Test vectors with many don’t care
values are usually obtained. The test set is often large, comparing to previous
cases, however many don’t care values are present in the test, which is usually
beneficial.

6. More than one test vectors for each fault. As a generalization of the previous
item, more test vectors for each fault can be produced, if possible. The test is
then even longer, but offers much greater flexibility.

7. All the possible test vectors for each fault. This is the most general case. Some
ATPGs are able to produce all the possible test vectors for each fault. However,
the test set size is then prohibitively large, thus such a case usually cannot be
used in practice.

The don’t cares present in the test set (T matrix) are beneficial, since they bring more

freedom to the column matches choosing, and consequently reduce the BIST area
overhead. Thus, the test generation alternatives 3-7 are more advantageous than the
topmost ones.

Atalanta [Lee93] ATPG tool was used throughout this work. It is able to generate all
the test sets listed above. However, is has been found during the experiments, that the
test set compaction method, which is used in the Atalanta, does not perform well, thus a
new static compaction method based on joining test vectors was introduced.

Then, the Column-Matching algorithm has been extended to be able to handle test
sets having more than one test vectors for each fault, to improve the quality of its
results.

4.7.2 Simple Test Set Compaction

Due to the fact that the test set compaction performed by an ATPG is often lacking
in quality, a new static compaction method was introduced to the BIST design process.
Maximum of the don’t care values in the test set should be retained after the
compaction. An exact test compaction algorithm is usually not applicable, since its time

 34

complexity is prohibitively large (it is an NP-hard problem). Thus, a heuristic method
has to be used.

The proposed algorithm is simple but effective. It is based on joining pairs of test
vectors. Two test vectors may be joined, when they have a non-empty intersection. The
result of their joining will be that intersection. Considering that a test vector t1 detects a
fault set F1

 and a test vector t2 detects a fault set F2, their intersection t1 ∩ t2 detects
faults F1 ∪ F2.

Let us have a test set comprising of v vectors. Each vector is compared with each
other and the size (dimensionality) of their intersection is computed. Two vectors
having the “biggest” intersection will be joined. In other words, two vectors differing
in at least one bit cannot be joined (since they have an empty intersection); two vectors
having minimum collisions with a don’t care on one side and a ‘0’ or ‘1’ value on the
other side are joined. Test vectors loosing minimum number of don’t cares by their
joining are joined. This is being repetitively performed until there is no chance to join
any more vectors. The complexity of such an algorithm is O(v3), which sometimes
means a significant computational time increase. The number of test vectors can be
significantly reduced by this method, see Table 4.4. First, “PR” pseudo-random patterns
were simulated. Test sets for the undetected faults were computed by Atalanta ATPG
[Lee93]. The ATPG was set to generate “vct/vlt” vectors for each fault. The total
number of test vectors is shown in the “ATPG” column. After the compaction, their
number was reduced to “compact”. The amount of don’t care values in the final
compacted test set is shown in the last column. It can be well observed that
by increasing the number of test vectors the number of don’t cares decreases. This is
due to the fact that the compaction algorithm preferably selects vectors having many
don’t cares to be joined. However, this “disadvantage” is compensated by the freedom
offered by the number of vectors more than enough.

Table 4.4: Test compaction results

bench PR vct/flt ATPG compact DC
c1908 1000 1 42 36 50 %
 10 382 340 25 %
c2670 10 K 1 201 74 83 %
 10 1824 825 77 %
c3540 1000 1 31 25 72 %
 10 117 101 65 %
 100 663 555 56 %
c7552 10 K 1 215 106 69 %
 10 2141 1206 68 %
s1196 1000 1 93 55 59 %
 100 392 259 56 %
s1238 3000 1 45 33 57 %
 100 140 95 52 %
s5378 10 K 1 23 19 92 %
 100 289 258 92 %
s9234.1 50 K 1 321 99 82 %
 10 2899 1003 81 %
s13207.1 10 K 1 466 74 96 %
 10 1538 362 96 %

 35

4.7.3 Multiple-Vector Column-Matching Principles

The more “freedom” has the Column-Matching algorithm in selection of the matches,
the better it performs. Particularly, more don’t care values in the test set induce more
column matches and thus a less area overhead. Let us consider an example where two
test vector sets are to be mapped onto PRPG patterns, one set generated by the 3-rd
APTG mode (compacted test set with don’t cares), the second one as the 5-th one (one
test vector for each fault, with don’t cares). The second test set will be much larger than
the first one. On the other hand, more don’t care values will be present in the second
one (in general). Practical examples have shown that even when there are more test
vectors to be generated by the Output decoder, the BIST area overhead is less if the test
vectors have many don’t care values. Thus, the second case will perform better, in terms
of the area overhead.

The above-mentioned notion can be extended, so that there will be more than one test
vectors available to choose from. The aim of the Column-Matching algorithm wouldn’t
be to synthesize all the test vectors then; the aim would be to synthesize vectors that
cover all faults (from the given fault set), regardless by what vectors. Thus, even more
freedom will be given to the matching algorithm, which yields better results. This is the
main idea of the Multiple-Vector Column-Matching.

In order to adapt basic Column-Matching principles to be able to exploit more test
vectors for each fault, several modifications have to be done. First of all, each test
vector has to be accompanied by a fault mask. The fault mask is a binary vector
identifying faults that are detected by the test vector. First, the fault list for the tested
circuit is determined. The size of the fault mask is then equal to the number of faults,
each position in the fault list corresponding to one fault. A ‘1’ value indicates that the
respective fault is detected by the test vector, ‘0’ the contrary. The fault mask
is obtained by a fault simulation of the respective test vector. After the fault masks are
generated, all the test vectors are put together; there is no need to distinguish between
them. Information on what vector was generated for what fault may be lost.

4.7.4 Multiple-Vector Test Set Compaction

Since the number of test vectors generated by an ATPG is often large, static test
compaction should be performed. Basically, the algorithm described in Subsection 4.7.2
is used. The only modification is that after joining the test vectors their fault masks have
to be joined too. The resulting fault mask is obtained by OR-ing the two fault masks,
since faults detected by both joined vectors are detected by the resulting vector.

Even when the test set compaction reduces the freedom given to the
Column-Matching, it has been found experimentally that it is advantageous to perform
it. When the test set compaction is not performed, the Column-Matching runtime is
prohibitively long and usually there is no improvement in the quality of the result.

Example

Let us consider a 5-input CUT having 10 faults. The two example test vectors
together with their fault masks will be joined as follows:

10-0- 1100101001
1-10- 0100100100
1010- 1100101101

 36

4.7.5 Modified Row Assignment

The basic Column-Matching algorithm remains unchanged but the row assignment.
Since there are more test vectors detecting each fault, the test set is extremely
redundant. Thus, not all test vectors have to be synthesized by the Output decoder; the
primary aim is to detect all faults now, regardless by what vectors. Not all the B matrix
columns have to be assigned then.

The heuristic used to solve the row assignment problem (see 4.6.1) is modified in this
way: the heuristic function for a selection of a B matrix column (test vector) is the
number of yet undetected faults it detects. At the beginning of the algorithm, the B
matrix column detecting most of faults (i.e., test vector having most ‘1’s in the fault
mask) is selected. For this column a row having a ‘1’ value in the respective position
in the B matrix is found, so that this row has a minimum number of ‘1’s in other
positions. It is the row (C matrix vector), that may be transformed into the required test
vector and simultaneously may be transformed into a minimum of others. The selected
column and row are assigned to each other, removed from the B matrix and the detected
faults are removed from the fault list. The column selection is repeated, until the fault
list is empty or an undetectable fault is encountered (which means an invalid
assignment). When an invalid assignment is returned, the last column match is taken
back and another column matches are tried.

Basic principles of the row assignment are outlined by the following pseudo-code:

Algorithm 4.3: Multiple-vector row assignment

Assign {
set(fl); // create a complete fault list
do {

c = FindBestColumn(B, faultmasks, fl);
 // find column detecting most faults from fl

r = FindBestRow(B, c);
// find a row, so that B[r, c] = 1 and has a minimum of 1’s

if (r != NULL) { // a row B[r, c]=1 was found
MakeMatch(c, r);
RemoveFaults(fl , c);

// remove faults detected by c from fl
RemoveColumn(B, c);

// remove c from B matrix
} else return(FAIL);

} while(!empty(fl));
return(SUCCEED);

}

4.7.6 Modified BIST Design Process

Summarizing all the modifications needed to be done to extend the BIST design
method to support Multiple-Vector Column-Matching, the whole process consists
of these phases:

1. Simulation of several (PR) pseudo-random patterns for the CUT and
determination of undetected faults.

2. Computation of the deterministic test patterns for these faults by an ATPG tool,
generating more than one test pattern for each fault.

3. Fault simulation for each of the test vectors, i.e., computing fault masks.

 37

4. Test set compaction.
5. Performing the multiple-vector column-matching.
6. Synthesis of the decoder for the unmatched outputs.

4.8 Influence of the Length of the Deterministic Phase

In the deterministic phase deterministic vectors are synthesized from the PRPG
patterns (following the pseudo-random phase). By increasing the number of PRPG
patterns the chance to find more column matches increases. This is due to having more
freedom for selecting the PRPG vectors to be assigned to the deterministic vectors.
Unfortunately, the Column-Matching runtime rapidly increases with the number
of vectors (see Subsection 4.6.2).

This is illustrated in Table 4.5. The benchmark name is shown in the first column.
The “PR” and “Det.” columns indicate the lengths of the pseudorandom and
deterministic phases, in the “SW GEs” and “OD GEs” columns the overhead of the
Switch and Output decoder are shown. These are then summed together to obtain the
total BIST combinational logic overhead, in terms of gate equivalents [DeM94]. The
BIST design time is shown in the last column. The experiment was run on a PC with
Athlon CPU, on 1 GHz, Windows XP.

Table 4.5: Influence of the deterministic phase length on the result

bench PR Det. SW GEs OD GEs Total GEs Time [s]
c1908 1000 500 36 54.5 90.5 1.6
 1000 33 48 81 4.88
 2000 30 50 80 8.47
 5000 30 38.5 68.5 25.78
c3540 1000 200 28.5 5.5 34 0.32
 500 28.5 1 29.5 0.52
 1000 27 1 28 1.02
 2000 16.5 0 16.5 1.47
 5000 7.5 0 7.5 2.93
s1196 5000 200 15 10.5 25.5 0.17
 500 18 7 27 0.32
 1000 10.5 6.5 17 0.48
 2000 9 8 17 1.52
 5000 7.5 1.5 9 2.16
 10000 4.5 0 4.5 5.83

It can be well observed that a trade-off between the test time and area overhead can

be freely adjusted here too, according to demands of the BIST designer.

4.9 Summary Discussion on the Lengths of the Two Phases

In subsections 4.3.1 and 4.8 the influence of the lengths of the two BIST phases
on the resulting logics and design time were discussed separately. As it was said in the
Introduction, four important aspects play role in the BIST design:

 38

• BIST design time
• Fault coverage
• BIST area overhead
• BIST run length

The method proposed in this Thesis offers a big scalability in all these four aspects.

This is briefly summarized in the following table. The fault coverage aspect is not
considered, since 100% s-a fault coverage is considered throughout this Thesis.
Anyway, downgrading the requirements for the fault coverage would decrease all the
BIST design time, area overhead and BIST run length, according the needs of the BIST
designer.

By increasing the length of the pseudorandom phase the number of undetected faults
is decreased. Thus, the number of deterministic test vectors that are needed to be
generated in the deterministic phase is decreased as well. As a consequence of this, the
BIST design time is often significantly decreased (even though the fault simulation time
is higher) and the area overhead is reduced as well.

 On the other hand, by prolonging the run of the deterministic phase the
Column-Matching algorithm runtime is increased, see Subsection 4.6.2. The algorithm
has more freedom in the selection of matches on the other hand, so the area overhead
of the decoder is decreased.

Table 4.6: Influence of the test lengths

 Longer PR phase Longer Det. phase
BIST design time decreased increased
BIST area overhead decreased decreased
BIST run length increased increased

4.10 Comparison with Other State-of-the-Art Methods

In this section the proposed Column-Matching method is compared with four
different state-of-the-art methods, namely the basic bit-fixing method [Tou95], the
bit-fixing accompanied by a “bit-correlating” ATPG [Tou01], the “3-Weight Weighted
Random BIST” proposed in [Wan01] and the row matching method proposed
in [Cha03]. The comparison is shown in Table 4.7. The “TL” columns indicate the total
length of the test, the “GEs” columns give the number of gate equivalents (or 2-input
NAND gates) of the BIST combinational circuits and the “lit.” columns indicate the
number of literals in the SOP form of the decoding logic (the Switch logic is not
considered in Column-Matching here).

