
THE ITERATIVE BOOLEAN MINIMIZER FC-MIN

Petr Fišer
Supervisor: Hana Kubátová
Czech Technical University

Dept. of Computer Science & Engineering
Karlovo nám. 13, Prague 2, Czech Rep.

fiserp@fel.cvut.cz

Abstract. A novel two-level Boolean minimization method is presented here.
In contrast to classical methods the cover of the on-set is computed first, whilst
no implicants are known to this phase. The implicants are being derived from
the source terms by their expansion directed by the cover. This allows us to
generate group implicants directly, avoiding the time-consuming implicant
expansions and reductions. The method is especially efficient for problems with
many input and output variables, where other minimization tools (ESPRESSO)
are extremely slow.

Keywords. Boolean minimization, FC-Min, Cover, Implicant generation

1 Introduction

The problem of two-level Boolean minimization occurs in almost every area of the logic design. It
has been studied for many decades and plenty of minimization methods and algorithmic minimizers
were developed. In 50’s the classical Quine-McMluskey’s method [1] was proposed and determined
the two major Boolean minimization phases: the generation of implicants and the subsequent
solution of a covering problem (CP). Many following algorithms were based on this paradigm, or
the two phases were combined together somehow. MINI [2], ESPRESSO [3] and its
modifications [4] were proposed, later Scherzo [5] with its improved CP solution algorithm was
introduced. Lately we have developed a Boolean minimizer BOOM [6], which is able to handle
functions with an extremely large number of input variables.

The general disadvantage of all these above-mentioned methods is their limited applicability to
functions with a large number of output variables. In this case their results are either far from
optimum, or the runtimes are extremely long. In the classical methods some set of prime implicants
(PIs) of all the output functions is found at the beginning, then they are being reduced into group
implicants (and possibly again expanded), and at the end of the process the covering problem (CP)
is solved. In this phase only the necessary set of implicants is selected. All these phases are rather
time and memory consuming.

In [7] we have proposed a method solving this problem efficiently. Instead of producing a vast
number of implicants (both the prime and group ones) at the beginning of the minimization process
and then selecting only few of them to cover the on-set in the CP solution phase, we proceed
backwards. We compute an irredundant cover of the on-set first. This cover determines the number
of implicants in the final solution and the properties of the implicants. For each element of the cover
its implicant is generated by expansion of the appropriate on-set terms. Thus, no redundant
implicants, i.e., implicants that are not a part of the solution are generated. This property makes the
algorithm extremely fast even for very large problems. Since the main part of this algorithm is the
Find Coverage phase, it was named FC-Min.

In this paper we propose an enhancement to this method which enables us to reach better results
in terms of the quality of the solution. An Iterative FC-Min repeats the implicant generation several
times, while all the implicants found are being collected. After that the CP is solved. The principles
and properties of this method are discussed and experimentally evaluated here.

Let us note that the principles of FC-Min are exploited in the Coverage-Directed Assignment
(CD-A) method used in BIST design [13, 14]. Particularly, the Find Coverage phase remains
unchanged here, while the implicant generation phase is a generalization of the implicant generation
phase used in FC-Min.

The paper has the following structure: after the Introduction and the Problem Statement in
Section 2 the principles of FC-Min are described in Section 3, Section 4 introduces the Iterative
FC-Min. Experimental results are shown in Section 5, Section 6 concludes the paper.

2 Problem Statement

Let us have a set of m Boolean functions of n input variables F1(x1, x2, … xn), F2(x1, x2, … xn), …
Fm(x1, x2, … xn); the output values of the care terms are defined by a truth table. Thus, each function
is specified by its on-set Fi(x1, x2, … xn) and off-set Ri(x1, x2, … xn). To the minterms that are not
present in the truth table are implicitly assigned don’t care values. The part of a truth table
representing the terms will be denoted as an input matrix I, the rows of the input matrix will be
denoted as input vectors. The part defining the output values of the functions will be called an
output matrix O; similarly, the rows of this matrix output vectors. The number of I matrix columns
correspond to the number of input variables n, the number of O matrix columns is equal to the
number of output variables m, the number of I and O matrix rows will be denoted as p.

