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Abstract. A test-per-clock BIST method for combinational or full-scan circuits is 
proposed. The method is based on a design of a combinational block - the decoder, 
transforming pseudo-random LFSR code words into deterministic test patterns. 
A Column-Matching algorithm to design the decoder is proposed. The Column-Matching 
method modified to support a mixed-mode BIST is proposed as well. Here the BIST is 
divided into two disjoint phases – the pseudo-random phase, where the LFSR patterns are 
being applied to the circuit unmodified, and the deterministic phase detecting all the yet 
undetected faults. This enables us to reach a high fault coverage in a short test time and 
with a low area overhead. 
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1 Introduction 

The complexity of present VLSI circuits rapidly grows. Using only external test equipment (ATE) is 
becoming impossible, mainly due to a huge amount of test vectors, long testing time and very 
expensive test equipment. Incorporating Built-in Self-Test (BIST) methods becomes inevitable.  Up to 
now, many BIST methods were developed [1-5], all of them trying to find some trade-off between 
four aspects that are mutually antipodal: the fault coverage, test time, an area overhead and the BIST 
design time. A high fault coverage means either a long test time (exhaustive test), or a high area 
overhead (deterministic ROM based BIST). A pseudo-random testing established the simplest 
trade-off between all these three criteria. A combination of a pseudo-random and deterministic BIST is 
being referred to as a mixed-mode BIST. Easy-to-detect faults are tested by pseudo-random test 
patterns, and the deterministic patterns are generated to test the remaining, undetected faults. The 
bit-fixing [4] and bit-flipping [2] techniques belong to this category. 

A mixed-mode BIST method is proposed here too. It is based on a Column-Matching principle, 
where the pseudo-random patterns are being transformed by a combinational block into deterministic 
patterns precomputed by an ATPG (Automatic Test Pattern Generator) tool. The test is divided into 
two disjoint phases: the pseudo-random one and the deterministic one. This enables to significantly 
reduce the decoder logic as well. 

The paper is structured as follows: basic principles of our method are described in Section 2, the 
mixed-mode extension is shown in Section 3. Section 4 contains the experimental results, Section 5 
concludes the paper. 



2 Principles of the Method 

The method is primarily intended for a test-per-clock BIST, thus the test patterns are applied to the 
primary inputs of the circuit-under-test (CUT) in parallel; one test vector is being processed in each 
clock cycle. However, it can be modified for a test-per-scan as well, as it was proposed in [5]. 
 The method aims at the decrease of the area overhead that may be achieved by the simplification 
of the test pattern generator (TPG). Deterministic test patterns generated by some ATPG tool are used, 
thus the fault coverage achieved strictly depends on these patterns. No memory is used for their 
storage, since the memory mostly causes a big area overhead on a chip. 
 The test pattern generator consists of two blocks: the pseudo-random pattern generator (PRPG) 
and the Output Decoder, which is a combinational block transforming the PRPG patterns into 
deterministic tests. The PRPG is mostly constructed as a linear feedback shift register (LFSR) with an 
appropriate generating polynomial, or as a cellular automaton.  
 In the deterministic phase, vectors are synthesized from some of the LFSR patterns that follow the 
pseudo-random phase. To do so, the Column-Matching algorithm is used [10, 11].  

2.1 Problem Statement 

Let us have an n-bit PRPG running for p clock cycles in the deterministic phase. The code words 
generated by this PRPG can be described by a C matrix (code matrix) of dimensions (p, n). These 
code words are to be transformed into the test patterns pre-computed by some ATPG tool. They are 
described by a T matrix (test matrix). For an r-input CUT and the test consisting of s vectors the 
T matrix has dimensions (s, r). The rows of the matrices will be denoted as vectors. 
 The tests can be presented either in a form of deterministic patterns (minterms) or they may 
contain don’t care values, depending on the ATPG algorithm used for the test set generation [6]. The 
presence of don’t cares can significantly reduce the Output Decoder complexity, since they give us 
more freedom to select the column matches. 
 The output decoder logic modifies the C matrix vectors in order to obtain all the T matrix vectors. 
Since the proposed method is restricted to combinational circuits, the order in which the test patterns 
are fed to the CUT is insignificant. Thus, the T matrix vectors can be reordered in any way. Finding a 
transformation from the C matrix to the T matrix means finding a pairing of each of the s rows of 
T matrix with rows of the C matrix – thus finding a row assignment (see Fig. 1), i.e., to determine 
which C matrix rows will be transformed to T matrix rows and how. Here, the five 5-bit test vectors 
are to be assigned to ten 5-bit PRPG patterns. 
 The Output Decoder is a combinational block that converts s n-dimensional vectors of the 
C matrix into s r-dimensional vectors of the T matrix. The decoder is represented by a Boolean 
function having n inputs and r outputs, where only values of s terms are defined and the rest are don’t 
cares. This Boolean function can be easily described by a truth table, where the output part 
corresponds to the T matrix, while the input part consists of s C matrix vectors assigned to the 
T matrix rows. The set of such vectors will be denoted as a pruned C matrix. 
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Figure 1: Assignment of the rows 