Let us note here, that a special kind of a PRPG (GLFSR) is used in the row-matching
approach [Cha03]. Such a circuit causes quite a large area overhead in most cases,
for many XOR gates present. This overhead is not included in the table. The
Column-Matching method is independent on a PRPG used, in general, thus in all the
cases an LFSR with one XOR gate only was used. Thus, sometimes bigger area
overhead of our method could be compensated by a small area of the PRPG used.

In the bit-fixing and weighted BIST methods several registers (flip-flops) are used.
In the Column-Matching method no flip-flops are needed.

 39

The Column-Matching results describe the overall test length and the number of gate
equivalents of the decoder. The number of GEs approximately corresponds to the
number of SOP literals, thus a comparison with the Bit-fixing and Weighted BIST
methods can be freely made.

The empty cells indicate that the data for the respective circuit was not available.
The Column-Matching algorithm was run in the Thorough Search mode, using one

test vector per one fault. The area overhead thus can be yet improved by using
Multiple-Vector Column-Matching, for a cost of a longer algorithm runtime (see Table
4.8).

Table 4.7: Comparison results

 Bit-fixing
[Tou95]

Bit-fixing
[Tou01]

Weighted BIST
[Wan01]

Row-matching
[Cha03]

Column-
Matching

Bench TL GEs TL lit. TL lit. TL GEs TL GEs
c880 1 K 27 - - - - 640 21 1 K 15
c1355 3 K 11 - - - - 1.8 K 0 1.5 K 15
c1908 4 K 12 - - - - 4.7 K 8 3 K 10.5
c2670 5 K 121 10 K 385 8 K 269 6 K 119 5 K 113
c3540 4.5 K 13 - - - - 4.8 K 4 5.5 K 1.5
c7552 10 K 186 10 K 806 6.7 K 641 8 K 297 8 K 586
s420 1 K 28 10 K 59 1.4 K 67 - - 1 K 24.5
s641 10 K 12 10 K 98 768 45 7.7 K 6 4 K 15
s713 - - - - - - 4.8 K 4 5 K 16.5
s838 10 K 37 10 K 183 3.1 K 108 - - 6 K 130
s1196 - - 10 K 97 16.8 K 67 10 K 36 10 K 6
s1238 - - - - 17 K 33 - - 4 K 26.5
s5378 - - 10 K 332 18.4 K 68 - - 11 K 19.0

4.11 Column-Matching Results for Standard Benchmarks

Since the comparison shown in the previous table describes results for a few
benchmark circuits only, a more exhaustive result table is presented here, for the ISCAS
[Brg85, Brg89] and ITC’99 [Cor99] benchmarks. For each benchmark the BIST
circuitry was synthesized in several different parameters setting. Generally, each
benchmark is processed in three ways: first, the testing time is kept low, thus the area
overhead is higher and the BIST design time is short. Then the length of the BIST
phases is increased, yielding a reduction of the BIST logic, for a cost of a longer test
time. The last result for each benchmark represents the Multiple-Vector
Column-Matching, where the BIST area overhead is reduced furthermore, for a cost of a
bigger BIST design time. The trade-off between the test length, an area overhead and
the BIST design time can be seen in the presented examples.

The “inps” column indicates the number of the benchmark inputs. The “GEs”
column shows the complexity of the benchmark circuit, in terms of gate equivalents
[DeM94]. In the “PRand” column the number of pseudo-random vectors needed to be
applied to the CUT to be completely tested is shown, just for comparison. The “TL”
column gives the lengths of the pseudorandom and deterministic phases. The “vcts/flt”
column indicates the number of test vectors generated for each fault. The number
of faults that were undetected by the pseudo-random phase is shown in the “undet”
column. After that the total number of deterministic test vectors that have to be
generated by the deterministic phase is shown. The “M” and “DM” columns show the
number of total and direct column matches reached. The complexity of the switching

 40

logic is shown in the “SW GEs” column, the complexity of the output decoder in “OD
GEs”. These numbers are summed together in the “Total GEs” column. The runtime
needed to complete the Column-Matching process is indicated in the “Time” column.
The BIST area overhead is shown in the last column.

The experiments were run on a CPU AMD Athlon, 900 MHz.

 41

Table 4.8: ISCAS & ITC benchmarks

Bench inps GEs PRand TL (PR + Det.) vcts/flt undet vcts M DM SW GEs OD GEs Total GEs Time [s] Overhead
c880 60 364.5 2.5 K 100 + 100 1 30 28 53 22 57 12.5 69.5 0.50 19.0%
 500 + 500 1 10 10 60 50 15 0 15 0.4 4.12%
 500 + 500 100 13 1201 60 51 13.5 0 13.5 33.8 3.70%
c1355 41 532 2 K 500 + 500 1 40 13 24 6 52.5 27 79.5 3.26 15.0%
 1000 + 500 1 10 1 41 31 15 0 15 0.05 2.82%
 1000 + 500 100 10 8 41 33 12 0 12 0.10 2.2%
c1908 33 749 4 K 1000 + 1000 1 51 36 28 15 27 16 43 6.76 5.74%
 2000 + 1000 1 16 6 33 26 10.5 0 10.5 0.27 1.40%
 2000 + 1000 100 17 189 33 31 3 0 3 2.49 0.40%
c2670 233 1038 4.5 M 4000 + 1000 1 320 104 197 166 100.5 146.5 247 606 23.80%
 10 000 + 1000 1 321 74 201 180 79.5 77.5 157 896 15.13%
 10 000 + 1000 10 321 825 202 166 100.5 59.5 160 5889 15.41%
c3540 50 1469.5 15 K 1000 + 1000 1 167 21 50 40 15 0 15 1.60 1.02%
 2000 + 1000 1 147 9 50 43 10.5 0 10.5 0.35 0.71%
 2000 + 1000 10 147 9 50 45 7.5 0 7.5 3.33 0.51%
c7552 207 3072 > 100 M 5000 + 1000 1 416 207 135 28 268.5 417 685.5 3892 22.31%
 10 000 + 1000 1 362 106 152 25 273 250.5 523.5 1105 17.04%
 10 000 + 1000 10 362 1206 159 33 261 192.5 453.5 161 K 14.76%
s420.1 34 191.5 165 K 1000 + 1000 1 61 32 29 20 21 14.5 35.5 4.34 18.54%
 5000 + 1000 1 46 19 34 21 19.5 0 19.5 1.48 10.18%
 5000 + 1000 10 46 50 34 22 18 0 18 5.01 9.40%
s641 54 269.5 200 K 500 + 500 1 20 13 54 36 27 0 27 1.16 10.02%
 1000 + 1000 1 15 14 54 40 21 0 21 2.27 7.79%
 1000 + 1000 10 15 14 54 42 18 0 18 14.02 6.68%
s713 54 352.5 300 K 500 + 500 1 61 15 52 37 25.5 3 28.5 1.29 8.09%
 1000 + 1000 1 53 11 54 40 21 0 21 1.90 5.96%
 1000 + 1000 10 53 126 54 41 19.5 0 19.5 13.36 5.53%

 42

Bench inps GEs PRand TL (PR + Det.) vcts/flt undet vcts M DM SW GEs OD GEs Total GEs Time [s] Overhead
s838 67 393.5 > 100 M 5000 + 1000 1 101 61 43 18 73.5 33.5 107 50.3 27.19%
 50 000 + 1000 1 91 50 51 13 91 22 113 34.23 28.72%
 50 000 + 1000 10 91 510 52 10 85.5 25 110.5 348 28.08%
s953 45 458.5 15 K 500 + 500 1 156 45 41 34 16.5 11 27.5 3.43 6.0%
 1000 + 1000 1 70 25 43 39 9 4.5 13.5 2.47 2.94%
 1000 + 1000 10 70 73 44 37 12 2 14 16.83 3.05%
s1196 32 504.5 200 K 1000 + 1000 1 93 55 27 25 10.5 45.5 56 5.53 11.10%
 3000 + 1000 1 114 33 27 24 12 26.5 38.5 2.96 6.70%
 3000 + 1000 100 114 95 28 25 10.5 16 26.5 16.68 4.61%
s1238 32 574.5 20 K 1000 + 1000 1 171 60 27 21 16.5 28.5 65 7.85 11.31%
 3000 + 1000 1 114 45 27 24 12 26.5 38.5 2.96 6.70%
 3000 + 1000 10 114 140 28 25 10.5 16 26.5 16.69 4.61%
s5378 214 2134.5 50 K 5000 + 1000 1 89 31 213 171 64.5 1 64.5 22.59 3.07%
 10 000 + 1000 1 63 19 214 193 31.5 0 31.5 7.68 1.48%
 10 000 + 1000 100 64 258 213 203 15 4 19 181.5 0.89%
s9234.1 247 3985.5 10 M 1000 + 1000 1 1674 215 172 86 241.5 641.5 883 5238 22.16%
 200 000 + 1000 1 599 52 224 147 150 62.5 212.5 161 5.33%
 200 000 + 1000 10 599 564 225 162 125.5 66 193.5 3509 4.86%
s13207.1 700 5596.5 100 K 10 000 + 1000 1 617 74 696 532 252 28 280 348 5.00%
 50 000 + 1000 1 182 21 700 676 36 0 36 12.86 0.64%
 50 000 + 1000 100 182 31 700 678 33 0 33 42.50 0.59%
s15850.1 611 6824 > 10 M 10 000 + 1000 1 940 313 515 407 306 188 494 152 K 7.24%
 100 000 + 1000 1 674 180 563 444 250.5 78.5 329 21 K 4.82%
s38584.1 1464 16454 > 1 G 10 000 + 1000 1 1890 307 1000 949 772.5 155 927.5 5600 5.64%
 100 000 + 1000 1 1558 45 1000 961 754.5 16.5 771 146.18 4,68%
b04 77 545.5 15 K 1000 + 1000 1 56 37 68 54 34.5 19.5 54 16.6 9.90%
 2000 + 1000 1 34 24 75 51 39 4 41 7.79 7.88%
 2000 + 1000 10 34 253 76 60 25.5 1 26.5 71.11 4.86%
b05 35 518 10 K 1000 + 1000 1 65 33 28 21 21 36 57 5.25 11.00%
 2000 + 1000 1 32 20 30 20 22.5 15 37.5 2.24 7.24%

 43

Bench inps GEs PRand TL (PR + Det.) vcts/flt undet vcts M DM SW GEs OD GEs Total GEs Time [s] Overhead
 2000 + 1000 10 32 200 33 24 16.5 4 20.5 19.81 3.96%
b07 50 378 200 K 1000 + 1000 1 45 41 45 29 31.5 10 41.5 10.65 10.98%
 1000 + 1000 100 45 2622 50 33 25.5 0 25.5 14.8 K 6.75%
b12 126 940.5 5 M 1000 + 1000 1 172 128 115 106 30 94 124 7730 13.18%
 1000 + 1000 10 172 955 119 108 27 44.5 71.5 108 K 7.60%

 44

5 BOOM – The Boolean Minimizer

5.1 Motivation

The last phase of the proposed BIST synthesis method consists in the synthesis of the
Output decoder. It is a combinational block “producing” the unmatched CUT inputs.
In particular, the decoder is a multi-output combinational block having n inputs (where
n is the number of PRPG outputs) and r-m outputs (where r is the number of CUT
inputs and m the number of column matches reached). Such a multi-output Boolean
function is described by a truth table.

This function usually has a large number of input variables, since the PRPG width is
equal to the number of CUT inputs (both the primary and pseudo-primary) in this work.
The number of its outputs is usually not that large, since many CUT inputs is matched
in the previous (Column-Matching) phase. The number of inputs sometimes reaches
hundreds or thousands. Thus, standard Boolean minimizers (like ESPRESSO [Bra84])
are unusable here, since their runtime is prohibitively large for such functions. For this
reason a novel Boolean minimizer BOOM was developed. It is capable to handle
functions having thousands of input variables in a very reasonable time.

5.2 Introduction

The problem of two-level minimization of Boolean functions is old, but surely not
dead. It is encountered in many design environments like PLA design, multi-level logic
design, design of control systems, or design of built-in self-test (BIST) equipment, and
also in software engineering, artificial intelligence problems, etc. The systematic
Boolean minimization methods mostly copy the structure of the original method
by Quine and McCluskey [Qui52, McC56], implementing two basic phases known as
prime implicant (PI) generation and covering problem (CP) solution. Some more
modern methods, including the well-known ESPRESSO [Bra84, Hac96], try to combine
these two phases because the problems encountered in up-to-date application areas often
require minimization of functions with a prohibitively large number of inputs. Also the
number of don't care states is mostly very large, hence the modern minimization
methods must be able to take advantage of all don’t care states without enumerating
them.