Specifying a Boolean function by its on-set and off-set, rather by its on-set and don’t care set,
which is commonly preferred, is advantageous especially for functions that have defined values of
only few terms. The typical example of the use of such a function can be found, e.g., in the build-in
self-test (BIST) design [8, 9], for which the method was originally designed.

Our task is to synthesize a two-level circuit implementing the multi-output Boolean function
described by the truth table, whereas the implementation of the circuit should be as small as
possible. The result will be in a form of a set of m SOP (sum-of-the-product) forms implementing
the m output functions, while some terms might be reused for more than one output function.

3 Principles of FC-Min

As it was stated in the introduction, the method consists of two major phases: the Find Coverage
phase, in which the rectangle cover [10] of the on-set is found, and the Implicant Generation phase
producing the very implicants from this cover. These phases may be conducted separately and
independently, one after another. However, there might occur one serious problem – when the
whole cover is generated not taking into account the possible implicants, it may happen that it
wouldn’t be possible to produce all the implicants. In other words, there may not be a solution for a
particular cover. This problem is discussed more thoroughly in [7].

We have found that the best way to solve this problem is to generate the implicants together
with the cover. Thus, immediately after finding one element of the cover the implicant
corresponding to it is generated with respect to the previously found implicants. This is being
repeated until the whole on-set is covered.

Let us state the problem formally:

Definition 1
Let ti be an implicant. The coverage set C(ti) of the implicant ti is a set of vectors (rows) of the

O matrix, in which at least one “1” value is covered by this implicant. In other words, the coverage
set is a set of vectors of the output matrix for which ti is an implicant for at least one output variable.

�

Definition 2
The coverage mask M(ti) of the implicant ti is the set of columns of the O matrix, in which all

vectors included in C(ti) have one or more “1” value. The coverage mask M(ti) can also be
expressed as a vector in the output matrix corresponding to the term ti. In the following text we will
use both representations of the coverage mask.

�

Definition 3
The coverage of an implicant ti is a pair of the sets C(ti) and M(ti) for which the following

equation holds:
() () [] "0" ,:, ≠∈∀∈∀ batMbtCa ii O

�

Definition 4
The coverage of the matrix O is a set of implicant coverages {C(ti), M(ti)} such that

[] { } () ()U
i

ii tMtCa,bbapbpa
∀

×∈=<∀<∀ :"1" ,,, O

�

The implicant coverages will be also denoted as coverage elements with respect to the coverage
of the matrix.

An example of such a coverage of O matrix is shown in Figure 1. Here all the “1”s are covered
by six implicants t1-t6. Their respective coverage sets and masks are shown in Table 1.

Figure 1: Coverage of the output matrix

Table 1: Coverage sets and masks for Fig. 1

Implicant C(ti) M(ti)
t1 { e, g, i} {0, 0, 0, 1, 1}
t2 { b, c, h} {0, 1, 1, 0, 0}
t3 { i, j} {1, 0, 1, 0, 0}
t4 { d} {0, 1, 0, 1, 0}
t5 { a, b} {1, 1, 0, 0, 0}
t6 { e, h} {0, 0, 1, 0, 1}

Finding an optimum rectangle cover is a NP-hard problem, thus some heuristic must be used.
There exist many efficient algorithms finding a cover consisting of the minimum of elements [10].
However, such a cover need not be always optimal for solving the minimization problem. The
solution will be then consisted of the minimum of product terms, however, it needs not be optimal
with respect to the number of literals.

