THE ITERATIVE BOOLEAN MINIMIZER FC-MIN

Petr FiSer
Supervisor: Hana Kubatova
Czech Technical University
Dept. of Computer Science & Engineering
Karlovo ndm. 13, Prague 2, Czech Rep.
fiserp@fel.cvut.cz

Abstract. A novel two-level Boolean minimization method is presented here.
In contrast to classical methods the cover of the on-set is compugedvhiilst

no implicants are known to this phase. The implicants are being derived from
the source terms by their expansion directed by the cover. Thigsalis to
generate group implicants directly, avoiding the time-consuming implicant
expansions and reductions. The method is especially efficient for prolldms
many input and output variables, where other minimization tools (ESPRESSO)
are extremely slow.

Keywords. Boolean minimization, FC-Min, Cover, Implicant generation

1 Introduction

The problem of two-level Boolean minimization occurs in almestyearea of the logic design. It
has been studied for many decades and plenty of minimization methoakgarithmic minimizers
were developed. In 50’s the classical Quine-McMluskey’s method [1pvegmsed and determined
the two major Boolean minimization phasdise generation of implicantand the subsequent
solution of a covering problem (CPYlany following algorithms were based on this paradigm, or
the two phases were combined together somehow. MINI [2], ESPRES$Cand its
modifications [4] were proposed, later Scherzo [5] with its impdlo@® solution algorithm was
introduced. Lately we have developed a Boolean minimizer BOOMwIGh is able to handle
functions with an extremely large number of input variables.

The general disadvantage of all these above-mentioned methbég imited applicability to
functions with a large number @iutput variables In this case their results are either far from
optimum, or the runtimes are extremely long. In the classicdladstsome set of prime implicants
(PIs) of all the output functions is found at the beginning, they #ne being reduced into group
implicants (and possibly again expanded), and at the end of thesprilie covering problem (CP)
is solved. In this phase only the necessary set of implicmsedected. All these phases are rather
time and memory consuming.

In [7] we have proposed a method solving this problem efficielmstead of producing a vast
number of implicants (both the prime and group ones) at the begiohihg minimization process
and then selecting only few of them to cover the on-set inCiResolution phase, we proceed
backwards. We compute an irredundant cover of the on-set firstcdter determines the number
of implicants in the final solution and the properties of the implic&utseach element of the cover
its implicant is generated by expansion of the appropriate otesms. Thus, no redundant
implicants, i.e., implicants that are not a part of the solwiengenerated. This property makes the
algorithm extremely fast even for very large problems. Siheemain part of this algorithm is the
Find Coverage phase, it was nanr€tMin.

In this paper we propose an enhancement to this method which enaodlesach better results
in terms of the quality of the solution. Aterative FC-Minrepeats the implicant generation several
times, while all the implicants found are being collectedeAthat the CP is solved. The principles
and properties of this method are discussed and experimentally evaluated her

Let us note that the principles of FC-Min are exploited in tbge@age-Directed Assignment
(CD-A) method used in BIST design [13, 14]. Particularly, the Fimde€age phase remains
unchanged here, while the implicant generation phase is a generalifdatierimplicant generation
phase used in FC-Min.

The paper has the following structure: after the Introductiwh the Problem Statement in
Section 2 the principles of FC-Min are described in Section 3joBe4 introduces the lterative
FC-Min. Experimental results are shown in Section 5, Section 6 conchalpaper.

