

Postgraduate Study Report DC-PSR-2004-14

Mixed-Mode BIST Based on Column Matching

Petr Fišer

Supervisor: Ing. Hana Kubátová, CSc.

September 2004

Department of Computer Science and Engineering

Faculty of Electrical Engineering

Czech Technical University in Prague
Karlovo nám. 13
CZ-121 35 Prague 2

Czech Republic

email: fiserp@fel.cvut.cz

WWW: cs.felk.cvut.cz/~fiserp

 iii

This report was prepared as a part of the project

Design of Highly Reliable Control Systems Built on dynamically Reconfigurable
FPGAs

This research has been supported by grant GA102/01/0566, GA102/03/0672, GA102/04/2137
and MSM 212300014.

.
Ing. Petr Fišer Ing. Hana Kubátová, CSc.
postgraduate student supervisor

 iv

Contents

1. Introduction ..2
2. Theoretical Background - BIST ...4
3. Related Work ..6

3.1 Exhaustive Testing ..6
3.2 Pseudo-random Testing ...6
3.3 Reseeding..7
3.4 Weighted Pattern BIST..8
3.5 Bit-Fixing and Bit-Flipping..8
3.6 Row Matching...9

4. Overview of New Approach ..11
4.1 Column-matching Mixed-Mode BIST method..11
4.2 Principles of Mixed-Mode BIST ..12
4.3 The BIST Design Process ..13
4.4 The Pseudo-Random Phase..14
4.5 Influence of the LFSR on the BIST Design Process..15
4.6 The Deterministic Phase ..16

4.6.1 Problem Statement..16
4.6.2 The Column-Matching Method ...17
4.6.3 One-to-One Assignment..18
4.6.4 Generalized Column Matching..19
4.6.5 Negative Column Matching...20
4.6.6 An ISCAS Benchmark Example..20
4.6.7 One-to-One Assignment for c17 Benchmark..21
4.6.8 Generalized Column Matching Example..22

4.7 Column Matching Exploiting Test Don’t Cares..23
4.7.1 Row Assignment Algorithms...24
4.7.2 The Column Matching Algorithms ..26
4.7.3 The Basic Algorithm...27
4.7.4 Overview of the Column-Matching Alternatives in Mixed-Mode BIST..28

5. Experimental Results...30
5.1 Influence of the Length of the Pseudorandom Phase...30
5.2 The Deterministic Phase ..31
5.3 Comparison of the Results ...32
5.4 Results for Standard Benchmarks...32

6. Conclusions and Future Work..34
List of Abbreviations...36
List of Symbols Used ..36
References ..37
Dissertation Thesis..39
Publications of the Author...40

 1

MIXED-MODE BIST BASED ON COLUMN MATCHING

Petr Fišer

fiserp@fel.cvut.cz
Department of Computer Science and Engineering

Faculty of Electrical Engineering
Czech Technical University

Karlovo nám. 13
121 35 Prague 2
Czech Republic

Abstract

A test-per-clock BIST method for combinational or full-scan circuits is proposed. The
method is based on a design of a combinational block - the decoder, transforming
pseudo-random LFSR code words into deterministic test patterns pre-computed by some
ATPG tool. We propose a column-matching algorithm to design the decoder. Here the
maximum of output variables of the decoder is tried to be matched with the decoder inputs,
yielding the outputs be implemented as mere wires, thus without any logic. No memory
elements are needed to store the test patterns, which reduces an area overhead.

We describe the Column-Matching algorithm into detail and propose several heuristic
methods solving some of the major NP-hard problems. The tradeoff between the duration
of the execution of BIST, the solution quality and runtime is discussed. The time complexity
of the algorithm is studied and experimentally evaluated.

Since quite a large number of test vectors if often needed to sufficiently test a particular
circuit, synthesizing all these vectors deterministically would mean a large area overhead.
Thus, the Column-Matching method was modified to support a mixed-mode testing. The
BIST is divided into two disjoint phases – the pseudo-random phase, where the LFSR patterns
are being applied to the circuit unmodified, and the deterministic phase detecting all the yet
undetected faults. This enables us to reach a high fault coverage in a short test time and with
a low area overhead.

The choice of the lengths of the two phases directly influences both the test time and area
overhead. This issue is discussed here as well.

The complexity of the resulting BIST is evaluated for the ISCAS benchmarks.

Keywords
built-in self-test, test-per-clock, pseudo-random testing, deterministic BIST

 2

Chapter 1

Introduction

The complexity of present VLSI circuits rapidly grows. Their testing is becoming more and
more important, together with the tests complexity and total costs. Using only external test
equipment (ATE) is becoming impossible, mainly due to a huge amount of test vectors, long
testing time and very expensive test equipment. Incorporating the Built-in Self-Test (BIST)
becomes inevitable. It requires no external tester to test the circuit, since all the circuitry
needed to conduct a test is included in the very circuit. This is paid by an area overhead, long
test time and often a low fault coverage. Up to now, many BIST methods were developed
[Aga93, Tou96a, Tou96b], all of them trying to find some trade-off between these four
aspects that are mutually antipodal:

• Fault coverage
• Test time
• Area overhead
• BIST design time

A high fault coverage means either a long test time (exhaustive test), or a high area
overhead (ROM-based BIST). A pseudo-random testing established the simplest trade-off
between all the three criteria. With an extremely low area overhead the circuit can be tested
usually up to more than 90% in a relatively small number of clock cycles (thousands).
To improve fault coverage and to reduce the test time, many enhancements of this
pseudo-random principle were developed. Of course, all of them are accompanied by some
additional area overhead. Here the BIST design time comes to importance – a design
of a BIST structure achieving high fault coverage with a low area overhead often takes a long
time to synthesize.