Our heuristic is based on a gradual search for a coverage consisting of the maximum number of
“1”s. Firstly, the output vector containing the most not yet covered ones is selected as a basis for a
new cover - in our example (Fig. 1) it is the i row with four ones. Now we continue the search for
the next row to add in order to increase the number of the covered ones. When the row g is added
to i, the number of covered ones will remain the same (because the first and the third variable
cannot be covered after that). After adding the row e, the number of covered ones increases to six.

Finding the coverage consisting of many “1”s in the output matrix is advantageous indeed,
however it often means that it contains many vectors. This fact complicates the subsequent phase –
finding the structure of a term. A term whose cover consists of fewer vectors is easier to find. Thus,
the heuristic algorithm is driven by a depth factor DF. Since each of the rectangle covers is being
produced by a successive addition of vectors into it, we can decide after every addition whether to
extend the cover to more vectors, or to terminate its generation, even if it could grow bigger. The
decision is made at random with a probability given by DF. For instance, when DF = 1, there is an
equal probability that the search will continue; when DF = 1/5, there is a probability 1:5 for a
continual, and thus terms that cover less vectors and more outputs are more likely generated. When
the depth factor is low, the runtimes are shorter, while the complexity of the result is slightly higher.

3.1 Generating the Implicants

For each coverage element an implicant has to be produced. To do so, only the knowledge of the
particular coverage set together with the I matrix is needed. The structure of the O matrix, as well
as the coverage mask, is insignificant here.

Obviously, when a term (cube) should cover a particular output vector, the corresponding input
vector must be contained in this cube, since the input vector implies the output. From this results

that the minimum term satisfying the particular cover can be constructed as a minimum supercube of
all the input vectors corresponding to C(ti). Moreover, this supercube must not intersect any I matrix
term that is not included in its coverage set, since it would cover some zeros then.

Let us assume our leading example. Fig. 2 shows both the input and output matrices.

a 11010 10000
b 10000 11100
c 01001 01100
d 01111 01010
e 00110 00111
f 01110 00000
g 10110 00011
h 00001 01101
i 10101 10111
j 11100 10100

Figure 2. The input and output matrices

00110
10110
10101
-01--

Figure 3. The implicant t1

The term t1 covers vectors e, g and i – see Fig. 1. Thus, the minimum term that can be a
candidate for t1 must be constructed as a minimum supercube of the terms e, g and i in I, see Fig. 3.

The term (-01--) was found as a candidate for an implicant t1. However, since it has to cover
only the vectors listed above, the term must not intersect with any of the other terms. We can find
that it is a valid implicant by comparing the term with the other terms.

Similarly, we can obtain the minimum implicants t1-t6. Figure 4 shows all the minimum
implicants obtained by finding the corresponding supercubes of the source terms, together with the
output part of the resulting PLA matrix:

t1: -01-- 00011 t4: 01111 01010
t2: --00- 01100 t5: 1-0-0 10000
t3: 1-10- 10100 t6: 00--- 00101

Figure 4. The minimum implicants

t1: -01-- 00011 t4: ---11 01010
t2: --00- 01100 t5: 1-0-- 10000
t3: --10- 10100 t6: 00--- 00101

Figure 5. The expanded implicants

The implicants obtained could form the final solution. However, they can be further expanded to
improve the quality of the result. The final result is shown in Fig. 5; the literals removed by the
expansion are highlighted.

4 Iterative FC-Min

In most cases the FC-Min algorithm is not deterministic – the progress of the Find Coverage phase
is controlled by a random number generator, see Section 3. Thus, repeated run of FC-Min could
produce different results. The idea of the Iterative FC-Min consists in repeating the FC-Min several
times, while all the different implicants are put together and stored. At the end the final solution is
constructed by solving the covering problem using all the implicants. Even if each of the single
FC-Min runs produces a valid solution, a properly selected combination of the implicants obtained
from different iterations might produce a better solution. Of course, it is paid by a longer runtime.