One of the most successful Boolean minimization methods is ESPRESSO [Bra84,
Hac96] and its later improvements. ESPRESSO-EXACT [Rud87] was developed
in order to improve the quality of the results, mostly at the expense of much longer
runtimes. Finally, ESPRESSO-SIGNATURE [McG93] was developed, accelerating the
minimization by reducing the number of prime implicants to be processed
by introducing the concept of a “signature”, which is an intersection of all primes
covering one minterm. This in turn was an alternative name given to the concept
of “minimal implicants” introduced in [Ngu87]. Other Boolean minimization methods

 45

exploiting the implicit set manipulation techniques were proposed in, e.g., [Cou92,
Cou93]. The idea of meta-products was proposed, which allows the manipulation with
extremely large sets of PIs.

A sort of a combination of prime implicant (PI) generation with a solution of the
covering problem (CP), leading to a reduction of the total number of PIs generated, is
also used in the BOOM (BOOlean Minimizer) approach proposed here. An important
difference between the approaches of ESPRESSO and BOOM is in the way how they
work with the on-set received as a function definition. ESPRESSO uses it as an initial
solution, which has to be modified (improved) by expansions, reductions, etc., on the
other hand BOOM uses the input sets (on-set and off-set) only as a reference that
determines whether a tentative solution is correct or not. This allows reducing the
dependence on the original function coverage. The second main difference is the
top-down approach in implicant generation. Instead of expanding the source cubes
in order to obtain better coverage (like in ESPRESSO), BOOM reduces the universal
n-dimensional hypercube until it no longer intersects the off-set, while it covers as many
1-terms of the source function as possible. This phase is denoted as a CD-Search and
represents the most innovative idea of the proposed method. Beyond this, some other
commonly known algorithms (Implicant Expansion, Covering Problem solution, etc.)
are used together with the CD-Search to obtain the final solution.

The algorithm is efficient above all for functions with a large number of input
variables, where other minimization tools often fail to give a result in a reasonable time.

The principles of the proposed minimization method were published in [Fis00,
Fis01a, Fis01b, Fis01c, Fis02c, Fis03b, Fis03c].

5.3 Problem Statement

Let us have a set of v Boolean functions of n input variables FFFF1(x1, x2, … xn), FFFF2(x1, x2,
… xn), … FFFFv(x1, x2, … xn), whose output values are defined by truth tables. These truth
tables describe the on-set Fi(x1, x2, … xn) and off-set Ri(x1, x2, … xn) for each of the
functions FFFFi. The terms not represented in the input field of the truth table are implicitly
assigned don’t care values for all output functions. The don’t care set Di(x1, x2, … xn)
of the function FFFFi is thus represented by all the terms not used in the input part of the
truth table and by the terms to which don't care values are assigned in the i-th output
column. The don’t care values can be also specified explicitly in the truth table. Listing
the two care sets instead of an on-set and a don’t care set, which is usual, e.g., in MCNC
benchmarks [MCNC], is more practical for problems with a large number of input
variables, because in these cases the size of the don’t care set heavily exceeds the two
care sets. We will assume that n is of the order of hundreds and that only a few of the 2n
minterms have an output value assigned, i.e., the majority of the minterms are don't care
states. Moreover, using off-set in the function definition simplifies checking whether
a term is an implicant of the given function. Without the explicit off-set definition, more
complicated methods using, e.g., tautology checking as in ESPRESSO [Bra84], must
be used, which slows down the minimization process. And, most importantly, exactly
such many-input incompletely defined functions specified by on-sets and off-sets are
to be minimized to design the Output Decoder.

The task is to minimize the multi-output function FFFF, so that the output of the
algorithm will be an SOP (sum-of-products) expression describing the function, while
the complexity of the resulting SOP form should be kept minimal. The measure of the
complexity is sometimes vague, since it depends on the final implementation,

 46

technology mapping, etc. Almost any quality criterion can be specified in the proposed
method, since it is very flexible.

5.4 BOOM Structure

Like most other Boolean minimization algorithms, BOOM consists of two major
phases: generation of implicants (PIs for single-output functions, group implicants
for multi-output functions) and the subsequent solution of the covering problem. The
generation of implicants for single-output functions is performed in two steps: first the
Coverage-Directed Search (CD-Search) generates a sufficient set of implicants needed
for covering the on-set of the source function, and the subsequent Implicant Expansion
(IE) phase converts them into PIs.

Multi-output functions are minimized in a similar manner. Each of the output
functions is first treated separately; the CD-Search and IE phases are performed in order
to produce primes covering all output functions. However, to obtain a satisfactory
solution, we may need implicants of more than one output function that are not primes
of any (group implicants). Here, Implicant Reduction (IR) takes place. Then the Group
Covering Problem is solved and the Output Reduction is performed. Fig. 5.1 shows
a block diagram of the BOOM system, where each block corresponds to one
minimization step and the data sets described between these blocks correspond to the
products of these steps.

Figure 5.1: Structure of the BOOM system

The BOOM system may improve the quality of the solution by repeating the
implicant generation phase several times and recording all different implicants that has
been found. At the end of each iteration a set of implicants that is sufficient for covering
all the output functions is obtained. In each of the following iterations, another
sufficient set is generated and new implicants are added to the previous ones (if the
solutions are not equal). This process is treated more thoroughly in Section 5.6.

 47

5.5 Coverage-Directed Search

5.5.1 Basis of the Method

The idea of combining implicant generation with the solution of the covering problem
was the basis of the Coverage-Directed Search (CD-Search) method used in the BOOM
system. This consists in a search for the most suitable literals that should be added
to some previously constructed term. Thus, instead of increasing the dimension of an
implicant starting from a 1-minterm, an n-dimensional hypercube is being gradually
reduced by adding literals to its term, until it becomes an implicant of FFFFi. This happens
at the moment when the resulting hypercube does not intersect any 0-term.

The search for suitable literals that should be added to a term is directed towards
finding an implicant that covers as many 1-terms as possible. To do this, the implicant
generation starts with selecting the most frequent literal from the given on-set, because
the (n-1) dimensional hypercube covering most of 1-minterms is described by the most
frequent literal appearing in the on-set. The (n-1) dimensional hypercube found in this
way may be an implicant, if it does not intersect any 0-term. If there are some
0-minterms covered, another literal is added and it is verified whether the new term
already corresponds to an implicant by comparing it with 0-terms that may intersect this
term. Again, the literal appearing in most of 1-terms is selected. After each literal
selection the terms that cannot be covered by any term containing the selected literal are
temporarily removed from the on-set, for more efficient search. These are the terms
containing that literal with the opposite polarity. Literals are gradually added to a term
under construction, until an implicant is generated. Then the term is recorded and the
1-terms that are covered by this term are removed from the on-set. Thus, a reduced
on-set containing only yet uncovered terms is obtained. Now the whole procedure is
repeated from the beginning. The search for implicants continues, until the whole on-set
is covered.

The output of this algorithm is a set of product terms covering all 1-terms and not
intersecting any 0-term. This algorithm is greedy and thus the obtained implicants need
not be prime. In order to expand them into primes, the IE phase must be performed after
the CD-Search.

The basic CD-Search algorithm for a single-output function can be described by the
following function in pseudo-code. The on-set (F) and the off-set (R) are the inputs
to the algorithm; the output is the sum of products (H) that covers the given on-set.

 48

Algorithm 5.1: The CD-Search

CD_Search(F, R) {
H = ∅; // H is being created
do

F’ = F; // F’ is the reduced on-set
t = 1; // t is the term in progress
do

v = most_frequent_literal(F ’);
t = t . v;
F’ = F ’ – cubes_not_including(t);

while (t ∩ R ≠ ∅);
H = H ∪ t ;
F = F - F’;

until (F == ∅);
return H;

}

5.5.2 Immediate Implicant Checking

When selecting the most frequent literal, it may happen that two or more literals have
the same frequency of occurrence. In these cases either one is selected at random or
another decision criterion is applied – namely the immediate implicant checking. The
idea consists in constructing terms as candidates for implicants by multiplying all newly
selected literals (those with the same frequency) by the previously selected one(s).
Among these terms only implicants (if any) are selected and the rest is rejected. When
there are still more possibilities to choose from, one is taken at random.

Sometimes this feature prevents a term from being unnecessarily “prolonged”,
because it would have to be “shortened” during the IE phase. The effects of using this
immediate implicant checking are as follows:

• The runtime of CD-Search and the whole minimization runtime is decreased
• The number of PIs that are generated is slightly reduced.

This can be illustrated by Tab. 5.1. A single-output function having 20 input variables

and 500 defined terms was minimized in 1000 iterations (see Subsection 5.6). In the
first experiment, immediate implicant checking was not used, while in the second it was
used.

Table 5.1: Immediate implicant checking effects

 not used used
Total CD-Search time [s] 318,9 265,1
Total minimization time [s] 6688,3 4782,8
Number of PIs found 27194 21741

 49

5.5.3 CD-Search Example

Let us have a single-output incompletely defined Boolean function of ten input
variables x0 ..x9 and ten defined minterms given by a truth table Tab. 5.2. The
1-minterms are highlighted.

Table 5.2: CD-Search Example (1)

var: 0123456789
0. 0000000010 1
1. 1000111011 1
2. 0000011001 1
3. 1111011000 0
4. 1011001100 0
5. 1111000100 1
6. 0100010100 0
7. 0011011011 0
8. 0010111100 1
9. 1110111000 1

In the first step the occurrence of literals in the 1-minterms is counted. The “0”-line
and “1”-line in Tab. 5.3 give the counts of xi’ and xi literals respectively. The most
frequent literal is selected.

Table 5.3: CD-Search Example (2)

var: 0123456789
0: 343 5322444
1: 3231344222

The most frequent literal is x3‘ with five occurrences. This literal alone describes a

term that is not an implicant, because it covers the 6th minterm (0-minterm) in the
original function. Hence another literal must be added. When searching for the next
literal, we can reduce the scope of the search by suppressing 1-minterms containing the
selected literal with the opposite polarity (in Tab. 5.4 shaded dark). An implicant
containing a literal x3‘ cannot cover the 5th minterm, because it contains the x3 literal.
Thus, this minterm is temporarily suppressed. In the remaining 1-minterms the most
frequent literal is found.

Table 5.4: CD-Search Example (3)

var: 0123456789
0. 0000000010 1
1. 1000111011 1
2. 0000011001 1
3. 1111011000 0
4. 1011001100 0
5. 1111000100 1
6. 0100010100 0
7. 0011011011 0
8. 0010111100 1
9. 1110111000 1

var: 0123456789
0: 3 43-211 433
1: 212-3 44122

 50

As there are several literals with maximum frequency of occurrence 4 (x1’ , x5, x6, x7’),

the second selection criterion (immediate implicant checking) must be applied. These
literals are tentatively used as implicant builders and four product terms are generated
(using the previously selected literal x3‘ : x3‘x1’ , x3‘x5, x3‘x6, x3‘x7’). Then it is checked
for which of them are already implicants. The term x3‘x5 is not an implicant (it covers
the 6th minterm), so it is discarded and among the remaining three terms one is selected
at random, e.g., x3‘x6. This implicant is stored and the search continues.

The search for literals of the next implicants is described in Tab. 5.5. We omit
minterms that are covered by the selected implicant x3‘x6 (dark shading) and select the
most frequent literal in the remaining minterms.

Table 5.5: CD-Search Example (4)

var: 0123456789
0. 0000000010 1
1. 1000111011 1
2. 0000011001 1
3. 1111011000 0
4. 1011001100 0
5. 1111000100 1
6. 0100010100 0
7. 0011011011 0
8. 0010111100 1
9. 1110111000 1

var: 0123456789
0: 1111 222112
1: 1111000110

As seen in the lower part of Tab. 5.4, there are four equal possibilities, so one is
chosen randomly – e.g. x5’ . In a similar way we can find another literal (x6’) needed
to create an implicant covering the remaining two 1-minterms.

The resulting expression covering the given function is x3’x6 + x5’x6’ .

5.6 Iterative Minimization

Most of current heuristic Boolean minimization tools use deterministic algorithms.
The minimization process then always leads to the same solution, never mind how
many times it is repeated. On the contrary, in the BOOM system the result
of minimization depends to a certain extent on random events, because when there are
several equal possibilities to choose from, the decision is made randomly. Thus there is
a chance that repeated application of the same procedure to the same problem instance
would yield different solutions and thus we can pick out the best solution. Moreover,
the PIs and group implicants can be cumulated during the process and afterwards the CP
solved using all of them, which sometimes yields a better final result.

5.6.1 The Effect of the Iterative Approach

The iterative minimization concept takes advantage of the fact that each iteration
produces a new set of implicants sufficient for covering all 1-terms. This set

 51

of implicants gradually grows until a maximum reachable set is obtained. The typical
growth of the size of a PI set as a function of the number of iterations is shown
in Fig. 5.2 (thin line). This curve plots the values obtained during the solution of a
single-output function having 20 input variables and 200 care minterms. Theoretically,
the more primes we have, the better is the solution that can be found after solving the
covering problem, but the maximum set of primes is often extremely large. In reality,
the quality of the final solution, measured by the number of literals in the resulting SOP
form, improves rapidly during first few iterations and then remains unchanged, even
though the number of PIs grows further. This fact can be observed in Fig. 5.2 (thick
line).