We propose a novel BIST method based on our Column-Matching principle. We introduce
an Output decoder transforming the pseudo-random patterns into deterministic patterns
pre-computed by an ATPG (Automatic Test Pattern Generator) tool. Using it the desired fault
coverage is obtained (100%), for a cost of the Decoder logic. To reduce it, we try
to implement as many Decoder outputs as possible as wires, without any logic. This is being
done by application of the Column-matching algorithm.

Moreover, we extend the method to support a mixed-mode testing. Here the test is divided
into two phases: the pseudo-random one and the deterministic one. This enables us
to significantly reduce the Decoder logic.

 3

The study is structured as follows: the theoretical background and basic BIST principles are
described in Section 2, the related state-of-the-art work is given in Section 3. Major principles
of our newly proposed method are presented in Section 4, the experimental results are
presented in Section 5, Section 6 contains the conclusions.

 4

Chapter 2

Theoretical Background - BIST

The general Built-in Self-Test structure consists of three main parts [McC85] – see
Figure 2.1. The TPG (Test Pattern Generator) produces test patterns that are fed to the inputs
of a Circuit under Test (CUT) and the responses of a circuit are then evaluated in a Response
Evaluator (RE).

Figure 2.1: BIST structure

During the test the test patterns are sequentially fed to the primary inputs of a logic circuit
and the response at the primary outputs is checked. If the response is different from the
expected value, a fault is detected.

There are two basic testing strategies: the functional testing and the structural testing. The

functional testing checks the circuit’s response to the input patterns to test the functionality
of the circuit, while its inner structure needs not be known. On the other hand, the structural
test tries to find physical defects of the circuit by propagating faults to the output (by finding
a sensitive path). There may exist several kinds of physical faults, namely the stuck-at faults
(stuck-at-one, stuck-at-zero), bridging faults, opens and other technology dependent faults.
Most of the faults are easy to detect, as they can be propagated to the circuit’s outputs
by many possible vectors (of their total number 2n, where n is the number of the primary
inputs of a circuit). However, there are faults that are hard to detect (random resistant faults),
as only few test patterns propagate these faults to the outputs. Thus, the amount of faults that
can be detected by a particular test set depends on the test patterns. Thus we always have
to specify the set of faults on which we concentrate. If a test set detects all faults from the
given fault set, it is denoted as complete. The most commonly accepted fault set consists of all
stuck-at faults.

 5

Since the TPG can be constructed to have both parallel and/or serial outputs the BIST can

be designed in two general ways: test-per-clock and test-per-scan. In the test-per-clock BIST
the CUT is being fed by parallel outputs of the TPG, and thus each test pattern is processed
in one clock cycle. The response of the CUT goes to the response evaluator in parallel, which
is often a MISR (Multi-Input Shift Register). A general structure of the test-per-clock BIST
is shown in Fig. 2.2.

Figure 2.2: Test-per-clock BIST structure

A second typical structure, suitable especially for testing sequential circuits, is denoted
as a test-per-scan BIST. It is used in connection with CUTs having a scan chain, i.e., the
circuit’s flip-flops are connected into a chain making one scan register for testing purposes.
Here the test patterns are shifted into the scan register of the CUT and applied by activating
the functional clock after every full scan-in of one test pattern. The response is then scanned
out and typically evaluated by a serial signature analyzer (signature register).

In this work we deal with the test-per-clock only, however the method can be adapted
to test-per-scan as well.

 6

Chapter 3

Related Work

Before describing the principles of the state-of-the art methods, namely the Reseeding,
Weighted pattern testing, Bit-fixing, Bit-flipping and Row-marching methods, we introduce
the naive BIST methods, mainly for better understanding to the latter ones.

3.1 Exhaustive Testing

There are several testing approaches differing in their successfulness and area overhead.
The most naive method – the exhaustive testing – feeds the circuit with all the 2n patterns and
checks the responses. Obviously, for a combinational circuit the exhaustive test provides
complete fault coverage, and can be very easily implemented (an area overhead is often the
lowest possible), but it is extremely time demanding and thus very inefficient. It is applicable
to circuits with up to 30 inputs (109 patterns, which takes 1 sec on the frequency of 1 GHz),
for more inputs the exhaustive testing is not feasible. The test patterns are mostly generated
by an LFSR (Linear Feedback Shift Register), since it produces 2n-1 different patterns during
its period and it can be very easily implemented on the chip.

A slight modification of this method called a pseudo-exhaustive testing [McC84] allows us
to test a circuit exhaustively without a need to use all the 2n test patterns. The circuit
is divided into several possibly overlapping cones, which are logic elements that influence
individual outputs of the circuit. Then, all the cones are separately tested exhaustively, and
hereby also the whole circuit is completely tested. The only fault type not covered
by pseudo-exhaustive tests are bridging faults between elements belonging to different
non-overlapping cones. If such an efficient decomposition is possible, the circuit can be tested
with much less than 2n test patterns. However, for more complex circuits the cones are rather
wide (the cones have a large number of inputs) and thus the pseudo-exhaustive testing is often
not feasible either.

3.2 Pseudo-random Testing

In a simple pseudo-random testing the test patterns are generated by some pseudo-random
pattern generator (PRPG) and lead directly to the circuit’s inputs. It differs from the
exhaustive testing with a test length. If the PRPG structure and seed are properly chosen, only
several test patterns (less than 2n) are necessary to generate to completely test the circuit. The

 7

pseudo-random testing is also widely used in a case when the complete fault coverage is not
required, since the pseudo-random patterns often successfully detect most of the easy-to-
detect faults.