An example of an iterative FC-Min run is shown in Fig. 6. The sample problem solved was a
randomly generated function of 20 input and 20 output variables, with 200 terms defined. The depth
factor was set to 2:1. The thin line indicates the growth of the number of implicants. We can see that
in 10000 iterations the total number of different implicants increased from 200 to 4000. The thick
line shows the quality of the result after each iteration. It is measured in gate equivalents (GEs),
which is a good approximation of a complexity of the physical implementation of the circuit [15].
The number of GEs was reduced by 8% in 4000 iterations, then it remains unchanged, even if the
number of implicants is still increasing.

Figure 7 illustrates the influence of the depth factor DF on the implicant growth rate. For an
extremely low DF the number of implicants remains almost unchanged. On the other hand, many
different implicants are being generated when increasing DF. This allows us to reach a better result
in a shorter time.

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Im
pl

ic
an

ts

Iteration

3200

3250

3300

3350

3400

3450

3500

G
E

s

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

2500

3000

3500

4000

4500
10:1

2:1

1:1

1:2

1:10

1:100

Im
pl

ic
an

ts

Iteration

Figure 6: Iterative minimization example Figure 7: Influence of DF

5 Experimental Results

A lot of extensive testing was done to evaluate the performance of the method. We have compared
the FC-Min results with ESPRESSO [3, 11]. The algorithm was programmed in C++ and the
experiments were run on a computer with Athlon 900 MHz processor.

The first set of experiments were the MCNC benchmarks [11]. Only one iteration of FC-Min
was necessary to obtain satisfactory results here. For 72% of the benchmarks we obtained the
solution in a shorter time than ESPRESSO did and for 86% of the benchmarks FC-Min gave the
same or even better result than ESPRESSO. For more detailed comments see [7].

5.1 Randomly Generated Problems

The second set of problems on which we have tested FC-Min were randomly generated functions,
functions with no special properties (no aggregated ones in the output matrix, etc.). With such
problems we can easily observe the properties and scalability of the algorithm. One of the reasons
why FC-Min was developed was a need to synthesize the combinational logic for BIST, namely the
output decoder transforming the LFSR patterns into test patterns pre-generated by an ATPG tool
[9]. Both the LFSR and ATPG patterns mostly have a random nature, and thus the randomly
generated benchmarks simulate these practical problems very well.

Problems with a varying number of input variables and terms were generated, the number of
outputs was fixed to 15. These artificial benchmarks were solved both by FC-Min (in one iteration)
and ESPRESSO to compare the performance. Table 2 shows the results of the minimization. The
number of inputs increases in the horizontal direction (n), the number of care terms in the vertical
direction (p). Each of the cells contains average values of ten problems of the same size that were
solved, to ensure steady statistical values. The first row of each cell in the table contains results
obtained by FC-Min, the second row shows ESPRESSO results. Each row indicates the runtime in
seconds, the number of literals in the resulting SOP form, the output cost (the number of inputs into
all output OR gates) and the number of group terms. The depth factor was set to 10:1.

We can see that in all the cases the FC-Min completed the minimization in a significantly
shorter time than ESPRESSO, which was paid by a slightly worse quality of the results.