Figure 5.2: Growth of PI number and decrease of SOP length during iterative
minimization

It is obvious from curves in Fig. 5.2 that selecting a suitable moment T1
for terminating the iterative process is of key importance for the efficiency of the
minimization. The approximate position of the stopping point can be found
by observing the relative change of the solution quality during several consecutive
iterations. If the solution does not change during a certain number of iterations (e.g.,
twice as many iterations as were needed for the last improvement), the minimization is
stopped. The amount of elapsed time may be used as an emergency exit for the case
of unexpected problem size and complexity.

5.6.2 Accelerating the Iterative Minimization

When the CD-Search phase is being repeated, identical implicants are quite often
generated in different iterations. These are then passed to the Implicant Expansion phase
(see Subsection 5.7), which might be unnecessarily repeated. To prevent this, all
implicants that were ever produced by the CD-Search are stored in the I-buffer
(Implicant buffer). A diagram of the whole minimization algorithm for a multi-output
function is shown in Fig. 5.3.

 52

Figure 5.3: Iterative minimization schematic plan

Each newly generated implicant is first looked up in the I-buffer and, if it is already

present, its further processing is stopped. Otherwise it is stored in both the I-buffer and
E-buffer (Expansion buffer). The E-buffer serves as a storage of implicants that are
candidates for expansion into PIs. After the expansion, they are removed from the
E-buffer. Then they are reduced to group implicants and, after duplicity and dominance
checks, the newly created group implicants are stored in the R-buffer (Reduced
implicants buffer). Finally, the covering problem is solved using all the implicants from
the R-buffer. There are separate I- and E-buffers for each output for multioutput
functions. The R-buffer is common for all.

The main implementation requirement for the I-buffer is a high look-up speed,
enhanced especially by early detection of an absence of a term. A novel structure, which
was named a tree buffer is proposed here. The buffer is structured as a ternary tree with
depth n. During the search in the tree, the direction at the k-th level is chosen according
to the type of occurrence (0,-,1) of the k-th variable in the searched term. The presence
of an implicant is represented by the existence of its corresponding leaf. The tree is
dynamically constructed during the addition of implicants into the buffer. An example
of such a tree for n = 3 is shown in Fig. 5.4. The buffer contains implicants 0-0, 10- and
11-. If, e.g., an implicant 0-1 is looked for, the search will fail in the node 0-, where no
path leading to 0-1 is present.

Figure 5.4: I-buffer tree structure

5.7 Implicant Expansion

As mentioned above, the implicants constructed during the CD-Search need not be
prime. To reduce the number of implicants needed to cover all 1-terms of the given
function, their dimension has to be increased by the implicant expansion (IE). The
expansion is done by removing literals (variables) from the terms. When no literal can
be removed from the term any more, we get a prime implicant (PI).

 53

There are basically two problems to be solved in connection with implicant
expansion. One of them is the mechanism that effectively checks whether a tentative
literal removal is acceptable. The other is the selection of the literals and the order
in which they are to be removed from the implicant term. First let us discuss the
checking mechanism.

5.7.1 Checking the Removal of a Literal

Removing a variable from a term doubles the number of minterms covered by the
term. The newly covered minterms may be 1-minterms or DC-minterms, but none
of them should be a 0-minterm. In BOOM, individual literals are tried for removal and
checked whether the expanded term does not intersect the off-set (therefore the DC
terms need not be enumerated explicitly). If a non-empty intersection with a 0-term is
found, the removal is rejected. The checking is done by a simple comparison of the term
with all the off-set terms, thus in a linear time.

5.7.2 Expansion Strategy

The second problem to be solved is the selection strategy for the literals to be
removed. The expansion of one implicant may yield several different prime implicants.
To find them all, we have to try systematically to remove each literal, whereas the order
of the literals selected plays an important role. Trying all possible combinations
of literals to be removed is denoted as an Exhaustive Implicant Expansion. Using
recursion or queue, all possible literal removals are systematically tried until all primes
are obtained. Unfortunately, the complexity of this algorithm is exponential with the
number of input variables. Hence this method is usable only for problems with up
to cca. 20 input variables.

Two local heuristic IE methods, differing in speed and quality of results are proposed
here.

The simplest one, namely a Sequential Expansion, systematically tries to remove
from each term all literals one by one, starting from a randomly chosen position. Each
removal is checked against the off-set as above, but if the removal is successful, it is
made permanent. If, on the contrary, some 0-minterm is covered, the literal is put back
and the algorithm proceeds to the next one. After removing all possible literals one
prime implicant covering the original term is obtained. This algorithm is greedy and we
stay with one PI even if there is more than one PI that can be derived from the original
implicant. The complexity of this algorithm is linear with the number of input variables
and the number of processed terms.

A sequential expansion obviously cannot reduce the number of product terms, but it
reduces the number of literals. The experimental results have shown that this reduction
may reach approximately 25%.

With a Multiple Sequential Expansion all the possible starting positions are tried and
each implicant thus may expand into several PIs. The upper bound of the number of PIs
that can be produced from one implicant is n-d, where n is the number of input variables
and d is the dimension of the original implicant. The complexity of this algorithm is
O(n.p), where p is the number of processed terms.

 54

5.7.3 Evaluation of Expansion Strategies

The properties of the proposed IE methods and their influence on the minimization
process (runtime and quality of the final solution) will be discussed in this subsection.

Fig. 5.5 shows the time of the minimization of a single-output function of 30 input
variables and 500 defined minterms as a function of the number of iterations. The
growth for the sequential expansion is linear, which means that an equal time is needed
for each iteration. The time needed for the multiple sequential expansion and the
exhaustive expansion grows faster at the beginning and then turns to linear with a
slower growth. At this point the CD-Search no longer produces new implicants and thus
the IE and the following phases are not executed. This causes simple sequential
expansion, which is seemingly the fastest one, to become the slowest one after a certain
number of iterations.

Fig. 5.6 illustrates the growth of the PI set as a function of time. We can see that the
Sequential Expansion achieves the lowest values, although it is the fastest implicant
expansion method. This is because it cannot take advantage of the I-buffer. The
implicants are repeatedly expanded, even when they have already been expanded in all
possible ways. The two other methods achieve higher values, because they put an
implicant into the E-buffer only once and then they are blocked by the I-buffer. Hence
when the same implicants are generated repeatedly by the CD-Search, they are not
processed any more, which speeds up the whole minimization. We can see that the most
complex method, namely exhaustive expansion, produces PIs at the fastest rate.

Practice shows that the more complex IE methods are advantageous for functions
with large care sets, where the number of implicants in the final solution is big, while
the simplest sequential expansion is better for very sparse functions.

0 1000 20 00 3000 40 00 5000
0

500

1000

1500

2000

Exhaustive Expansion

Multiple Sequential Expansion

Sequential Expansion

T
im

e
[s

]

Ite rations

Figure 5.5: Growth of time for different IE methods

 55

0 2000 4000 600 0 8000 1000 0

0

1000

2000

3000

4000

Multiple Sequential Expansion
Exhaustive Expansion

Sequential Expansion
P

rim
es

Time [s]

Figure 5.6: Growth of PIs for different IE methods

5.8 Minimizing Multi-Output Functions

To minimize multi-output functions, only a few modifications of the basic
single-output algorithm must be done.

At the beginning, each of the output functions FFFFi is treated separately, and the
CD-Search and IE phases are performed. After that, a set of primes sufficient for
covering all v functions is obtained. However, for obtaining the (theoretically) minimal
solution we may need implicants of more than one output function that are not primes
of any FFFFi. Here the next part of the minimization – Implicant Reduction (IR) finds its
place. After the IR phase is performed, the group covering problem is solved. Its
solution is a set of implicants needed to cover each of the output functions FFFF1 ... FFFFm.
These implicants are assigned to the individual output functions, so they do not intersect
the functions’ off-sets. However, to generate the required output values, some of these
implicants may not be necessary. These implicants would create redundant inputs into
the output OR gates (when implemented as a two-level AND-OR network). Sometimes
this is harmless (e.g. in PLAs), moreover it could prevent hazards. Nevertheless,
for hardware-independent minimization the redundant outputs should be removed. This
is done at the end of the minimization by solving v covering problems for all v functions
independently. This phase corresponds to ESPRESSO’s MAKE_SPARSE procedure
[Bra84].

 56

5.9 Implicant Reduction (IR)

All the obtained prime implicants are tried for reduction by adding literals to them,
in order to become implicants of more than one output functions. The method
of implicant reduction is similar to CD-Search. Literals are sequentially being added
to the previously obtained implicants until there is no chance that the implicant will be
used for more output functions. Preferably, literals that prevent intersecting with most
of the terms of the off-sets of all FFFF1 ... FFFFm (i.e., yielding reduced terms that cover the
least zeros in all the functions) are selected. When no further reduction leads to any
possible improvement, the reduction is stopped and the term is recorded. A term that no
longer intersects with the off-set of any FFFFi becomes its implicant. All implicants that
were ever found are stored and output functions are assigned to them – it is checked for
each term produced, what output functions from FFFFi it is an implicant of.

Then simple dominance checks are performed in order to eliminate implicants that
are dominated by other implicants. Fig. 5.7 shows the typical growth of the number
of group implicants (non-primes) as a function of the number of iterations. Here the
function of 13 input variables, 13 output variables and 200 defined terms was used
for demonstration. We can see that the number of the reduced implicants first grows
rapidly, but then it falls to approx. 15% of the maximum value. This is due the fact that
new prime implicants are being constantly produced and they absorb most of the
previously generated group implicants in the preliminary dominance checks.

0 200 400 600 800 1000 1200

50

100

150

200

250

300

N
on

-p
rim

es

Ite rations

Figure 5.7: Growth and fall of the number of non-primes

5.10 Solution of the Covering Problem

It was shown in subsection 5.6.1 that even a small subset of implicants may give the
minimum solution. However, the quality of the final solution strongly depends on the
covering problem (CP) solution algorithm. With a large number of implicants it is
impossible to obtain an exact solution, since the covering problem is NP-hard. Thus
some kind of a heuristic must be used.

 57

Moreover, a large number of implicants may sometimes misguide the CP solution
algorithm and thereby lead to a solution, which is even worse than the solution obtained
using only few implicants.

An exact CP solution is mostly rather time-consuming, especially when it is
performed after several iterations during which many implicants had accumulated.
In this case, a heuristic approach is the only possible solution. Out of several possible
approaches two has been used in BOOM. The first one, denoted as LCMC (Least
Covered, Most Covering) is a common greedy heuristic algorithm for solution of the
covering problem. The implicants covering minterms covered by the least number
of other implicants are preferred. If there are more than one such implicants, implicants
covering the highest number of yet uncovered 1-minterms are selected.

More sophisticated heuristic methods for CP solution are based on computing the
contributions (scoring functions) of terms as a criterion for their inclusion into the
solution [Ser75, Rud89, Cou94]. Such a method is also used in BOOM as is has been
found very efficient and not too time-consuming.

Here the covering matrix A is constructed, its dimension will be denoted as (e, f). The
columns correspond to the implicants, rows to the on-set terms that are to be covered.
A[i, j] = 1 if the implicant j covers the on-set term i, A[i, j] = 0 otherwise. For each row
its strength of coverage is computed as

 []∑
=

=
f

j

i

jiA

x

1

,

1
)SC(

 (1)

Then the column contribution is computed for each column:

∑
=

⋅=
e

i
ij xSCjiAy

1

)(],[)CC(
 (2)

The implicant (column) with the maximum contribution value is selected into the

solution, the contribution values are recomputed and the process is repeated until the
whole on-set is covered.

5.11 The BOOM Algorithm

The iterative minimization algorithm for a group of functions FFFFi (i = 1, 2,…, v) can be
described by the following pseudo-code. The inputs are the on-sets Fi and off-sets Ri
of the v functions, and the output is a minimized disjunctive form G = (G1, G2,...Gv),
where Gj stands for a particular implicant.

 58

Algorithm 5.2: Minimization of a group of functions

BOOM(F[1..v] , R [1..v]) {
G = ∅;
do

I = ∅;
for (i = 1; i <= v ; i++)

I ’ = CD_Search(F [i] , R [i]);
Expand(I ’, R[i]);
Reduce(I ’ , R [1..v]);
I = I ∪ I ’;
DominanceCheck(I);

G’ = Group_cover(I, F [1..v]);
Reduce_output(G ’, F[1..v]);
if (Better(G ’ , G)) then G = G ’;

until (stop);
return G;

}

5.12 BOOM Experimental Results

Extensive experimental work has been done to evaluate the efficiency of the proposed
algorithm, especially for problems of large dimensions. Both the runtime in seconds and
result quality were evaluated. The quality of the results was measured by three
parameters: total number of literals, output cost and number of product terms
(implicants). One of them or the combination of two (sum of the number of literals and
output cost) had always to be chosen as a minimization criterion. The results of the
experiments are listed in the following subsections. All the experiments were performed
on a standard PC with a 900 MHz Athlon processor and 256 MB RAM.