In more sophisticated pseudo-random testing methods the pseudo-random code words
generated by a PRPG are being transformed by some additional logic (combinational
or sequential) in order to reach better fault coverage. Here the main area overhead consists in
the combinational logic. To such methods belong the reseeding-based techniques, weighted
testing, bit-fixing, bit-flipping, and others. These methods are often being referenced
as a mixed-mode BIST.

 3.3 Reseeding

In this technique the LFSR is seeded with more than one computed seeds during the test,
the seeds need to be stored in ROM [Koe91]. The seeds are often smaller than the test patterns
themselves and, most importantly, more than one test patterns are derived from one seed. This
significantly reduces memory requirements.

One problem is that if a standard LFSR is used as a pattern generator, it may always not
be possible to find the seed producing the required test patterns. A solution of this problem
is to use a multi-polynomial LFSR (MP-LFSR), where the feedback network of a LFSR
is reconfigurable [Hel92, Hel95]. Here both the seeds and polynomials are stored in a ROM
memory and for each LFSR seed also a unique LFSR polynomial is selected. The structure
of such a TPG is shown in Fig. 3.1.

Figure 3.1: Multi-polynomial BIST

This idea has been extended in [Hel00] where the folding counter, which

is a programmable Johnson counter, is used as a PRPG. Here the number of folding seeds to
be stored in ROM is even more minimized.

In spite of all these techniques reducing memory overhead, implementation of a ROM on a
chip is still very area demanding and thus the ROM memory should be completely eliminated
in BIST.

 8

3.4 Weighted Pattern BIST

One of such approaches is the weighted pattern testing. Here the PRPG patterns are being
biased by a signal probability of each of the PRPG outputs (the probability of a 1 value)
in order to reach required test patterns. In the weighted pattern testing method two problems
have to be solved: first, the weight sets have to be computed and then how to generate the
weighted signals. Many weight set computation methods were proposed [Bar87] and it was
shown that multiple weight sets are necessary to produce patterns with a sufficient fault
coverage [Wun88]. These multiple weight sets have to be stored on chip and also the logic
providing switching between them is complicated, thus this method often implies a large area
overhead.

Several techniques reducing the area overhead of a weighted pattern testing were proposed
– one of them is a Generator of Unequiprobable Random Tests (GURT) presented
in [Wun87]. The area overhead is reduced to minimum, however it is restricted to only one
weight set. Also the more general method based on modifying the GURT [Har93] uses only
one weight set and thus it is also limited to special cases of the tested circuits and cannot
be used in general.

Special methods using multiple weight sets that can be easily implemented were proposed
in [Pom93] and [AlS94]. In [Pom93] three different weight values can be applied by adding
a very simple combinational logic to the PRPG outputs, [AlS94] on the other hand uses
specially designed PRPG flip-flops.

As the LFSR code words have very balanced properties, the design of the logic generating
a weighted signal can be rather difficult. Some approaches using cellular automata instead
of an LFSR were studied, and good results were reached using this approach for some circuits
[Alo03, Nov98, Nov99]. Methods using inhomogeneous cellular automata to produce
weighted pattern sets are presented in [Nee93].

3.5 Bit-Fixing and Bit-Flipping

Principles of the bit-fixing [Tou95, Tou96a, Tou01] and bit-flipping [Wun96] methods
consist in a modification of some bits by some additional logic, in order to increase the fault
coverage. Both of them introduce a mapping function that transforms the LFSR
pseudo-random code words into deterministic patterns – see Fig. 3.2.

This idea was generalized in [Tou96b], where the problem of finding a mapping function
is transformed into finding a minimum rectangle in a binate matrix. Procedures used
in ESPRESSO [Bra84] were used to find a mapping logic.

General schemes of test-per-scan bit-flipping and bit-fixing BIST methods are shown
in Figures 3.3 and 3.4 respectively. The bit-fixing method modifies the pseudo-random
sequence by AND and OR gates, the bit-flipping method augments the sequence by flipping
some bits by a XOR gate.

 9

Figure 3.2: Modifying the LFSR patterns

Figure 3.3: Bit-fixing scheme

Figure 3.4: Bit-flipping scheme

3.6 Row Matching

The row matching approach proposed in [Cha95, Cha03] is based on a very similar idea.
A simple combinational function that transforms some of the PRPG patterns into test patterns
is being designed in order to reach better fault coverage. Here, the test patterns are
independent on the PRPG code words in a sense of a similarity of the patterns – the proper
test vectors are pre-computed by an ATPG tool; they are not derived from the original PRPG
code words as it was being done in the previous methods.

The row matching means finding an assignment of these test patterns to the code words,
as it is shown in Fig. 3.5. Each of the test patterns has to be assigned to some PRPG pattern
to generate the required test. Here the problem to be solved consists in finding such a row
matching that the pattern transformation function is as simple as possible. Similar idea is also
exploited in our BIST methods presented in this report.

 10

Figure 3.5: Row matching principle

The cost function of the row matching is used as a criterion for finding a row match. The
cost function is an estimation of the complexity of the combinational function performing the
pattern transformation. The cost of a matching M for an n-input CUT (and thus the
combinational block has n outputs) is defined as follows:

()()�
=

×=
n

i
ii IWIMC

0

)((3.1)

where I i is called an input index of the output variable i and it is defined as a set of input

variables of an output decoder that are needed to obtain the values of the i-th output – i.e.,
the support of the i-th output variable. The weight W is used to take into account
a non-linear relation between the size of the I i and the area overhead.