2.2 The Column-Matching Method 

The column-matching method is based on assigning all the T matrix rows to some of the C matrix 
rows so that some columns of the T matrix will be equal to some of the pruned C matrix columns. 
This yields no logic necessary to implement these T matrix columns (output variables of the decoder); 
they are implemented as mere wires. This idea can be extended to a negative matching. Since most 
of the D flip-flops are provided with the negated output as well, columns with all opposite values can 
be matches as well. An illustrative example is shown in Fig. 2. The matched columns of the pruned 
C matrix and T matrix from Fig. 1 are shown here. The T matrix column y1 is matched with the 
C matrix column x3 (negatively), then y3 with x1 (negatively) and y4 with x4 (positively). Thus, the 
outputs y1, y3 and y4 are implemented without any combinational logic, while the remaining outputs 
have to by synthesized using some standard two-level Boolean minimization tools, like 
ESPRESSO [7] or BOOM [8, 9]. 
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Figure 2: Column matching example 

2.3 Selection of Columns 

Good choice of the columns to be matched is not a trivial task. The number of combinations grows 
exponentially with the number of columns and thus computing the optimum combination of matches is 
computationally infeasible. Hence, some kind of a heuristic has to be used. In practice, the number of 
PRPG patterns to be transformed is usually much bigger than the number of test vectors (p >> s). 
Then, almost any two columns can be matched together at the beginning. Thus, we select the columns 
to be matched purely at random, one by one, until there is no possibility of a match. 
 If there are no don’t care values in the test set, the algorithm is straightforward. Each column 
match selected divides both the C and T matrices into a disjoint pair of two submatrices, where the 
respective rows can be assigned to each other. This division is being gradually performed, until no 
further division is possible. This basic method was presented in [10]. 
 When the don’t cares are present in the test set, the divided sets become non-disjoint. Thus the 
algorithm consists of two linked NP-hard problems. We have found that using the set decomposition 
based approach here is rather time-consuming, although using it is not impossible. An efficient 
heuristic based on a blocking matrix B has been proposed in [11]. The blocking matrix is a binary 
matrix (it contains only “0” and “1” values) of dimensions (p, s). Thus, it has as many columns as 
there are T matrix rows and as many rows as there are C matrix rows. The value "1" in the cell B[k, l] 
indicates that the k-th C matrix row may be assigned to the l-th T matrix row, "0" value indicates the 
contrary. At the beginning of the algorithm all the B matrix cells are filled with a "1" value, since there 
are no restrictions for row assignments. After the i-th C matrix column is matched with the j-th 
T matrix column, the B matrix cells [k, l] are set to "0" when the k-th input row contains in an i-th 
column an opposite value to the l-th output row in a j-th column. Thus, rows containing opposite 
values in the matched columns cannot be assigned to each other. The row assignment consists of the 
selection of one row from the possible ones. We have investigated several more methods, for more 
details see [12]. Strategy of choosing the columns to be matched is important as well. Two major 
techniques were proposed: the fast search and the thorough search [13]. 
 



3 Mixed-Mode Column-Matching BIST 

The basic Column-Matching algorithm was later extended to a mixed-mode BIST. Most of the 
mixed-mode BIST techniques use some kind of transformation and switching logic accompanying the 
PRPG. A general structure of our mixed-mode BIST design is shown in Fig. 3. The pseudo-random 
code words are produced by an LSFR. Then they are transformed by the Output Decoder into 
deterministic vectors. The Switching logic selects the patterns that are to be applied to the CUT. After 
that the circuit’s response is evaluated, usually in the multi-input shift register (MISR). 
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Figure 3: Mixed-mode BIST structure 

 The main difference between this algorithm and the competitive methods [3, 4, 5] is a separation 
of the pseudo-random and deterministic phases. In praxis, several initial pseudo-random vectors detect 
faults, but the fault detection capability of the latter ones quickly drops to zero. Thus, it could be more 
advantageous to run the unmodified pseudo-random phase for several clock cycles and then switch to 
the deterministic one at once. Then in the most general case, the switching logic consists of 
multiplexers. The area overhead caused by the switching logic is not big, since these multiplexers are 
not necessary to be present in many cases, when a modified column matching method is applied [11]. 
 In the pseudo-random phase, all the multiplexers are set to feed the circuit with unmodified LFSR 
patterns. Subsequently, in the deterministic phase, all the multiplexers switch to the Decoder outputs 
and the modified patterns are applied to the CUT. The area overhead of the mode switching logic can 
be negligible, since the BIST controller pattern counter can be exploited very efficiently. For instance, 
when the lengths of the two phases are equal, the mode signal can be driven by one additional stage 
(D flip-flop) of a counter only. If not, just an extra comparator logic has to be present. Hence, the 
separation of the two BIST phases eliminates the pattern recognition logic [4]. 
 The whole BIST design process can be divided into four consecutive phases: 

1. Simulation of several (PR) pseudo-random patterns and determination of undetected faults. 
2. Computation of the deterministic test patterns for these faults by an ATPG tool. 
3. Running the column matching for the subsequent LFSR patterns and the deterministic tests. 
4. Synthesis of the decoder for the unmatched outputs. 