2 Problem Statement

Let us have a set of Boolean functions ofi input variabled=(xy, X, ... %), Fo(X1, %, ... %), ...
Fn(Xw, %, ... %); the output values of the care terms are defined by a trd¢h Tatus, each function
is specified by its on-setj(%;, %, ... %) and off-set Rx;, %, ... %). To the minterms that are not
present in the truth table are implicitly assigned don't caxleies. The part of a truth table
representing the terms will be denoted asngut matrix|, the rows of the input matrix will be
denoted asnput vectors The part defining the output values of the functions will aiked an
output matrixQO; similarly, the rows of this matrimutput vectorsThe number of matrix columns
correspond to the number of input variablegshe number o0 matrix columns is equal to the
number of output variables, the number of andO matrix rows will be denoted gs

Specifying a Boolean function by its on-set and off-set, ratheétsbgn-set and don't care set,
which is commonly preferred, is advantageous especially for funsctimt have defined values of
only few terms. The typical example of the use of such aiiamcan be found, e.g., in the build-in
self-test (BIST) design [8, 9], for which the method was originally designed.

Our task is to synthesize a two-level circuit implementimg multi-output Boolean function
described by the truth table, whereas the implementation o€itbeit should be as small as
possible. The result will be in a form of a semoSOP (sum-of-the-product) forms implementing
themoutput functions, while some terms might be reused for more than one output function.

3 Principlesof FC-Min

As it was stated in the introduction, the method consists of twormajses: the Find Coverage
phase, in which the rectangle cover [10] of the on-set is foundhardplicant Generation phase
producing the very implicants from this cover. These phases mayprmcted separately and
independently, one after another. However, there might occur oineiss@roblem — when the
whole cover is generated not taking into account the possilgkcants, it may happen that it
wouldn’t be possible to produce all the implicants. In other wordsg thay not be a solution for a
particular cover. This problem is discussed more thoroughly in [7].

We have found that the best way to solve this problem is to ajenéire implicants together
with the cover. Thus, immediately after finding one element of ¢beer the implicant
corresponding to it is generated with respect to the previoosiydf implicants. This is being
repeated until the whole on-set is covered.

Let us state the problem formally:

Definition 1
Let t; be an implicant. Theoverage se€C(t) of the implicant; is a set of vectors (rows) of the
O matrix, in which at least one “1” value is covered by implicant. In other words, the coverage

set is a set of vectors of the output matrix for whijds an implicant for at least one output variable.
|

Definition 2

The coverage mask {)) of the implicant; is the set of columns of th@ matrix, in which all
vectors included inC(t) have one or more “1" value. The coverage mbHk) can also be
expressed as a vector in the output matrix corresponding terthg.tln the following text we will

use both representations of the coverage mask.
|

Definition 3
The coverage of an implicartf is a pair of the set€(t)) and M(t;) for which the following
equation holds:
DaOcC(t),ObOM(t;): Ofa,b] £"0"

Definition 4
Thecoverage of the matri® is a set of implicant coverage€(;), M(t)} such that
Da< p,0b< p,0fa,b]="1":{a,d 0 JC(t)xM ()
Oi

|
The implicant coverages will be also denoted@serage elementsith respect to the coverage
of the matrix.
An example of such a coverage®@fmatrix is shown in Figure 1. Here all the “1"s are covered
by six implicants tte. Their respective coverage sets and masks are shown in Table 1.

Table 1: Coverage sets and masks for Fig. 1

Implicant C(t) M(t)
ty {e,0,t [{0,0,0,1,1}
t, {b,c,} |{0,1,1,0,0}
: t3 {i, j} {1,0,1,0, 0}
h ﬁ t, {d} {0,1,0, 1, 0}
j @; t5 {a1 b} {11 11 01 O= O}
A s {e, R {0,0,1,0, 1}

Figure 1: Coverage of the output matrix

Finding an optimum rectangle cover is a NP-hard problem, thus Bearestic must be used.
There exist many efficient algorithms finding a cover consistindnie minimum of elements [10].
However, such a cover need not be always optimal for solvingnthemization problem. The
solution will be then consisted of the minimum of product tetmasvever, it needs not be optimal
with respect to the number of literals.

Our heuristic is based on a gradual search for a coveragstounsf the maximum number of
“1”s. Firstly, the output vector containing the most not y®teted ones is selected as a basis for a
new cover - in our example (Fig. 1) it is theow with four ones. Now we continue the search for
the next row to add in order to increase the number of the cowresd When the row is added
toi, the number of covered ones will remain the same (becauségharid the third variable
cannot be covered after that). After adding the epthie number of covered ones increases to six.