The aim is to find a row matching that minimizes this function. This is, however,
an NP-hard problem and thus some heuristic must be used. In the proposed algorithm
[Cha95] the rows are being matched sequentially (one-by-one) preferring the match that
locally minimizes the cost function. After the matching is done, the result is in a form of
a truth table, which has to be minimized by some Boolean minimizer (ESPRESSO)
to obtain the final solution. The truth table corresponding to the example from Fig. 3.5
is shown in the following Figure:

Figure 3.6: The final truth table

In addition to introducing a mapping function, a special kind of a PRPG is exploited here –
a GLFSR (generalized LFSR). In principle, it behaves similarly to a weighted-pattern TPG,
however the weighted patterns are being generated by a modification of a LFSR. However,
this modification introduces an additional logic to the whole BIST structure, and thus
it disturbs otherwise good results.

 11

Chapter 4

Overview of New Approach

4.1 Column-matching Mixed-Mode BIST method

We propose a novel test-per-clock BIST method. The test patterns are applied to the
primary inputs of the circuit-under-test (CUT) in parallel, thus in each clock cycle one test
vector is being processed. The response is then drawn from the primary outputs and analyzed
in the response evaluator (RE), which is mostly a multi-input shift register (MISR).

This method aims at the decrease of the area overhead that may be achieved by the
simplification of the test pattern generator (TPG). We have used deterministic test patterns
generated by some ATPG (Automatic Test Pattern Generator) tool, thus the fault coverage
achieved strictly depends on these patterns. No memory is used for their storage, since the
memory mostly causes a big area overhead on a chip. From a global point of view [Str02], our
method is based on a synthesis of a finite state machine (FSM) that produces algorithmic test
patterns.

The test pattern generator consists of two blocks: the pseudo-random pattern generator
(PRPG) and the output decoder, which is a combinational block transforming the PRPG
patterns into deterministic tests. The PRPG is mostly constructed as a linear feedback shift
register (LFSR) with an appropriate generating polynomial, or as a cellular automaton
[Nee93, Nov98, Nov99, Alo03,]. The basic structure of such a test-per-clock BIST is shown
in Fig. 4.1.

Figure 4.1: Test-per-clock BIST structure

 12

Synthesis of the combinational logic transforming the pseudo-random patterns into
deterministic tests is based on our column-matching algorithm [Fis02, Fis03a]. We try
to implement most of the outputs of the decoder logic by assigning them to the inputs, thus
implement them without any circuitry. An enhancement of this method enabled us to support
a mixed-mode BIST, which significantly reduces the output decoder logic [Fis04a]. The issue
of adjusting the BIST synthesis parameters, namely the influence of the ratio of the test don’t
cares and the durations of the pseudo-random and deterministic phases are discussed here
as well, and in [Fis04b, Fis04c].

The method was extensively tested on standard ISCAS benchmarks. Here a big scalability
of the method, in terms of the trade-off between the test time and area overhead, was
observed.

4.2 Principles of Mixed-Mode BIST

Most of the mixed-mode BIST techniques involve using some kind of transformation and
switching logic accompanying the pseudo-random pattern generator (PRPG). A general
structure of our mixed-mode BIST design is shown in Fig. 4.2. The pseudo-random code
words are produced by an LSFR. Then they are transformed by the Decoder into deterministic
vectors. The Switching logic selects the patterns to be applied to the CUT. After that the
circuit’s response is evaluated, usually in the multi-input shift register (MISR).

LFSR

Decoder

Switch

CUT

MISR

TPG

mode

Fig. 4.2: Mixed-mode BIST structure

The main difference between our algorithm and the competitive methods [Tou95, Tou96b,
Cha03] consists in a separation of the pseudo-random and deterministic phases. In the other
methods the LFSR patterns that do not detect any faults are identified and modified. Here the
switching logic consists of coupled AND and OR gates in the bit-fixing method [Tou95] – see
Fig. 3.3, or a XOR gate for bit-flipping [Wun96] – See Fig. 3.4.

In praxis, several initial pseudo-random vectors detect faults, but the fault detection
capability of the latter ones quickly drops to zero. Thus, it could be more advantageous to run
the unmodified pseudo-random phase for several clock cycles and then switch to the
deterministic one at once, as it is being done in our approach. The switching logic then
consists of multiplexers, in the most general case. The area overhead caused by the switching
logic needs not be too big, since we try to eliminate even these multiplexers using a modified
column-matching method. Moreover, the size of a multiplexer, when implemented using
transmission gates, is 1.5-times the size of a standard NAND gate [DeM94].

In the first, pseudo-random phase, all the multiplexers are set so they feed the circuit with
the unmodified LFSR patterns; the Decoder is cut off. Subsequently, in the deterministic
phase, all the MUXes switch to the Decoder outputs and only the modified patterns are

 13

applied to the CUT. The mode signal driving the multiplexers can be generated externally
(by ATE), or some kind of a counter can be used. Even in this case the area overhead of this
counter can be negligible, since the BIST-controller counter can be exploited, or we can use
an extra counter that can be shared by many IP cores in a complex design.

4.3 The BIST Design Process

The Decoder logic is synthesized using our column-matching algorithm. The Decoder
is a combinational block transforming some of the PRPG patterns into deterministic patterns
pre-computed by an ATPG. Our aim is to design the decoder to be as small as possible. Its
design is based on “matching” maximum of the decoder outputs with its inputs. Particularly,
when the test vectors are reordered and assigned to the LFSR vectors in such a way that the
values in the respective matched columns (i.e., input and output variables) are equal, the
matched output will be implemented as a wire, without any logic. Since the BIST is designed
for combinational circuits, any reordering can be freely done. Moreover, the deterministic test
can be much longer than the computed test sequence. Only few of the PRPG patterns produce
the required test vectors and the rest represent the non-testing “gaps”. This gives us a big
freedom how to select the appropriate matches. The values of the non-matched outputs have
to be synthesized by some Boolean minimizer, i.e. BOOM [Hla01, Fis03b].