5.12.1 Standard MCNC Benchmarks

A set of 139 standard MCNC benchmarks [Yan91, MCNC] was solved
by ESPRESSO v2.3, ESPRESSO-EXACT and BOOM. As the benchmark functions
were specified by the on set and don’t care set (type fd PLA), the source files had to be
converted into the format where the on-set and off-set are defined (type fr PLA). This
was done by ESPRESSO (using the -ofr switch) before the minimization was
performed. Thus, both ESPRESSO and BOOM could use the same input files. The
presented runtimes do not include the time needed for the conversion.

Of all the 139 standard problems, 67 (48.2%) were solved by BOOM in a shorter
time than by ESPRESSO. In all cases only one iteration of BOOM was used, and thus
the results may not be optimal. However, this option was chosen in order to have a
better comparison of the results. In 52 cases (37.4%) BOOM gave the same result as
ESPRESSO, while 30 (57.7%) of these equal results were reached faster than
by ESPRESSO.

Table 5.6 shows the minimization results of a selected set of “harder” benchmarks.
The benchmarks were also solved by ESPRESSO-EXACT in order to obtain the
minimum solution for comparison. Note that in this case the minimality criterion is the
number of terms only and thus some "exact" solutions are even worse than those
reached by ESPRESSO or BOOM. Some benchmarks were not solved
by ESPRESSO-EXACT because of its extremely long runtimes (blank entries

 59

in Tab. 5.6). ESPRESSO solutions that are equal to the exact ones are shaded in the
ESPRESSO column. The column i/o/p describe the number of input/output variables
and care terms of a particular benchmark, the time columns indicate the computational
time in seconds, the lit/out/terms columns show the quality of the results, i.e., the
number of literals in the final SOP form, the output cost and the number of terms. The
shadowed cells indicate that the benchmark was solved by BOOM in a shorter time than
by ESPRESSO, or the same result was reached respectively.

Since the MCNC benchmark circuits mostly have a relatively low number of inputs
and many care terms defined, the features of BOOM couldn’t be fully exploited here.
Thus, the results are not that promising, when compared with ESPRESSO. However,
BOOM is much more efficient for more complex problems (see the following
Subsections), which ESPRESSO often cannot solve in a reasonable time at all.

Table 5.6: Runtimes and minimum solutions for the standard MCNC benchmarks

 ESPRESSO ESPRESSO-EXACT BOOM – 1it.
bench i/o/p time lit/out/terms time lit/out/terms time lit/out/terms

alu2 10/8/241 0.07 268/79/68 0.18 268/79/68 0.02 268/79/68
alu3 10/8/273 0.08 279/70/65 0.19 278/74/64 0.02 279/68/66
alu4 14/8/1184 0.59 4445/644/575 12.24 4495/648/575 1.02 4449/636/577
b9 16/5/292 0.08 754/119/119 0.89 754/119/119 0.09 754/119/119
br1 12/8/107 0.05 206/48/19 0.07 206/48/19 0.02 215/45/20
br2 12/8/83 0.06 134/38/13 0.07 134/38/13 0.01 134/38/13
chkn 29/7/370 0.14 1598/141/140 0.25 1602/142/140 0.41 1598/141/140
cordic 23/2/2105 1.86 13825/914/914 3.59 13843/914/914 4.05 13825/914/914
ex4 128/28/654 0.62 1649/279/279 14.01 1649/279/279
e64 65/65/327 0.11 2145/65/65 0.11 2145/65/65 15.06 2145/65/65
exep 30/63/643 0.17 1175/110/110 0.55 1170/108/108 3.66 1175/110/110
ibm 48/17/499 0.11 882/173/173 0.82 882/173/173
mark1 20/31/72 0.25 97/57/19 1.45 97/57/19 0.04 93/46/23
misex2 25/18/101 0.07 183/30/28 0.06 183/30/28 0.10 183/30/28
misex3c 14/14/1566 0.98 1306/253/197 0.59 1335/242/209
misj 35/14/55 0.07 54/48/35 0.03 54/48/35
shift 19/16/200 0.07 388/105/100 0.06 388/105/100
spla 16/46/837 0.71 2558/643/251 6.65 1564/450/181 1.54 2821/517/285
vg2 25/8/304 0.08 804/110/110 0.54 804/110/110 0.15 804/110/110
x9dn 27/7/315 0.08 1138/120/120 0.49 1138/120/120 0.22 1138/120/120

5.12.2 Test Problems Having n ≥≥≥≥ 50

The MCNC benchmarks have relatively few defined terms, few input variables (only
for 9 standard benchmarks n exceeds 50) and also a small number of don’t care terms.
To compare the performance and result quality achieved by the minimization programs
on larger problems, a set of problems having up to 200 input variables and up to 200
terms was solved. In order to accomplish this, a set of artificial benchmark problems is
proposed, which was named as BOOM Benchmarks [Fis02, BOOMBench]. The truth
tables of these problems were generated by a random number generator, for which only
the number of input variables and the number of care terms were specified. The number
of outputs was set equal to 5, and the input matrix contained 20% of don’t cares. The
on-set and off-set of each function were kept approximately of the same size. Such a
type of problems usually occurs in the Output Decoder design as well, with an
exception of input don’t cares present, since deterministic PRPG are considered.

 60

However, introducing don’t cares makes the problem only harder to solve. On the other
hand, the distribution of zeros and ones in the input matrix is pseudorandom (generated
by a PRPG), thus a random distribution nears to practical problems very well.
Moreover, the randomness of the benchmarks used here was chosen in order to have
functions with no special properties. This allows us to determine more easily the
properties and scalability of the algorithms.

For each problem size (number of variables, number of terms) in Tab. 5.7 and 5.8, ten
different samples were generated and solved and average values of the ten solutions
were computed.

First the minimality of the result was compared. BOOM was always run iteratively,
using the same total runtime as ESPRESSO needed to obtain the solution. In the
following three tables, the number of input variables n increases horizontally and the
number of input terms p is increased vertically. The first row of each cell in Tab. 5.7
contains the BOOM results, the second row shows the ESPRESSO results. The quality
criterion selected for BOOM was the sum of the number of literals and the output cost,
which approximates the gate equivalents (GEs) [DeM94]. We can see that for all but
one problem size (shaded cell) BOOM found a better solution than ESPRESSO.

Table 5.7: Solution of Boom Benchmarks - comparing the result quality

p / n 50 100 150 200
50 110/41/25 (58)

122/54/27/3.89
96/35/23 (90)
104/45/23/10.29

90/32/21 (147)
92/41/21/24.87

84/29/20 (199)
89/39/20/41.99

100 284/86/52 (46)
289/104/51/19.31

229/68/42 (94)
231/84/42/77.07

217/61/40 (140)
213/80/39/199.17

207/57/38 (140)
201/74/37/246.21

150 474/132/76 (43)
481/158/76/54.76

389/101/63 (101)
384/125/62/282.80

362/92/61 (116)
345/113/56/646.20

381/90/64 (64)
322/107/52/1066.14

200 678/177/101 (51)
686/209/101/162.62

553/137/83 (116)
539/165/81/730.91

492/125/75 (207)
480/149/72/1913.65

469/110/71 (277)
450/136/68/3372.66

Entry format: BOOM: # of literals / output cost / # of implicants (# of
iterations)

 ESPRESSO: # of literals / output cost / # of implicants / time in
seconds

A second group of experiments for n ≥ 50 was performed to compare the runtimes.

Again, the randomly generated problems from [Fis02, BOOMBench] were solved, but
this time BOOM was running until a solution of the same or better quality as
ESPRESSO was reached. The quality criterion selected was again the sum of the
number of literals and the output cost. The results given in Tab. 5.8 show that for all
samples the same or better solution was found by BOOM in a shorter time than
by ESPRESSO.

 61

Table 5.8: Solution of Boom Benchmarks - comparing the runtime

p / n 50 100 150 200
50 170/0,64 (12)

176/3,89
145/1,89 (21)
149/10,29

131/14,52 (73)
133/24,87

126/3,26 (25)
128/41,99

100 388/7,15 (23)
393/19,31

313/25,5 (48)
315/77,07

291/38,91 (56)
293/199,17

273/86,51 (83)
275/246,21

150 631/20,38 (25)
639/54,76

506/153,84 (70)
509/282,8

456/374,68 (105)
458/646,20

427/974,40 (161)
429/1066,14

200 890/71,97 (31)
895/162,62

697/467,63 (86)
704/730,91

625/1026,28 (149)
629/1913,65

582/1759,27 (220)
586/3372,66

Entry format: BOOM: # of literals+output cost / time in seconds (# of
iterations)

 ESPRESSO: # of literals+output cost / time in seconds

5.12.3 Solution of Very Large Problems

The third group of experiments aims at establishing the limits of applicability
of BOOM. For this purpose, a set of very large test problems was generated and solved
by BOOM. Each problem was a single-output function in this case. For problems with
more than 200 input variables ESPRESSO could not be used, because of prohibitively
long the runtimes (several hours). Hence when investigating the limits of applicability
of BOOM, it was not possible to verify the results by any other method. The results
of this test are listed in Tab. 5.9 where the average time in seconds needed to complete
one iteration for various problem sizes is shown. We can see that a problem with 1000
input variables and 2000 care minterms was solved by BOOM in about 20 seconds.

Table 5.9: Time for one iteration on very large problems

p / n 200 400 600 800 1000
200 0.06 0.11 0.17 0.26 0.26
400 0.25 0.34 0.52 0.77 0.88
600 0.45 0.80 1.15 1.44 1.96
800 0.88 1.43 2.05 2.69 3.35
1000 1.32 2.10 3.07 4.21 4.42
1200 1.91 3.28 4.69 6.30 7.27
1400 2.69 4.48 6.04 7.72 8.96
1600 3.56 5.78 8.58 10.57 11.69
1800 4.51 7.73 10.56 12.52 16.34
2000 5.64 10.02 13.17 17.45 20.17

5.12.4 Column-Matching Practical Examples

In order to fully justify the need for BOOM in the proposed BIST synthesis method
(Column-Matching), several Output Decoder design examples are presented in this
Subsection. Particular decoders were minimized both by BOOM and ESPRESSO and
the result quality and runtime compared. The results are shown in Table 5.10.

 62

In all the cases BOOM was run for 100 iterations. The “Bench” column indicates the
name of the benchmark circuit, which is the Output Decoder to be synthesized for a
particular benchmark (which name follows after “d_”). For most of benchmark circuits
the Column-Matching procedure was run with different parameters set (namely lengths
of the phases), yielding different decoder complexities. In the “i/o/p” column are listed
the numbers of its inputs, outputs and defined terms. Then, the results obtained
by BOOM and ESPRESSO are shown. The resulting Decoder complexity is given
in terms of gate equivalents [DeM94]. The shadowed cells indicate cases where BOOM
outperformed ESPRESSO, both for the result quality and runtime.

Table 5.10: Output Decoder design examples

 BOOM ESPRESSO
Bench i/o/p GEs Time [s] GEs Time [s]

d_c1355 (1) 41/18/13 31.5 0.69 37.0 0.19
d_c1355 (2) 41/21/14 35.0 0.74 42.5 0.26
d_c1908 33/3/29 17.0 0.49 18.0 0.12
d_c2670 (1) 233/32/60 113.0 165.95 313.0 4838.62
d_c2670 (2) 233/31/52 61.0 159.06 260.0 2329.44
d_c2670 (3) 233/36/104 159.5 740.18 344.5 24 710.07
d_c7552 (1) 207/48/81 196.5 807.84 373.0 27 574.93
d_c7552 (2) 207/72/207 389.5 23 933.46 - > 24 h
d_s420.1 (1) 34/6/42 22.0 0.75 26.0 1.58
d_s420.1 (2) 34/5/33 19.5 0.75 24.5 0.95
d_s838 (1) 67/24/61 35.5 3.15 58.5 27.94
d_s838 (2) 67/15/46 29.0 1.65 44.0 14.94
d_s953 (1) 45/2/25 4.5 0.13 7.0 0.11
d_s953 (2) 45/4/45 10.5 0.42 10.5 0.16
d_s1196 32/4/48 29.5 2.12 37.0 1.04
d_s1238 (1) 32/5/60 46.5 9.71 68.5 3.15
d_s1238 (2) 32/4/58 28.5 5.23 36.5 0.53
d_s5378 (1) 214/3/36 12.0 2.81 15.5 6.58
d_s5378 (2) 214/2/22 7.0 0.66 7.0 1.70
d_s9234 (1) 247/77/216 655.0 18835.6 - > 24 h
d_s9234 (2) 247/38/99 186.5 266.78 252.5 17 298.0
d_s9234 (3) 247/23/52 64.5 29.09 108.0 659.25
d_s13207.1 (1) 700/8/96 88.5 93.65 95.5 1251.0
d_s13207.1 (2) 700/58/197 293.5 1550.25 316.5 190 038.74
d_ s15850.1 (1) 611/96/313 197.5 3416.4 - > 24 h
d_ s15850.1 (2) 611/48/180 78.5 516.3 120.0 37 818.65
d_s38417 1664/1454/520 759.0 1923.0 - > 24 h
d_s38584.1 (1) 1664/464/307 158.0 321.9 - > 24 h
d_s38584.1 (2) 1664/464/45 11.0 46.6 31.0 20 361.71
d_b04 (1) 77/9/37 24.5 1.75 28.5 4.19
d_b04 (2) 77/4/29 9.0 0.32 11.0 0.58
d_b05 (1) 35/7/33 28.5 2.94 49.0 0.85
d_b05 (2) 35/2/15 4.0 0.07 4.5 0.06
d_b07 (1) 50/5/41 11.5 2.01 12.0 3.43
d_b07 (2) 50/1/24 1.0 0.02 1.0 0.8

 63

 BOOM ESPRESSO
Bench i/o/p GEs Time [s] GEs Time [s]

d_b12 (1) 126/11/128 95.0 118.14 118.0 379.93
d_b12 (2) 126/7/66 45.5 15.52 57.5 18.27

It can be seen that BOOM outperformed ESPRESSO in the result quality in all the

cases and mostly in the runtime as well. In some more complex cases ESPRESSO did
not return a result in more than one day, thus the measurement was terminated.