Finding the coverage consisting of many “1"s in the output masrizdvantageous indeed,
however it often means that it contains many vectors. Thicéaoplicates the subsequent phase —
finding the structure of a term. A term whose cover consistsveéif vectors is easier to find. Thus,
the heuristic algorithm is driven bydepth factorDF. Since each of the rectangle covers is being
produced by a successive addition of vectors into it, we cadealafter every addition whether to
extend the cover to more vectors, or to terminate its geoeraven if it could grow bigger. The
decision is made at random with a probability given by DF. Faance, when DF = 1, there is an
equal probability that the search will continue; when DF 5; iiere is a probability 1:5 for a
continual, and thus terms that cover less vectors and more oatput®re likely generated. When
the depth factor is low, the runtimes are shorter, while the complexitg aésult is slightly higher.

3.1 Generatingthe Implicants

For each coverage element an implicant has to be produced. To doystheokhowledge of the
particular coverage set together with thenatrix is needed. The structure of thematrix, as well
as the coverage mask, is insignificant here.

Obviously, when a term (cube) should cover a particular output yéiseocorresponding input
vector must be contained in this cube, since the input vector 8rpkeoutput. From this results

that theminimumterm satisfying the particular cover can be constructednaminumsupercubeof
all the input vectors corresponding@gt). Moreover, this supercube must not intersectlamgtrix
term that is not included in its coverage set, since it would cover sometlzemos

Let us assume our leading example. Fig. 2 shows both the input and output matrices.

a 11010 10000
b 10000 11100
c 01001 01100
d 01111 01010
e 00110 00111
f 01110 00000
g 10110 00011 00110
h 00001 01101 10110
i 10101 10111 10101
j 11100 10100 -01--
Figure 2. The input and output matrices Figure 3. The implicantt

The termt; covers vectore, gandi — see Fig. 1. Thus, the minimum term that can be a
candidate fot; must be constructed as a minimum supercube of the &rmgasdi in |, see Fig. 3.

The term(-01--) was found as a candidate for an implicanHowever, since it has to cover
only the vectors listed above, the term must not intersect wittofathe other terms. We can find
that it is a valid implicant by comparing the term with the other terms.

Similarly, we can obtain the minimum implicantsts. Figure 4 shows all the minimum
implicants obtained by finding the corresponding supercubes of theegeunts, together with the
output part of the resulting PLA matrix:

t;: -01-- 00011 t,; 01111 01010 t;: -01-- 00011 t4 ---11 01010

t,: --00- 01100 ts: 1-0-0 10000 t,: --00- 01100 ts: 1-0-- 10000

t3: 1-10- 10100 ts: 00--- 00101 ts: --10- 10100 ts: 00--- 00101
Figure 4. The minimum implicants Figure 5. The expanded implicants

The implicants obtained could form the final solution. However, they can berfetpanded to
improve the quality of the result. The final result is shownim B; the literals removed by the
expansion are highlighted.

4 |terative FC-Min

In most cases the FC-Min algorithm is not deterministic — thgrpss of the Find Coverage phase
is controlled by a random number generator, see Section 3. Thusetepgatof FC-Min could
produce different results. The idea of tterative FC-Minconsists in repeating the FC-Min several
times, while all the different implicants are put togethet stored. At the end the final solution is
constructed by solving the covering problem using all the imuiceEven if each of the single
FC-Min runs produces a valid solution, a properly selectadbinationof the implicants obtained
from different iterations might produce a better solution. Of coursepaid by a longer runtime.