The whole BIST design process can be divided into four phases:

1. Simulate several (PR) pseudo-random patterns for the CUT and determine the
undetected faults (by a fault simulator).

2. Compute deterministic test patterns for these faults by an ATPG tool.
3. For the following pseudo-random LFSR patterns (Det) and the deterministic tests do

the column matching (see Section 6).
4. Synthesize the unmatched decoder outputs by BOOM.

An artificial illustrative example is shown in Fig. 4.3. The 5-bit LFSR is run for 5 cycles

first and the easily testable faults are detected. Then we run the fault simulation to find the
undetected faults, for which the test vectors are generated by an ATPG. At the end the
decoder logic is synthesized for these tests and the succeeding LFSR patterns. The resulting
circuitry is shown in Fig. 4.4. Here we can see that for some outputs (y0, y1) there is no
decoder and switching logic needed, for some there is the switching logic only (y2, y3). Such
cases should be preferred when the BIST is being designed.

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

������	
����

�������� � ��
����� ���	����
��

������

���� ����

�����
�

�����

�����

�����

�����

�����

�����

������

�����

�����

����	����
 ���

�������

��������

� �

! 	!� " # 	#� "

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����	
��
	��
�����

 14

Figure 4.3: Test sequence generation

����

���

1

!� !� !$!% !"

#� #� #$ #% #"

 ���

�������

���

�&�!� �

�&�!

�&�!

�&�!

�&�! '!

� �

$ $

% �

" � �

(

('

Figure 4.4: Resulting BIST circuitry

4.4 The Pseudo-Random Phase

The aim of the pseudo-random phase is to cover as many faults as possible, while keeping
the test time acceptable. Two aspects play role here: the LFSR polynomial and seed and the
test length. Computing a LFSR polynomial and seed in order to achieve good fault coverage
is an extremely computationally demanding problem, thus we select it at random and evaluate
the effectiveness.

Selection of a LFSR and a seed might significantly influence the fault coverage. The
frequency distribution of covering a particular number of faults is illustrated by Fig. 4.5. Here
sets of 50, 100, 500 and 1000 LFSR patterns were applied to the c3540 ISCAS circuit
[Brg85], 1000 samples for each test size (see the four curves in Fig. 5.1). Each LFSR and its
seed were selected randomly. The distribution of the number of faults, which remained
undetected, is shown. We can see that it follows the Gaussian distribution. For a low number
of patterns many faults are left undetected, while also their number varies a lot. When
increasing the number of the test patterns the number of undetected faults rapidly decreases,
while the variation of this number decreases as well. This means that when a high fault
coverage is obtained by a long test sequence, the influence of the LFSR and seed on the fault
coverage is negligible.

0 200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800

50 patterns

100 patterns

500 patterns

1000 patterns

c3540

F
re

qu
en

cy

Undetected Faults

Figure 4.5: Pseudo-random fault coverage

 15

The number of the covered faults as a function of the number of LFSR cycles applied to the
CUT follows the well-known saturation curve shown in Fig. 4.6 (for the c3540 circuit
[Brg85]). First few vectors detect the majority of faults, and then the fault coverage increases
only slightly. The total number of detectable stuck-at faults is 3428. This number was not
reached even after applying 50 000 LFSR cycles.

0 1000 2000 3000 4000 5000 6000 7000 8000

500

1000

1500

2000

2500

3000

3500

c3540

C
ov

er
ed

 F
au

lt
s

Cycles

Figure 4.6: Fault coverage saturation curve

A conclusion can be made from these two graphs: in order to reach a satisfactory fault
coverage by the first phase, we should determine the fault coverage saturation curve for the
CUT by fault simulation. The appropriate length of the PR phase can be easily derived from
it. The pseudo-random phase should be stopped when the fault coverage is not improving for
a given number of cycles. This number can be freely adjusted, according to the application
specific requirements (the trade-off between the test time and area overhead). Usually, we set
this threshold to 1000 cycles. Thus, for the c3540 benchmark we determine PR = 2500 cycles
(see Fig. 4.6). The influence of the test length on the final result is discussed in [Fis04c].

4.5 Influence of the LFSR on the BIST Design Process

The fault coverage reached in the first phase is not influenced only by the length of the
pseudo-random test. The number of detected faults also depends on the properties of the
pseudo-random sequence, thus it is influenced by the LFSR polynomial and seed.
For different LFSRs, significantly different results are produced, even when the lengths of the
phases are retained. For illustration, we have designed a BIST for the c1908 ISCAS
benchmark circuit [Brg85]. The pseudo-random phase was run for 2000 cycles, the LFSR
polynomial was set constant (1-tap, see [Fis04b]) and we have repeatedly randomly reseeded
it. Then the deterministic phase was run for 1000 clock cycles. The simulation results
are shown in Table 4.1. The “ud.” column indicates the number of undetected faults in the
first phase, “vct.” gives the number of deterministic vectors, “GEs” shows the complexity
of the resulting BIST structure, in terms of the gate equivalents [DeM94]. The entries are
sorted by the number of faults not detected in the pseudo-random phase.

We can see that the complexity of the final circuit strictly depends on the LFSR seed
selected – it varies from 7.5 GEs up to 69 GEs.

To compute a proper LFSR seed and/or generating polynomial analytically is impossible
for practical examples, due to the complexity of this problem. Thus, in praxis we repeatedly
reseed the polynomial and conduct the fault simulation several times, while we pick out the

 16

best seed for further processing. The fault simulation is often a very fast process, thus it does
not significantly influence the BIST design time.