5.13 Time Complexity Evaluation

As for most heuristic and iterative algorithms, it is difficult to evaluate the time
complexity of the proposed algorithm analytically. A vast experimental evaluation has
been therefore performed.

5.13.1 Influence of the Problem Size

The average time needed to complete one iteration of BOOM for various sizes of the
input truth table was measured here. The number of experiments of each instance size
was 10. The truth tables were generated randomly, following the same rules as
in paragraphs 5.12.2 and 5.12.3. Fig. 5.8 shows the growth of an average runtime as a
function of the number of care minterms (20-300) where the number of input variables
is changed as a parameter (20-300). The curves in Fig. 5.8 can be approximated with the
square of the number of care minterms.

The minimization time thus grows relatively rapidly with the number of care terms,
however, it is not exponential. This fact complicates the minimization of functions with
a large number of defined terms to some extent. Hence, BOOM is more suitable
for minimizing very sparse functions, where the number of care terms is low.

Fig. 5.9 shows the runtime growth as the function of the number of input variables
(20-300) for varying number of defined minterms (20-300). Although there are some
fluctuations, the time complexity is almost linear. Fig. 5.10 shows a three-dimensional
representation of the above curves.

The fact that the time complexity grows linearly with the number of input variables
(while keeping the number of defined terms) expresses the main advantage of the
BOOM algorithm. As the size of the Boolean space of the function grows exponentially
with the number of input variables, the time complexity of most of the common
minimization algorithms grows exponentially too. In BOOM there is no chance for an
exponential time grow, as there are no algorithms with an exponential complexity used
in BOOM (except of the case when the exhaustive IE is used). This allows to minimize
functions with an extremely large number of inputs very efficiently.

 64

0 50 100 150 200 250 300
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

300

260

220

180

140

100

60

20

T
im

e
[s

]

Terms

Figure 5.8: Time complexity (1)

0 50 100 150 200 250 300
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80
300

260

220

180

140

100
6020

T
im

e[
s]

Input variables

Figure 5.9: Time complexity (2)

 65

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

20 60 100 140 180 220 260 300
20

120

220

Terms

Input

T
im

e[
s]

Figure 5.10: Time complexity (3)

5.13.2 Influence of Don't Cares

The influence of the number of don't care states in the field of input variables on the
runtime was studied on a set of problems generated by a random number generator
for n = 20, 50 and 80, with 5 output variables and 200 defined terms. The percentage
of don't cares was varied in the range from 0 to 35%. Here 0% denotes the situation
when only minterms were used in the function definition. At the other end, 35% of don't
cares means that slightly more than one third of all values of the input variables were
undefined.

The growth of the runtime for ESPRESSO and for BOOM is shown in Fig. 5.11,
where the number of input variables is indicated in parentheses. We can see that
although ESPRESSO runtime grows to 5000 s for 80 input variables, BOOM runtime
remains almost constant within the used scale for all problem sizes. The influence on
the runtime is visualized even more clearly in Fig. 5.12, showing the relative slowdown
of BOOM and of ESPRESSO caused by the don't cares. We can see that the relative
slowdown of BOOM for the highest percentage of don't cares is about 7.5, whereas
for ESPRESSO it is up to 100.

We can conclude from this observation that ESPRESSO is extremely sensitive to the
dimensionality of the source terms; the minimization time grows rapidly with the
growing number of input don’t cares. On the other hand, BOOM is almost insensitive
to the dimension of the terms. Thus, BOOM can be efficiently used to minimize
functions with a large portion of don’t cares in the source terms.

 66

0 5 10 15 20 25 30 35 40

0

1000

2000

3000

4000

5000

ESPRESSO (20)

ESPRESSO (80)

ESPRESSO (50)

BOOM (20,50,80)

T
im

e
[s

]

DC Rate [%]

Figure 5.11: Runtimes for ESPRESSO (dashed lines) and for BOOM (solid line)

0 5 10 15 20 25 30 35
0

20

40

60

80

100

20

50

80

S
lo

w
-d

ow
n

DCs Rate [%]

 BOOM

 ESPRESSO

Figure 5.12: Relative slowdown [%] for various percentages of DCs

 67

5.14 BOOM Conclusions

The original Boolean minimization method, based on a new approach to implicant
generation has been proposed. Its most important features are its applicability
to functions with several hundreds or thousands of input variables and very short
minimization times for sparse functions. The function to be minimized is defined by its
on-set and off-set (which may consist of minterms and terms of higher dimensions),
whereas the don't care set needs not be specified explicitly. Properties of the BOOM
minimization tool were demonstrated by many examples. Its application is
advantageous above all for functions with a large number of input variables and a large
number of don't care states where it beats other methods, like ESPRESSO, as concern
to the quality of the results and in method runtime, too. The PI generation method is
very fast and can easily be used by an iterative manner. Extensive tests on different
benchmarks (MCNC, randomly generated problems, practical Column-Matching
problems) were performed in order to determine the strengths and weaknesses of the
BOOM system.

The dimension of the problems that can be solved by BOOM can reach thousands
input variables, since the runtime grows linearly with the number of input variables. For
problems of very high dimension, the success largely depends on the size of the care set,
because the runtime grows roughly with the square of its size.

BOOM is applicable very efficiently to the design of the Output Decoder needed
in the Column-Matching BIST design process. It overpowers ESPRESSO in general.
ESPRESSO is often completely unusable, due to its prohibitively long runtime
for problems having a large number of inputs.

 68

6 Implementation

6.1 Implementation of Column-Matching BIST
Equipment Design Method

In order to accomplish the proposed BIST equipment synthesis process, several
programs had to be created. First of all, the Colmatch tool has been developed
[Colmatch]. It implements the very Column-Matching algorithms. The program takes
two matrices as an input – the C-matrix and the T-matrix. The output of the program is
a PLA file describing the Output Decoder, and a report file containing information
on the matched CUT inputs. Using this information it is possible to design the BISTE
circuitry.

A simple program LFSR generating code words of a given LFSR (i.e., the C-matrix)

has been made, to accompany ColMatch.

Then, additional tool has been programmed (CMBIST), producing the VHDL code

of the whole circuit, together with the BIST equipment. The input to this algorithm is
the circuit-under-test and the information obtained by Colmatch, the output is a
synthesizable VHDL code of the circuit with BIST. This implies the scan-chain
insertion (or inserting MUXes into the circuit, respectively), converting a sequential
circuit into a combinational one (by introducing pseudo-primary inputs and outputs), the
BIST controller design and, last but not least, the top-entity design, describing the
whole circuitry.

The whole BIST design process is then described by the dataflow diagram shown
in Fig. 6.1.

First, the sequential description of the CUT (in ISCAS’89 format [Brg89]) is
converted into a combinational one. Simultaneously, VHDL description of the circuit,
including multiplexers, is generated. Then the LFSR seed and polynomial are generated
and the C-Matrix produced. These pseudo-random vectors are simulated by FSIM and a
test for undetected faults is produced by Atalanta (the T-Matrix). Then the
Column-Matching process is run, using the two matrices. The Output Decoder is
minimized by BOOM and the resulting data are put together to form a synthesizable
VHDL code describing the whole self-testable circuit.

The block schematic of the whole BIST, generated by CMBIST is shown in Fig. 6.2.

 69

CMBIST

Bench (sequential)

Bench (combinational)

BOOM

FSIM

LFSR

C-Matrix

ATALANTA

Undetected faults

ColMatch

T-Matrix

CMBIST

CUT VHDL

MUX Info

Decoder PLA

Decoder VHDL

BIST VHDL

Figure 6.1: BIST equipment synthesis dataflow

 70

TPG
RESETCLK

TPG (CUT_inps+CUT_DFFs-1 DOWNTO 0)

MUX

TPG (CUT_inps+CUT_DFFs-1 DOWNTO 0)Decoder
(Dec_outs-1 DOWNTO 0)

Inputs
(CUT_inps+CUT_DFFs-1 DOWNTO 0)

Mux2Circ (CUT_inps+CUT_DFFs-1 DOWNTO 0)

CUT

PPI (CUT_DFFs-1 downto 0)

PPO (CUT_DFFs-1 downto 0) DFF
RESETCLK

CLK
MISR

RESET

Comparator

CRC2Comp (CUT_outs+CUT_DFFs-1 DOWNTO 0)

I_comp (CUT_outs+CUT_DFFs-1 DOWNTO 0)

O_comp

Decoder

INPUT (CUT_inps+CUT_DFFs-1 DOWNTO 0)

OUTPUT (Dec_outs-1 DOWNTO 0)

RESET

Controller
Test

Mode

RESET

CLKResetTPG

ResetTPG

TPG2MUux (CUT_inps+CUT_DFFs-1 DOWNTO 0)

Test
Test

ModeMode

BistFailIn

BistFainIn

ResetCRC

ResetCRC

BistFail

BistDone

BistFail

BistDone

OutCirc (CUT_outs+CUT_DFFs-1 DOWNTO 0)

Decoder_out (Dec_outs-1 DOWNTO 0)

CRC2Comp (CUT_outs+CUT_DFFs-1 DOWNTO 0)

PPI (CUT_DFFs-1 DOWNTO 0)original input names (#CUT_inps)

original input names (#CUT_inps)

Mux2Circ (CUT_inps+CUT_DFFs-1 DOWNTO 0)

original output names (#CUT_outs)

PPO (CUT_DFFs-1 DOWNTO 0)

H

H

HL

L

L

CLK

original input names (#CUT_inps)

original output names (#CUT_outs)

Figure 6.2: BIST structure

 71

6.2 Implementation of BOOM

BOOM has been implemented as a stand-alone tool and released for publics in 2003,
for the first time [BOOM]. Since that time is has overcame many improvements.
Nowadays (version 2.8), it supports these features:

• PLA, type fr input (on-set and off-set specified), type f output (on-set

specified)
• Output in: PLA, BLIF, VHDL, Verilog, Equations, HTML table
• Very fast minimization of functions having many input and output variables
• Low memory demands
• Adjustable tradeoff between runtime and result quality
• Many different optimization criteria (terms, literals, output cost, GEs, …)
• Windows and Linux compatible versions are available

 72

7 Conclusions and Future Work

A mixed-mode BIST equipment design method based on a newly developed
Column-Matching principle has been proposed. Here pseudorandom LFSR code words
are being transformed into deterministic test patterns computed by an ATPG tool. The
transformation is being done by a purely combinational block; no additional registers
are needed to perform the transformation. The algorithm tries to “match” maximum
of decoder outputs with its outputs, which yields no logic necessary to implement these
outputs. The Thesis primarily describes the method of a design of the test pattern
generator producing test vectors for the tested circuit.

The method is primarily designed for a test-per-clock BIST, however it can be easily
adopted to test-per-scan for full-scan or multiple-scan circuits.

The pseudo-random and deterministic phases are separated, which enables to reach
less area overhead of the control logic. The method is based on a design of a decoder
transforming the LFSR code words into deterministic test vectors testing the
hard-to-detect faults. In all the mixed-mode designs, some kind of switching logic is
involved. A method reducing both the transformation and switching logic is proposed.

The test is divided into two phases, the pseudo-random and deterministic one. The
lengths of both phases can be freely adjusted, to find a trade-off between the test time
and area overhead. It has been shown that the length of the pseudo-random phase has a
crucial impact on the result. This issue is discussed in this Thesis as well.