An example of an iterative FC-Min run is shown in Fig. 6. The samppmblem solved was a
randomly generated function of 20 input and 20 output variables, with 208 defined. The depth
factor was set to 2:1. The thin line indicates the growth of the number aéamisl. We can see that
in 10000 iterations the total number of different implicantsdased from 200 to 4000. The thick
line shows the quality of the result after each iteratiois heasured in gate equivalents (GESs),
which is a good approximation of a complexity of the physical imptgation of the circuit [15].
The number of GEs was reduced by 8% in 4000 iterations, then itnemmachanged, even if the
number of implicants is still increasing.

Figure 7 illustrates the influence of the depth factor DFhanimplicant growth rate. For an
extremely low DF the number of implicants remains almost un&thr@n the other hand, many
different implicants are being generated when increasing DE.allows us to reach a better result
in a shorter time.

4500+
45004

4000
3500
30004
2500

40004 10:1
2:1

11

3500
3000
1:2
2500-1

2000 20004

1500
1000
500 500+

0 T T T T T 0
0 2000 4000 6000 8000 10000 0

Iteration

Implicants
Implicants

v

15004
1:10
10004

- 1100

T
2000

T T T 1
4000 6000 8000 10000

Iteration

Figure 6: Iterative minimization example Figure fffllence of DF

5 Experimental Results

A lot of extensive testing was done to evaluate the perfuzenaf the method. We have compared
the FC-Min results with ESPRESSO [3, 11]. The algorithm wamrammed in C++ and the
experiments were run on a computer with Athlon 900 MHz processor.

The first set of experiments were the MCNC benchmarks QRdly one iteration of FC-Min
was necessary to obtain satisfactory results here. For 72%e dbenchmarks we obtained the
solution in a shorter time than ESPRESSO did and for 86% dighehmarks FC-Min gave the
same or even better result than ESPRESSO. For more detailed commérits see

5.1 Randomly Generated Problems

The second set of problems on which we have tested FC-Minragalemly generated functions,
functions with no special properties (no aggregated ones in thet ougitix, etc.). With such
problems we can easily observe the properties and scalalbilihe algorithm. One of the reasons
why FC-Min was developed was a need to synthesize the corobiaatgic for BIST, namely the
output decoder transforming the LFSR patterns into test patieengenerated by an ATPG tool
[9]. Both the LFSR and ATPG patterns mostly have a random nancethus the randomly
generated benchmarks simulate these practical problems very well.

Problems with a varying number of input variables and terms wenerated, the number of
outputs was fixed to 15. These artificial benchmarks were sblv#dby FC-Min (in one iteration)
and ESPRESSO to compare the performance. Table 2 showsuhg oéshe minimization. The
number of inputs increases in the horizontal directntbe number of care terms in the vertical
direction @). Each of the cells contains average values of ten prolwémhe same size that were
solved, to ensure steady statistical values. The first roeaoh cell in the table contains results
obtained by FC-Min, the second row shows ESPRESSO results. Eaahdioates the runtime in
seconds, the number of literals in the resulting SOP form, tipeitocst (the number of inputs into
all output OR gates) and the number of group terms. The depth factor was sét to 10:

We can see that in all the cases the FC-Min completed thieniation in a significantly
shorter time than ESPRESSO, which was paid by a slightly worse qualityrefthits.

Table 2: Randomly generated problems

p/n 25 50 75 100

50 0.03/463/267/61 0.04/718/210/59 0.04/995/182/57 0.05/1185/175/54
2.28/199/330/47 9.40/200/308/48 18.05/190/300/47 25.18/179/293/45

100 0.15/945/539/113 0.13/1454/431/109 0.15/1832/389/104 0.17/2104/363/98
8.67/508/603/94 50.66/468/562/89 106.10/453/550/88 209.03/431/525/86

150 0.37/1442/850/171 0.30/2178/657/159 0.32/2588/586/148 0.35/3234/536/145
23.62/830/896/139 157.34/765/801/130 358.15/733/774/126 700.35/723/766/126

200 0.70/1889/1176/222 0.57/2902/922/209 0.57/3599/775/196 0.60/4250/713/188
38.27/1179/1150/183 | 312.75/1078/1061/170 | 735.90/1035/1002/165 | 1642.57/1009/958/161