Table 4.1: Influence of the LFSR seed

ud. vct. GEs ud. vct. GEs
19 10 7.5 33 15 37
21 9 19.5 34 16 33
24 13 23.5 36 18 38
26 15 28 37 20 40.5
26 13 25 39 22 53
28 15 37.5 44 26 40
28 14 22.5 46 22 42.5
30 14 36 48 24 44
32 16 31 52 28 63.5
33 17 27.5 62 34 69

4.6 The Deterministic Phase

In the deterministic phase the deterministic vectors are synthesized from some of the LFSR
patterns that follow the pseudo-random phase. To do so, the Column-Matching algorithm
is used. First, let us state the problem formally.

4.6.1 Problem Statement

Let us have an n-bit PRPG running for p clock cycles in the deterministic phase. The code
words generated by this PRPG can be described by a C matrix (code matrix) of dimensions
(p, n). These code words are to be transformed into the test patterns pre-computed by some
ATPG tool. They are described by a T matrix (test matrix). For an r-input CUT and the test
consisting of s vectors the T matrix will have dimensions (s, r). The rows of the matrices will
be denoted as vectors.

The tests can be presented either in a form of deterministic patterns (minterms) or they may
contain don’t care values, depending on the ATPG algorithm used for the test set generation.
We can take advantage of these don’t cares in our algorithm, since they give us more freedom
to select the column matches.

There are some obvious restrictions for the matrices dimensions. The number of test
patterns p must be maximally 2n - 1 (the maximum number of distinct patterns generated
by a LFSR) and p ≥ s, because there must be enough patterns to implement all test vectors
generated by the ATPG. On the other hand, there are no strict requirements regarding the
relationship of n and r, since the number of LFSR stages can be even smaller than the number
of CUT inputs.

The output decoder logic modifies the C matrix vectors in order to obtain all the T matrix
vectors. As the proposed method is restricted to combinational circuits, the order in which the
test patterns are fed to the CUT is insignificant. Thus, the T matrix vectors can be reordered
in any way. Finding a transformation from the C matrix to the T matrix means finding
a coupling of each of the s rows of T matrix with rows of the C matrix – thus finding a row
assignment (see Fig. 4.7), i.e., to determine which C matrix rows will be transformed
to T matrix rows and how. The excessive patterns do not disturb testing, they only extend the

 17

test length. If a low-power testing is required, we may use some pattern inhibition techniques
- see [Gir99]. Our method can be easily modified under these considerations.

The Output Decoder is a combinational block that converts s n-dimensional vectors of the
C matrix into s r-dimensional vectors of the T matrix. The decoder is represented
by a Boolean function with n inputs and r outputs, where only values of s terms are defined
and the rest are don’t cares. This Boolean function can be easily described by a truth table,
where the output part corresponds to the T matrix, while the input part consists of s C matrix
vectors assigned to the T matrix rows. The set of such vectors will be denoted
as a pruned C matrix.

Figure 4.7: Assignment of the rows

4.6.2 The Column-Matching Method

The column-matching method is based on assigning all the T matrix rows to some of the C
matrix rows so that some columns of the T matrix will be equal to some columns in the
pruned C matrix. This yields absolutely no logic necessary to implement these T matrix
columns (output variables of the decoder); they are implemented as mere wires.

The principles of the column matching are shown in Fig. 4.8. The ten LFSR patterns
represented by a C matrix are to be transformed into 10 deterministic test vectors described
by a T matrix. The PRPG outputs are entering the output decoder as variables x0 – x4, the
outputs of the decoder (thus the CUT inputs) are denoted as y0 - y4. A case of a test without
don’t cares was chosen for simplicity. Two column matches can be made in this example. The
C matrix column x2 has been matched with the T matrix column y4, similarly x3 with y0 has
been matched. Thus, the outputs y0 and y4 are implemented without any combinational logic,
while the remaining outputs have to by synthesized using some standard two-level Boolean
minimization tools, like ESPRESSO [Bra84] or BOOM [Hla01, Fis03b]. The matches were
obtained by reordering the T matrix rows, in order to have equal values in the corresponding
columns. The C matrix rows are then assigned to the T matrix rows in the ascending order
(A-h, B-g, C-e, etc.). Thus, the whole TPG generates the test patterns in the order h-g-e-i-, etc.

 18

Figure 4.8: Column matching example

4.6.3 One-to-One Assignment

As a one-to-one assignment will be denoted the case where p = s, thus all the PRPG vectors
are to be assigned to the test vectors and no idle PRPG cycles are present. In this case the
minimum number of PRPG vectors is needed to generate the deterministic test vectors,
however, the amount of logic needed to implement the output decoder is often large.

Generally, when doing the column matching, some restrictions for the C and T matrix rows
that are to be assigned to each other must be applied every time a column match is done. If,
e.g., the i-th C matrix column is matched with the j-th T matrix column, the C matrix rows
containing “1” value in the i-th column can be assigned only to the T matrix rows containing
“1” value in the j-th column and vice versa. If the test set contains don’t cares, the T matrix
rows having a don’t care in the j-th column can be assigned to any C matrix row (while
respecting the restrictions given by the previously made matches). The don’t cares are
substituted by “0” or “1” values form the C matrix after the final row assignment is known.
The column-matching process for a test with don’t cares will be described into detail
in Section 7.

The most important feature of the one-to-one assignment is the fact that all the PRPG
vectors that are to be transformed into test patterns are known in advance; there are
no excessive vectors. Determining a column match is then a simple task: it is possible to make
a match if the counts of ones (and zeros) in the corresponding columns are equal. In our
previous example (Fig. 4.8) the counts of ones in the C matrix for columns x0-x4 are {6, 7, 5,
7, 6}, the counts of ones in the T matrix for columns y0-y4 are {7, 5, 5, 4, 5}, thus there are
five possible column matches {x1-y0, x3-y0, x2-y1, x2-y2, x2-y4}.