The length of the deterministic phase influences the result as well, though not that
significantly. The impact of the test lengths on the duration of the BIST design process
is considered too.

A big scalability of the method, in terms of the area overhead, test time and design
time is shown.

The BIST synthesis method may be used for almost any fault model, if a proper fault
simulator and ATPG tool are provided. The fault coverage reached depends only on the
ATPG tool as well; a trade-off between the fault coverage and BIST area overhead may
be adjusted too.

The method has been tested on standard ISCAS and ITC benchmarks and the results
were compared with other state-of-the-art methods.

The principles of the Column-Matching method were published in [Fis02a, Fis03a,
Fis04a, Fis04b, Fis04c, Fis04d, Fis05a, Fis05b, Fis05d and Fis06a].

Not only the Column-Matching algorithm has been considered during the research.

The “Coverage-Directed Assignment (CD-A)” algorithm has been developed as an
alternative to the Column-Matching. The aim of this algorithm is the same as
in Column Matching is, i.e., to transform an excessive set of pseudo-random vectors
into a set of deterministic vectors. However, the principles of method are completely
different. It is based on a generalization of Boolean minimization process. The results
were published in [Fis03d and Fis03f]. However, this approach has been abandoned
after some time, due to prohibitively high time complexity of the CD-A algorithm.

A novel Boolean minimizer BOOM has been developed as a necessary part of the

BIST test pattern generator synthesis process, since standard minimizers, like

 73

ESPRESSO, were not able to handle functions having hundreds of inputs in a
reasonable time. The minimization method is based on a completely different approach
to implicant generation: instead of processing the on-set terms and trying to increase
their size, the implicants are generated by reducing a universal hypercube, until it
becomes an implicant of the source function. The on-set provided serves just as a
“guideline” to implicant generation, the on-set terms are not processed explicitly.

This idea yielded an efficient heuristic two-level Boolean minimizer capable
to minimize functions having up to thousands of inputs in an acceptable time.

BOOM was tested on standard MCNC benchmarks, randomly generated benchmarks
and circuits that were generated by the Column-Matching method. The results were
compared with results obtained by ESPRESSO. For a majority of the benchmark
circuits BOOM returned the result in a shorter time, while the result qualities were
equal. “Bigger” benchmarks (having hundreds of input variables) were solved
by BOOM in a significantly shorter time than by ESPRESSO, while the result obtained
by BOOM was better in quality. For PLAs obtained by the Column-Matching algorithm
ESPRESSO returned significantly worse results than BOOM, in a much longer time.
Some PLAs could not be minimized by ESPRESSO at all, for a prohibitively long
runtime.

The principles of BOOM (with later extensions supporting the decomposition
of combinational circuits) have been published in [Hla00, Fis00, Hla01a, Hla01b,
Fis01a, Fis01b, Fis01c, Fis02b, Fis02c, Fis02e, Hla02, Fis03b and Fis03c].

Another Boolean minimizer has been developed as a more successful byproduct

of the CD-A algorithm development: FC-Min. Its principles were published in [Fis03e,
Fis03g and Fis04g, Fis05b]. Finally, BOOM and FC-Min have been combined together
to obtain a universal Boolean minimizer BOOM-II [Fis04e, Fis04f, Fis06b].

7.1 Future Work

As the future work several minor modifications are planned to be done, helping
to reduce the complexity of the resulting BIST. Namely it is the use of cellular automata
or other more complex structures as PRPGs.

More essential modification of the algorithm will enable to adjust the width of the
PRPG. Until now, it has been assumed that the number PRPG outputs is equal to the
number of CUT inputs, at least in the mixed-mode version. If the width of the PRPG is
different, there would be no modification of the algorithm involved. However, for a
wider PRPG the algorithm cannot decide what PRPG outputs should be connected
to the CUT inputs in the pseudo-random phase - until now they are connected in an
ascending order, however it is possible to choose any other order. This problem gives a
hint for another possibility of improvement of the algorithm – to consider a proper
permutation of wires, not to just connect it straight.

This would be possible to do by incorporating the ATPG tool into the algorithm more
extensively. Particularly, the deterministic test won’t be generated in one step, but
iteratively with a chance to change unwanted tests and to enable the Column-Matching
algorithm to take hints from the ATPG. For example, for a particular set of faults it will
be possible to select a test vector having don't care values in the positions of the already
matched columns. Thus, the restrictions put on the following column match will be
reduced. Such a major modification could significantly reduce both the area overhead
and the test length.

 74

Incorporating the weighted pattern testing would enable the use of a “shorter” PRPG
as well, while the fault coverage reached by the pseudo-random phase would be
increased. This, however, would be paid by an overhead caused by the weighting logic.

To be able to cope with most of VLSI core designs the method (or its
implementation, respectively) should be modified to support the test-per-scan BIST,
even for multiple scan-chains.

Larger circuits are often hard to test, especially for their huge number of inputs
(arising from the scan-chain). Thus, a kind of partitioning should be applied, to split
large circuits into smaller ones, for which the BIST would be constructed separately.
Such a partitioning should be done in such a way that the CUT performance should not
be affected, nor the area overhead would significantly increase.

Then, after all, it is planned to combine the proposed method with other methods,
namely to exploit the reseeding and weighted pattern testing principles.

 75

References
[Ada91] J. Adamek. Foundations of Coding. John Wiley & Sons, Inc. 1991, 336 p.

[Aga93] V.K. Agarwal, C.R. Kime and K.K. Saluja. A tutorial on BIST, part 1:
Principles, IEEE Design & Test of Computers, vol. 10, No.1 March 1993, pp.73-83,
part 2: Applications, No.2 June 1993, pp. 69-77

[Alo93] K. Aloke, K. and D.P. Chaudhuri. Vector Space Theoretic Analysis of Additive
Cellular Automata and Its Application of Pseudoexhaustive Test Pattern Generation,
IEEE Transactions on Computers, Vol. 42, No. 3, March 1993, pp. 340-352

[AlS94] M.F. AlShaibi and C.R. Kime. Fixed-Biased Pseudorandom Built-In Self-Test
for Random Pattern Resistant Circuits, Proc. of International Test Conference, pp.
929-938, 1994

[Bar87] P.H. Bardell, W.H. McAnney and J. Savir. Buit-In Test for VLSI:
Pseudorandom Techniques, New York: Wiley, 1987

[Bra84] R.K. Brayton, et al. Logic Minimization Algorithms for VLSI Synthesis, Boston,
MA, Kluwer Academic Publishers, 1984

[Brg85] F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortan, Proc. of International Symposium on
Circuits and Systems, pp. 663-698, 1985

[Brg89] F. Brglez, D. Bryan and K. Kozminski. Combinational Profiles of Sequential
Benchmark Circuits, Proc. of International Symposium of Circuits and Systems, pp.
1929-1934, 1989

[Cha95] M. Chatterjee and D.K. Pradhan. A novel pattern generator for near-perfect
fault coverage, Proc. of VLSI Test Symposium 1995, pp. 417-425

[Cha97] P. P. Chaudhuri, et al.: Additive Cellular Automata Theory and Applications.
Volume I. IEEE Computer Society Press, 1997, 340 p.

[Cha03] M. Chatterjee and D.K. Pradhan. A BIST Pattern Generator Design for Near-
Perfect Fault Coverage, IEEE Transactions on Computers, vol. 52, no. 12, December
2003, pp. 1543-1558

[Cor99] F. Corno, M. Sonza Reorda and G. Squillero. RT-Level ITC 99 Benchmarks
and First ATPG Results. IEEE Design & Test of Computers, July-August 2000, pp.
44-53

[Cou92] O. Coudert and J.C. Madre. Implicit and Incremental Computation of Primes
and Essential Primes of Boolean functions, Proc. of 29th DAC, Anaheim CA, USA,
June 1992, pp. 36-39

[Cou93] O. Coudert, J.C. Madre and H. Fraisse. A New Viewpoint on Two-Level Logic
Minimization, Proc. of 30th DAC, Dallas TX, USA, June 1993, pp. 625-630

[Cou94] O. Coudert. Two-level logic minimization: an overview, Integration, the VLSI
journal, 17-2, pp. 97-140, Oct. 1994

[DeM94] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,
1994

[Gir99] P. Girard, et al.: A test vector inhibiting technique for low energy BIST design.
IEEE VLSI Test Symposium, May 1999, pp. 407-412.

[Hac96] G.D. Hachtel and F. Somenzi. Logic synthesis and verification algorithms,
Boston, MA, Kluwer Academic Publishers, 1996, 564 pp.

 76

[Ham98] I. Hamzaoglu and J.H. Patel. Test Set Compaction Algorithms for
Combinational Circuits, Proceedings of the International Conference on Computer-
Aided Design (ICCAD), November 1998.

[Har93] J. Hartmann and G. Kemnitz. How to Do Weighted Random Testing for BIST,
Proc. of International Conference on Computer-Aided Design (ICCAD), pp. 568-
571, 1993

[Hel92] S. Hellebrand, S. Tarnick and J. Rajski. Generation of Vector Patterns Through
Reseeding of Multiple-Polynomial Linear Feedback Shift Registers, Proc. of
International Test Conference, pp. 120-129, 1992

[Hel95] S. Hellebrand, et al. Built-In Test for Circuits with Scan Based on Reseeding of
Multiple-Polynomial Linear Feedback Shift Registers. IEEE Trans. on Comp., vol.
44, No. 2, February 1995, pp. 223-233

[Hel00] S. Hellebrand, H. Liang and H.J. Wunderlich. A Mixed Mode BIST Scheme
Based on reseeding of Folding Counters, Proc. IEEE ITC, 2000, pp.778-784

[Hor90] Hortensius, et al. Cellular automata circuits for BIST. IBM J. R&Dev, vol 34,
no 2/3, pp. 389-405, 1990

[Kei98] G. Kiefer and H.-J. Wunderlich. Deterministic BIST with Multiple Scan Chains,
Proc. IEEE International Test Konference (ITC), Washington, DC, pp. 1057-1064,
October 1998

[Koe91] B. Koenemann. LFSR – Coded Test Patterns for Scan Designs. Proc. Europian
Test Conf., Munich, Germany, 1991, pp. 237-242

[Lee91] H.K. Lee and D.S. Ha. An Efficient Forward Fault Simulation Algorithm Based
on the Paralel Pattern Single Fault Propagation, Proc. of the 1991 International Test
Conference, pp. 946-955, Oct. 1991

[Lee93] H.K. Lee and D.S. Ha. Atalanta: an Efficient ATPG for Combinational
Circuits. Technical Report, 93-12, Dep't of Electrical Eng., Virginia Polytechnic
Institute and State University, Blacksburg, Virginia, 1993

[McC56] E.J. McCluskey. Minimization of Boolean functions, The Bell System
Technical Journal, 35, No. 5, Nov. 1956, pp. 1417-1444

[McC84] E.J. McCluskey. Pseudo-Exhaustive Testing for VLSI Devices, CRC Technical
Report No. 84-6, Dept. of Electrical Engineering and Computer Science, Stanford
University, USA, August 1984

[McC85] E.J. McCluskey. BIST techniques. IEEE Design & Test of Computers, vol. 2
No.2 Apr. 1985, pp.21-28, BIST structures. vol. 2 No.2 Apr. 1985. pp. 29-36

[McG93] P. McGeer et al.: ESPRESSO-SIGNATURE: A new exact minimizer for logic
functions, In Proc. of the Design Automation Conf.’93

[Nee93] D.J. Neebel and C.R. Kime. Inhomogeneous Cellular Automata for Weighted
Random Pattern Generation, Proc. of International Test Conference, pp. 1013-1022,
1993

[Ngu87] L. Nguyen, M. Perkowski and N. Goldstein. Palmini – fast Boolean minimizer
for personal computers, In Proc. of the Design Automation Conf.’87, pp.615-621

[Nov98] O. Novák and J. Hlavič ka. Design of a Cellular Automaton for Efficient Test
Pattern Generation. Proc. IEEE ETW 1998, Barcelona, Spain, pp. 30-31

[Nov99] O. Novák. Weighted Random Patterns for BIST Generated in Cellular
Automata, Proc. of 5-th IOLTW, Rhodes, Greece, July 1999, pp. 72-76

 77

[Pom93] I. Pomeranz and S.M. Reddy. 3-Weight Pseudo-Random Test Generation
Based on a Deterministic Test Set for Combinational and Sequential Circuits, IEEE
Transactions on Computer-Aided Design, Vol. 12, No. 7, pp. 1050-1058, July 1993

[Pra99] D. K. Pradhan and M. Chatterjee, GLFSR-A New Test Pattern Generator for
Built-in-Self-Test, IEEE Trans. on CAD, vol. 18, no. 2, pp. 319-328, 1999.