Table 2: Randomly generated problems

p/n 25 50 75 100

50
0.03/463/267/61
2.28/199/330/47

0.04/718/210/59
9.40/200/308/48

0.04/995/182/57
18.05/190/300/47

0.05/1185/175/54
25.18/179/293/45

100
0.15/945/539/113
8.67/508/603/94

0.13/1454/431/109
50.66/468/562/89

0.15/1832/389/104
106.10/453/550/88

0.17/2104/363/98
209.03/431/525/86

150
0.37/1442/850/171
23.62/830/896/139

0.30/2178/657/159
157.34/765/801/130

0.32/2588/586/148
358.15/733/774/126

0.35/3234/536/145
700.35/723/766/126

200
0.70/1889/1176/222
38.27/1179/1150/183

0.57/2902/922/209
312.75/1078/1061/170

0.57/3599/775/196
735.90/1035/1002/165

0.60/4250/713/188
1642.57/1009/958/161

Entry format: time [s] / #of literals / output cost / #of implicants

6 Conclusions

We propose a new two-level Boolean minimization algorithm called “FC-Min”. The implicants are
being constructed using a pre-computed cover of the on-set, thus only implicants that will be a part
of the final solution are produced. With respect to the other minimization tools the algorithm is
extremely fast, while the quality of the result is comparable. FC-Min is extremely efficient for
functions with a large number of input and output variables, where the other algorithms are too
slow. The algorithm was tested on a set of MCNC benchmarks, where it has beaten ESPRESSO in
most cases. For randomly generated problems FC-Min it is significantly faster than other
algorithms.

Acknowledgement

This research was in part supported by grant #102/01/0566 “Built-in Self-Test Equipment
Optimization Methods in Integrated Circuits” of the Czech Grant Agency (GACR) and MSM
212300014 , 1999 – 2003.

References

[1] E.J. McCluskey, “Minimization of Boolean functions”, The Bell System Technical Journal, 35, No. 5,
Nov. 1956, pp. 1417-1444

[2] S.J. Hong, R.G. Cain and D.L. Ostapko, “MINI: A heuristic approach for logic minimization”, IBM
Journal of Res. & Dev., Sept. 1974, pp.443-458

[3] R.K. Brayton et al., “Logic minimization algorithms for VLSI synthesis”, Boston, MA, Kluwer
Academic Publishers, 1984, 192 pp.

[4] P. McGeer et al., “ESPRESSO-SIGNATURE: A new exact minimizer for logic functions”, Proc.
DAC’93

[5] O. Coudert, “Doing two-level logic minimization 100 times faster”, Proc. of the sixth annual ACM-SIAM
symposium on Discrete algorithms, 1995, pp.112-121

[6] J. Hlavi
�
ka and P. Fišer, “BOOM - a Heuristic Boolean Minimizer”, Proc. ICCAD-2001, San Jose, Cal.

(USA), 4.-8.11.2001, 439-442

[7] P. Fišer, J. Hlavi
�
ka and H. Kubátová, “FC-Min: A Fast Multi-Output Boolean Minimizer”, Proc.

Euromicro Symposium on Digital Systems Design (DSD'03), Antalya (TR), 3.-5.9.2003

[8] M. Chatterjee and D.J. Pradhan, “A novel pattern generator for near-perfect fault coverage”, Proc. of
VLSI Test Symposium 1995, pp. 417-425

[9] P. Fišer and J. Hlavi
�
ka, „Column-Matching Based BIST Design Method“, Proc. 7th IEEE European Test

Workshop (ETW'02), Corfu (Greece), 26.-29.5.2002, pp. 15-16

[10]S. Hassoun and T. Sasao, „Logic Synthesis and Verification", Boston, MA, Kluwer Academic Publishers,
2002, 454 pp.

[11]http://eda.seodu.co.kr/~chang/ download/espresso/

[12]S. Yang, „Logic Synthesis and Optimization Benchmarks User Guide“, Technical Report 1991-IWLS-
UG-Saeyang, MCNC, Research Triangle Park, NC, January 1991

[13] P. Fišer, J. Hlavi
�
ka and H. Kubátová, "Coverage-Directed Assignment Approach to BIST", Proc. IEEE

Design and Diagnostics of Electronic Circuits and Systems Workshop (DDECS'03), Poznan (Poland),
14.-16.4.2003, pp. 87-92

[14] P. Fišer, J. Hlavi
�
ka and H. Kubátová, "CD-A Based BIST Method", Proc. 6th International Workshop

on Electronics, Control, Measurement and Signals (ECMS'03), Liberec (CR), 2.-4.6.2003, pp. 279-283

[15] J. Hartmann and G. Kemnitz, "How to Do Weighted Random Testing for BIST", Proc. of International
Conference on Computer-Aided Design (ICCAD), pp. 568-571, 1993