After selecting a column match the two matrices are decomposed into two disjoint parts
containing the rows with zeros and ones respectively in the matching columns, let the
submatrices be denoted as C0, C1 and T0, T1. Then any vector from the T0 submatrix can be
assigned to any vector from C0, as well as any vector from the T1 submatrix can be assigned
to any vector from C1, but not otherwise. In our example, when the x2-y4 match is selected
first, C0 = {B, F, G, I, J}, C1 = {A, C, D, E, H}, T0 = {a, b, d, g, j}, and T1 = {c, e, f, h, i}.

 19

Figure 4.9: The first assignment to the submatrices

Finding all possible column matches consists in a successive decomposition of each of the
original matrices into set systems until no further decomposition is possible. This happens
when no more columns with equal one and zero counts are available in any two Ci and T i
submatrices.

The problem of selecting a proper set of column matches is NP-hard. Thus, the selection
of the candidate columns for a match is controlled by a heuristic, which measures the
proportion of zeros and ones in both the candidate columns and selects the most balanced
decomposition. Another possibility is to use an exhaustive column match search, where all the
possible combinations of column matches are tried. This method is applicable only
to problems with a low number of possible column matches.

The output of this algorithm are two systems of subsets of the C and T matrices. Each two
corresponding subsets contain vectors that can be assigned to each other in any order. We do
the final assignment at random, since it influences the final result only negligibly
(it influences only the final minimization).

4.6.4 Generalized Column Matching

In practice, it is often more advantageous to let the PRPG run more cycles than needed and
pick out only several suitable vectors (see Fig. 4.7). Then idle test cycles are present, however
this method significantly reduces the complexity of the output decoder.

The column matching principle is very efficiently applicable here. Unlike the method
described in the previous subsection, we cannot determine a column match by comparing the
number of ones in the corresponding columns, because we do not know in advance which C
matrix vectors will be included in the final row assignment. However, we can freely choose
among the code words (if p >> s). Finding an exact match is then a trivial problem; for
several initial matches practically any two columns can be successfully matched.

Making an assignment of the T matrix rows to the C matrix rows is then very similar to the
set system based method proposed above. Both the C and T matrices are being divided into
two disjoint parts, while in this case their sizes need not be equal; the number of vectors
in each Ci must be greater or equal to the number of vectors in the corresponding T i. If not,
there would exist some test patterns that cannot have a C matrix vector assigned and then the
matching procedure ends. After that, like in the original algorithm, some row-matching
method is used to accomplish the final assignment of vectors.

The set system based column-matching algorithm is shown below. The inputs to the
algorithm are the C and T matrices, the output is a valid system of sets � describing the total
decomposition of the C and T matrix vectors. From this decomposition, the rows are assigned

 20

to each other randomly and then the final result is obtained after completing a Boolean
minimization.

Algorithm 4.1: Set System Based Column Matching

ColumnMatching(C, T) {
� = {[C, T]}; // initialize system of sets
do {

(i, j) = SelectColumnsToBeMatched(C, T);
�‘ ��∅;

 for (u = 0; u < | �|; u++) { // for all items in set system

 C 0 = ∅; // generate subsets
 C 1 = ∅;
 for (k = 0; k < C_matrix_rows; k ++)
 if (�u

C[k, i] == 0) C 0 = C 0 ∪ �u
C[k];

 else C 1 = C 1 ∪ �u
C[k];

 T 0 = ∅;
 T 1 = ∅;
 for (l = 0; l < T_matrix_rows; l ++)
 if (�u

T[l, j] == 0) T 0 = T 0 ∪ �u
T[l];

 else T 1 = T 1 ∪ �u
T[l];

if (|C 0| < |T 0| || |C 1| < |T 1|) return �;
 �‘ ���‘ ∪ {[C 0, T 0]; [[C 1, T 1]}; // add the split sets

 � = �‘ ;
 }

}
}

4.6.5 Negative Column Matching

As we have described above, the idea of the column matching is based on finding a
maximum of the decoder outputs that can be implemented just as wires, thus without any
logic. This happens when the value of the matched output variable is equal to the value of
some input variable in all care terms.

In most cases the PRPG outputs are drawn directly from the outputs of flip-flops. These
flip-flops often have also the negative value of their outputs provided. Then, also the negative
matching should be considered as a possibility to implement some variable of the output
decoder as a simple wire. This happens when the value of the matched output variable
is complement to the value of some input variable in all care terms. The possibility of a
negative column matching should be then considered.

4.6.6 An ISCAS Benchmark Example

To illustrate the principles of the method we have chosen the c17 ISCAS benchmark
[Brg85] for its simplicity. As an input to the algorithm we have a complete test set generated
by an ATPG tool. The test consists of 10 test patterns (see Fig. 4.10). Our goal
is to implement a BIST structure applying the given test set to the c17 benchmark circuit.

It should be mentioned that the test set shown in Fig. 4.10 is used here for strictly
illustrative purposes. It is well known that c17 can be completely tested with 4 patterns and
that, on the other hand, if we used an exhaustive test (which would be easy to implement due
to the small size of the circuit), the output decoder circuitry would completely disappear.

 21

01111
00001
01101
10001
01110
10111
00101
10011
00011
01000

Figure 4.10: ISCAS c17 test vectors

As a PRPG we have selected a 5-stage LFSR with generating polynomial x5 + x2 + 1 seeded
with a vector 00010. In the following two subsections we will illustrate both the one-to-one
assignment and the generalized matching process.

4.6.7 One-to-One Assignment for c17 Benchmark

In this example we show how the decomposition of matrices into set systems is being done
for the one-to-one assignment into detail. We have two matrices as an input: the C matrix
represents the patterns generated by the LFSR, the T matrix contains pre-generated test
patterns shown in Fig. 4.10.