[Qui52] W.V. Quine. The problem of simplifying truth functions, Amer. Math. Monthly,
59, No.8, 1952, pp. 521-531

[Raj00] R. Rajsuman: Iddq testing for CMOS VLSI, Proceedings of the IEEE, Volume
88, Issue 4, April 2000 Page(s):544 - 568. This is a summary of the basic ideas
behind Iddq testing, the history of the technique, and many of its characteristics

[Rud87] R.L. Rudell and A.L. Sangiovanni-Vincentelli. Multiple-valued minimization
for PLA optimization, IEEE Trans. on CAD, 6(5): 725-750, Sept.1987

[Rud89] R.L. Rudell. Logic Synthesis for VLSI Design, Ph.D. Thesis, UCB/ERL
M89/49, 1989

[Sen92] E.M. Sentovich et al. SIS: A System for Sequential Circuit Synthesis,
Electronics Research Laboratory Memorandum No. UCB/ERL M92/41, University
of California, Berkeley, CA 94720, 1992

[Ser75] M. Servít. A Heuristic method for solving weighted set covering problems,
Digital Processes, vol. 1. No. 2, 1975, pp.177-182

[Str02] E.C. Stroud. A Designer's Guide to Built-In Self-Test, Boston, MA, Kluwer
Academic Publishers, 2002

[Tou95] N.A. Touba. Synthesis of mapping logic for generating transformed pseudo-
random patterns for BIST, Proc. of International Test Conference, pp. 674-682, 1995

[Tou96a] N.A. Touba and E.J. McCluskey. Synthesis Techniques for Pseudo-Random
Built-In Self-Test, Technical Report, (CSL TR # 96-704), Departments of Electrical
Engineering and Computer Science Stanford University, August 1996

[Tou96b] N.A. Touba and E.J. McCluskey. Altering a Pseudo-Random Bit Sequence for
Scan-Based BIST, Proc. of International Test Conference, 1996, pp. 167-175

[Tou01] N.A. Touba and E.J. McCluskey. Bit-Fixing in Pseudorandom Sequences for
Scan BIST, IEEE Transactions on CAD, Vol. 20, No. 4, April 2001, pp. 545-555

[Wan01] S. Wang. Low Hardware Overhead Scan Based 3-Weight Weighted Random
BIST. In Proceedings of the 2001 IEEE international Test Conference (October 30 -
November 01, 2001). ITC. IEEE Computer Society, Washington, DC, 868.

[Wun87] H.J. Wunderlich. Self-Test Using Unequiprobable Random Patterns, Proc. of
FTCS-17, pp. 258-263, 1987

[Wun88] H.J. Wunderlich. Multiple Distributions for Biased Random Test Patterns,
Proc. of International Test Conference, pp. 236-244, 1988.

[Wun96] H.J. Wunderlich and G. Keifer. Bit-Flipping BIST, Proc. ACM/IEEE
International Conference on CAD-96 (ICCAD96), San Jose, California, November
1996, pp. 337-343

[Yan91] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide, Technical
Report 1991-IWLS-UG-Saeyang, MCNC, Research Triangle Park, NC, January
1991

[MCNC] ftp://ic.eecs.berkeley.edu

[BOOM] http://service.felk.cvut.cz/vlsi/prj/Boom
[BOOMBench] http://service.felk.cvut.cz/vlsi/prj/BoomBench
[ColMatch] http://service.felk.cvut.cz/vlsi/prj/ColMatch

 78

Refereed Publications of the Author

[Fis00] P. Fišer and J. Hlavič ka. Efficient minimization method for incompletely defined

Boolean functions. Proc. 4th Int. Workshop on Boolean Problems, Freiberg
(Germany) 21.-22.9.2000, pp.91-98

[Fis01a] P. Fišer and J. Hlavič ka. Implicant Expansion Method used in the BOOM
Minimizer. Proc. IEEE Design and Diagnostics of Electronic Circuits and Systems
Workshop (DDECS'01), Gyor (Hungary), 18.-20.4.2001, pp. 291-298

[Fis01b] P. Fišer and J. Hlavič ka. On the Use of Mutations in Boolean Minimization.
Proc. Euromicro Symposium on Digital Systems Design (DSD‘01) Warsaw
(Poland) 4.-6.9.2001, pp. 300-305

[Fis02a] P. Fišer and J. Hlavič ka. Column-Matching Based BIST Design Method. Proc.
7th IEEE Europian Test Workshop (ETW'02), Corfu (Greece), 26.-29.5.2002, pp.
15-16

[Fis02b] P. Fišer and J. Hlavič ka. A Set of Logic Design Benchmarks. Proc. IEEE
Design and Diagnostics of Electronic Circuits and Systems Workshop
(DDECS'02), Brno (Czech Rep.), 17.-19.4.2002, pp. 324-327

[Fis02c] P. Fišer and J. Hlavič ka. A Flexible Minimization and Partitioning Method.
Proc. 5th Int. Workshop on Boolean Problems, Freiberg (Germany) 19.-20.9.2002,
pp. 83-90

[Fis03a] P. Fišer, J. Hlavič ka and H. Kubátová. Column-Matching BIST Exploiting Test
Don't-Cares. Proc. 8th IEEE Europian Test Workshop (ETW'03), Maastricht (The
Netherlands), 25.-28.5.2003, pp. 215-216

[Fis03b] P. Fišer and J. Hlavič ka. BOOM - A Heuristic Boolean Minimizer, Computers
and Informatics, Vol. 22, 2003, No. 1, pp. 19-51

[Fis03d] P. Fišer, J. Hlavič ka and H. Kubátová. Coverage-Directed Assignment
Approach to BIST, Proc. IEEE Design and Diagnostics of Electronic Circuits and
Systems Workshop (DDECS'03), Poznan (Poland), 14.-16.4.2003, pp. 87-92

[Fis03e] P. Fišer, J. Hlavič ka and H. Kubátová. FC-Min: A Fast Multi-Output Boolean
Minimizer, Proc. 29th Euromicro Symposium on Digital Systems Design (DSD'03),
Antalya (TR), 1.-6.9.2003, pp. 451-454

[Fis03f] P. Fišer, J. Hlavič ka and H. Kubátová. CD-A Based BIST Method, Proc. 6th
International Workshop on Electronics, Control, Measurement and Signals
(ECMS'03), Liberec (CR), 2.-4.6.2003, pp. 279-283

[Fis04a] P. Fišer and H. Kubátová. An Efficient Mixed-Mode BIST Technique, Proc. 7th
IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop 2004,
Tatranská Lomnica, SK, 18.-21.4.2004, pp. 227-230

[Fis04b] P. Fišer and H. Kubátová. Pseudorandom Testability - Study of the Effect of the
Generator Type, Proc. 6th International Scientific Conference on Electronic
Computers and Informatics 2004 (ECI'04), Herľ any, SR, 22.-24.9.04

[Fis04c] P. Fišer and H. Kubátová. Influence of the Test Lengths on Area Overhead in
Mixed-Mode BIST, Proc. 9th Biennial Conference on Electronics and Microsystem
Technology 2004 (BEC'04), Tallinn (Estonia), 3.-6.10.2004, pp. 201-204

 79

[Fis04d] P. Fišer and H. Kubátová. Survey of the Algorithms in the Column-Matching
BIST Method, Proc. 10th International On-Line Testing Symposium 2004
(IOLTS'04), Madeira, Portugal, 12.-14.7.2004, pp. 181

[Fis04e] P. Fišer and H. Kubátová. Two-Level Boolean Minimizer BOOM-II, Proc. 6th
Int. Workshop on Boolean Problems, Freiberg, (Germany), 23.-24.9.2004, pp. 221-
228

[Fis04f] P. Fišer and H. Kubátová. Single-Level Partitioning Support in BOOM-II, Proc.
2nd Descrete-Event System Design 2004 (DESDes'04), Dychów, Poland, 15.-
17.9.04, pp. 149-154

[Fis04g] P. Fišer and H. Kubátová. Boolean Minimizer FC-Min: Coverage Finding
Process, Proc. 30th Euromicro Symposium on Digital Systems Design (DSD'04),
Rennes (FR), 31.8. - 3.9.04, pp. 152-159

[Fis05a] P. Fišer and H. Kubátová. Pseudorandom Testability - Study of the Effect of the
Generator Type, Acta Polytechnica, Vol. 45, No. 2, August 2005, CVUT, ISSN
1210-2709, pp. 47-54

[Fis05b] P. Fišer and H. Kubátová. Improvement of the Fault Coverage of the Pseudo-
Random Phase in Column Matching BIST, Proc. 31th Euromicro Symposium on
Digital Systems Design (DSD'05), Porto, (Portugal), 30.8. - 3.9.05, pp. 56-63

[Fis06a] P. Fišer and H. Kubátová. Multiple-Vector Column-Matching BIST Design
Method, Proc. 9th IEEE Design and Diagnostics of Electronic Circuits and Systems
2006 (DDECS'06), Prague, CZ, 18.-21.4.2006, pp. 268-273

[Fis06b] P. Fišer and H. Kubátová. Flexible Two-Level Boolean Minimizer BOOM II
and Its Applications, Proc. 9th Euromicro Conference on Digital Systems Design
(DSD'06), Cavtat, (Croatia), 30.8. - 1.9.2006, pp. 369-376

[Fis06c] P. Fišer, P. Kubalík and H. Kubátová. Output Grouping Method Based on a
Similarity of Boolean Functions, Proc. 7th Int. Workshop on Boolean Problems
(IWSBP'06), Freiberg, Germany, 21.-22.9.2006, pp. 107-113

[Hla00] J. Hlavič ka and P. Fišer. Algorithm for Minimization of Partial Boolean
Functions. Proc. IEEE Design and Diagnostics of Electronic Circuits and Systems
(DDECS‘00) Workshop, Smolenice, (Slovakia) 5.-7.4.2000, ISBN 80-968320-3-4,
pp.130-133

[Hla01a] J. Hlavič ka and P. Fišer. BOOM - a Heuristic Boolean Minimizer. Proc.
International Conference on Computer-Aided Design ICCAD 2001, San Jose,
California (USA), 4.-8.11.2001, pp. 439-442

[Hla01b] J. Hlavič ka and P. Fišer. A Heuristic method of two-level logic synthesis. Proc.
The 5th World Multiconference on Systemics, Cybernetics and Informatics
SCI'2001, Orlando, Florida (USA) 22.-25.7.2001, pp. 283-288, vol. II

[Hla02] J. Hlavič ka and P. Fišer. Minimization and Partitioning Method Reducing Input
Sets. Proc. 1st International Workshop on Electronic Design, Test & Applications
(DELTA 2002), New Zealand, 29.-31.1.2002, pp. 434-436

 80

Unrefereed Publications of the Author
[Fis01c] P. Fišer and J. Hlavič ka. BOOM - a Boolean Minimizer. Research Report DC-

2001-05, Prague, CTU Publishing House, June 2001, 37 pp.

[Fis02e] P. Fišer. Minimization of Boolean Functions, MSc. Thesis, Prague, CTU, May
2002, 70 pp.

[Fis03c] P. Fišer and J. Hlavič ka. A Flexible Minimization and Partitioning Method,
Proc. of Workshop 2003 (web). Prague : CTU, 2003, vol. A, p. 312-313. ISBN 80-
01-02708-2

[Fis03g] P. Fišer and H. Kubátová. FC-Min: The Iterative Boolean Minimizer FC-Min,
Pracovní seminář Poč ítač ové Architektury & Diagnostika 2003, Zvíkov (CR), 24.-
26.9.2003, pp. 57-62

[Fis05d] P. Fišer. Mixed-Mode BIST Based on Column Matching, Poč ítač ové
Architektury & Diagnostika 2005, Lázn

ě
 Sedmihorky,

Č
R, 21. – 23. 9. 2005, pp.

45-50

 81

Citations
Paper [Hla01a] has been cited in

• R. Lysecky, F. Vahid, On-chip logic minimization. In Proceedings of
the 40th Conference on Design Automation (Anaheim, CA, USA,
June 02 - 06, 2003). DAC '03. ACM Press, New York, NY, 334-337.

• S. Sapra, M. Theobald, E. Clarke: SAT-Based Algorithms for Logic
Minimization, 21st International Conference on Computer Design
(ICCD 2003), San Jose CA, 12.-15.10.2003, pp. 510-519

• S. Verma, K. Permar: A Novel Method for Minimization of Boolean
Functions using Gray Code and development of a Parallel Algorithm,
Proc. 6th Int. Workshop on Boolean Problems (IWSBP'04), Freiberg,
Germany, 23.-24.9.2004, pp. 229-236

Paper [Fis03b] has been cited in

• Y. Novikov, R. Brinkmann, Foundations of Hierarchical SAT-

Solving, 6th International Workshop on "Boolean Problems" 2004,
Freiberg University of Mining and Technology, Institute of Computer
Science, September 23-24, pp. 103-142, 2004