Entry format: time [s] / #of literals / output coktof implicants

6 Conclusions

We propose a new two-level Boolean minimization algorithm daleC-Min”. The implicants are
being constructed using a pre-computed cover of the on-set, thus @iibaimts that will be a part
of the final solution are produced. With respect to the othernmiation tools the algorithm is
extremely fast, while the quality of the result is compleaBC-Min is extremely efficient for
functions with a large number of input and output variables, winereother algorithms are too
slow. The algorithm was tested on a set of MCNC benchmarkse\itheas beaten ESPRESSO in
most cases. For randomly generated problems FC-Min it isfisamtly faster than other
algorithms.

Acknowledgement

This research was in part supported by grant #102/01/0566 “BuileiftrT8st Equipment
Optimization Methods in Integrated Circuits” of the Czechn&ragency (GACR) and MSM
212300014 , 1999 — 2003.

References

[1] E.J. McCluskey, “Minimization of Boolean functig”, The Bell System Technical Journal, 35, No. 5,
Nov. 1956, pp. 1417-1444

[2] S.J. Hong, R.G. Cain and D.L. Ostapko, “MINI: Heuristic approach for logic minimization”, IBM
Journal of Res. & Dev., Sept. 1974, pp.443-458

[3] R.K. Brayton et al.,, “Logic minimization algohims for VLSI synthesis”, Boston, MA, Kluwer
Academic Publishers, 1984, 192 pp.

[4] P. McGeer et al.,, “ESPRESSO-SIGNATURE: A new axainimizer for logic functions”, Proc.
DAC’93

[5] O. Coudert, “Doing two-level logic minimizatiob00 times faster”, Proc. of the sixth annual ACMJ®
symposium on Discrete algorithms, 1995, pp.112-121

[6] J. Hlavicka and P. FiSer, “BOOM - a Heuristic Boolean Miraen”, Proc. ICCAD-2001, San Jose, Cal.
(USA), 4.-8.11.2001, 439-442

[7] P. FiSer, J. Hlavka and H. Kubéatova, “FC-Min: A Fast Multi-Output &ean Minimizer”, Proc.
Euromicro Symposium on Digital Systems Design (0D8R' Antalya (TR), 3.-5.9.2003

[8] M. Chatterjee and D.J. Pradhan, “A novel pattgemerator for near-perfect fault coverage”, Pfc.
VLSI Test Symposium 1995, pp. 417-425

[9] P. FiSer and J. Hla¥ka, ,Column-Matching Based BIST Design Method“, ®&réth IEEE European Test
Workshop (ETW'02), Corfu (Greece), 26.-29.5.2002,%b-16

[10]S. Hassoun and T. Sasao, ,Logic Synthesis agrifivation”, Boston, MA, Kluwer Academic Publisiser
2002, 454 pp.

[11]http://eda.seodu.co.kr/~chang/ download/espress

[12]S. Yang, ,Logic Synthesis and Optimization Bemarks User Guide®, Technical Report 1991-IWLS-
UG-Saeyang, MCNC, Research Triangle Park, NC, Jarig91

[13] P. FiSer, J. Hla¥ka and H. Kubéatova, "Coverage-Directed Assignmeguprdach to BIST", Proc. IEEE
Design and Diagnostics of Electronic Circuits angt&ms Workshop (DDECS'03), Poznan (Poland),
14.-16.4.2003, pp. 87-92

[14] P. FiSer, J. Hlatka and H. Kubatovda, "CD-A Based BIST Method", Préih International Workshop
on Electronics, Control, Measurement and Signa®E'03), Liberec (CR), 2.-4.6.2003, pp. 279-283

[15] J. Hartmann and G. Kemnitz, "How to Do Weight®andom Testing for BIST", Proc. of International
Conference on Computer-Aided Design (ICCAD), pB8-561, 1993