 The lengths of the two phases can be freely adjusted, according to the needs of the BIST designer. 
The trade-offs between the test length, area overhead and the BIST design time have to be found. For 
more detailed discussion on this issue see [14]. The PRPG can be also augmented to achieve higher 
fault coverage, which yields to a significant reduction of the area overhead and design time [15, 16]. 

4 Experimental Results 

4.1 Comparison with Other Methods 

The Column-Matching method is compared with two state-of-the-art methods here, namely the 
bit-fixing method [3] and [5]. The comparison is shown in Table 1. The “TL”  columns indicate the 
total length of the test, the “GEs”  columns give the number of gate equivalents of the BIST 
combinational circuits. Let us note here that a special kind of a PRPG is used in the row-matching 



approach [5]. Such circuit involves quite a large area overhead in most cases, due to many necessary 
XOR gates used. This overhead is not included in the table. Our method is independent on a PRPG 
used, thus in all the cases we have used an LFSR with two XOR gates only [15], independently on its 
width. The empty cells indicate that the data for the respective circuit was not available to us. 

Table 1: Comparison results 

 Column-matching Bit-fixing [3] Row-matching [5] 
Bench TL GEs TL GEs TL GEs 

c880 1 K 10.5 1 K 27 1 K 21 
c1355 2 K 15 3 K 11 2 K 0 
c1908 3 K 7.5 4 K 12 4.5 K 8 
c2670 5 K 172 5 K 121 5 K 119 
c3540 5.5 K 1.5 4.5 K 13 4.5 K 4 
c7552 8 K 586 10 K 186 8 K 297 
s420 1 K 24.5 1 K 28 - - 
s641 4 K 15 10 K 12 10 K 6 
s713 5 K 16.5 - - 5 K 4 
s838 6 K 130 10 K 37 - - 
s1196 10 K 6 - - 10 K 36 

4.2 Results for Standard Benchmarks 

Since the comparison shown in Table 1 describes results for a few benchmark circuits only, 
a more exhaustive result table for some hard-to-test ISCAS [17, 18] and ITC’99 [19] 
benchmarks is presented in Table 2. The “inps”  column indicates the number of the 
benchmark inputs, in the “100% FC” column the number of pseudo-random vectors needed 
to be applied to the CUT to achieve 100% fault coverage is shown, just to show the 
effectiveness of the method. The “TL”  column gives the lengths of the pseudo-random and  
deterministic phases. The next columns show the number of column matches reached. The 
complexity of the switching logic is shown in the “SW GEs” column, the complexity of the 
output decoder in “OD GEs” . These numbers are summed together in the “Total GEs” 
column and the area overhead of the Output Decoder and Switch, with respect to the CUT 
GEs is shown in the “BIST Overhead” column. The runtime needed to complete the column-
matching process is indicated in the last column. The experiments have been run on a PC with 
Athlon 2600 MHz processor. 

Table 2: ISCAS and ITC benchmarks 

Bench inps 100% FC TL (PR+Det.) M SW GEs OD GEs Total GEs BIST 
Overhead 

Time [s] 

c2670 233 2.5 M 1 K + 1 K 193 90 109.5 199.5 19 % 166 
c7552 207 > 100 M 7 K + 1 K 131 261 325 586 19 % 500 
s420 34 150 K 3 K + 1 K 35 21 0 21 11 % 0.41 
s641 54 200 K 500 + 500 52 21 2 23 9 % 0.47 
s713 54 300 K 500 + 500 52 24 3 27 8 % 0.56 
s838 67 > 100 M 1 K + 1 K 37 81 45 126 32 % 26.20 
s1196 32 200 K 9 K + 1 K 32 6 0 6 1 % 0.04 
s5378 214 80 K 20 K + 1 K 214 13.5 0 13.5 1 % 0.98 
s9234 247 10 M 50 K + 1 K 208 163.5 156 319.5 8 % 350 
s13207.1 700 100 K 10 K + 1 K 696 300 26.5 326.5 6 % 137 
s15850.1 611 > 10 M 100 K + 2 K 553 306 66.5 372.5 5 % 1244 
s38417 1664 > 10 M 100 K + 2 K 1503 1245 489 1734 11 % 17650 
s38584.1 1464 > 1 G 100 K + 1 K 1464 165 0 165 1 % 34 
b07 50 200 K 10 K + 1 K 50 24 0 24 6 % 0.5 
b12 126 5 M 10 K + 1 K 118 33 34 67 7 % 25 



5 Conclusions 

A mixed-mode BIST method based on the column matching approach has been proposed. Here the 
pseudorandom LFSR code words are being transformed into deterministic test patterns computed by 
some ATPG tool. The transformation is being done by a purely combinational block. 
 The pseudo-random and deterministic phases are separated, which enables to reach smaller area 
overhead. The method is based on a design of a decoder transforming the LFSR code words into 
deterministic test vectors testing the hard-to-detect faults. 
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