First, the counts of ones in all columns in both matrices are enumerated: for the C matrix
these counts are {4, 4, 5, 5, 4}, for T matrix {3, 4, 5, 5, 8}. Thus, all possible column matches
are {x0-y1, x1-y1, x2-y2, x2-y3, x3-y2, x3-y3, x4-y1}. At the beginning we select x3-y2 match and
perform the decomposition of the matrices. Then the negative column match x'2-y3 is chosen
and at the end we select the match x1-y1. No exact matches are possible any more, thus there
has been three exact column matches found.

Figure 4.11: One-to-one exact column matching example

In all the subsets the Ci vectors are assigned to T i vectors and the remaining logic is
minimized by BOOM or ESPRESSO. The resulting schematic is shown in Fig. 4.12.

 22

Figure 4.12: BIST implementation for c17 circuit

 4.6.8 Generalized Column Matching Example

We have found three exact column matches for a one-to-one assignment in the previous
example, whereas the decoder for the remaining two variables needed to be synthesized. Now
we will try to let the LFSR run for more than the minimum required 10 cycles and see if more
exact matches will be achieved.

We have found experimentally, that when we retain the LFSR generating polynomial and
seed from the previous example, 19 LFSR cycles are needed to match all the columns. Thus,
absolutely no additional logic is needed to build the output decoder. In Fig. 4.13 we show one
of the possible assignments of the test patterns to 10 of the 19 LFSR patterns and the resulting
combinational logic of the output decoder, which is formed just as a permutation of wires in
this case. For comparison, let us note that an exhaustive test set having an equally simple
output decoder would require 32 patterns. The exact column matches found for our example
are obvious from the final solution.

Figure 4.12: Assignment of rows for c17 circuit

 23

4.7 Column Matching Exploiting Test Don’t Cares

Until now, we have assumed that the T matrix contains only test patterns in their
compacted form, i.e., minterms. Some ATPG tools produce test patterns containing don’t care
values (DCs). Such a test is often significantly longer than the compacted one, but on the
other hand the don’t cares can be advantageously exploited in the output decoder design.

The problem of constructing the output decoder is in this case similar to the previous one:
all the T matrix vectors are to be assigned to the C matrix vectors, while s ≤ p. The T matrix
contains don’t care values, the C matrix contains only minterms, since concrete vectors are
produced by a PRPG.

When the don’t cares are not present in the test set, each of the test vectors can be assigned
to a set of PRPG patterns at every instant, while all these sets are disjoint. But when the don’t
cares are present, these sets become non-disjoint. This is because we cannot decide what
values to assign to the don’t cares, until all the matches are done. Thus the algorithm consists
of two linked NP-hard problems. We have found that using the set system approach here is
rather time-consuming, although it is not impossible.

An efficient heuristic based on a blocking matrix B has been proposed in [Fis03a]. The
blocking matrix is a binary matrix (it contains only “0” and “1” values) of dimensions (p, s).
Thus, it has as many columns as there are T matrix rows and as many rows as there are
C matrix rows. The value "1" in the cell B[k, l] indicates that the k-th C matrix row may be
assigned to the l-th T matrix row, "0" value indicates the contrary.

At the beginning of the algorithm all the B matrix cells are filled with a "1" value, since
there are no restrictions for row assignments. After the i-th C matrix column is matched with
the j-th T matrix column column, the B matrix cells [k, l] are set to "0" when the k-th input
row contains in a i-th column the opposite value to the l-th output row in a j-th column. Thus,
rows that contain opposite values in the matched columns cannot be assigned to each other.

B[k, l] := “0” when (C[k, i] ≠ T[l, j] ∧ T[l, j] ≠ don’t care) (4.2)

If the negative column match is to be performed, the B matrix cells are set to “0” when
equal values are present in the respective positions.

When making the row assignment, distinct rows have to be assigned to each other. It is a
trivial problem for a test without don’t cares, since there does not exist a B matrix row having
“1” value in more than one column (one PRPG code word cannot be assigned to more than
one test pattern). The final assignment then consists in selecting one row from the possible
ones for each of the columns. Unfortunately, in the column matching exploiting don’t cares
the B matrix rows may have ones in more than one column, since some values in the test
patterns will be determined after the assignment. This makes the assignment to be a NP-hard
problem. An example of an assignment is shown in Table 4.2. Here all the output vectors t1-t6
are to be assigned to the LFSR vectors c1-c6. There are two possible solutions to this problem:

Table 4.2: Row assignment using a B matrix

 t1 t2 t3 t4 t5
c1 1 0 0 1 0
c2 0 1 0 0 0
c3 0 1 0 0 0
c4 0 0 1 0 0
c5 0 0 1 0 1
c6 0 0 0 1 1

t1 – c1
t2 – c2 or c3
t3 – c4
t4 – c6
t5 – c5

 24

Since the B matrix is mostly rather large, solving this problem exactly becomes impossible.
Thus some heuristic has to be used. Selecting a proper algorithm is of a key importance for
reaching good results. For instance, if an assignment of c1 to t4 in Table 4.2 was chosen at the
beginning, the algorithm would yield no solution – there won’t be any possible assignment
for t1.

4.7.1 Row Assignment Algorithms

It would be often extremely time-consuming to solve this problem exactly, thus we use a
greedy incremental heuristic. Since the column-matching algorithm needs to solve this
problem after every column match, the row assignment heuristic should be fast. Moreover, the
whole process is being guided by the result of the assignment. If the assignment fails, the
column-matching will stop. Thus, the algorithm should be precise enough as well. For this
reason we have tried out several methods and compared the results to select the best one.

One method (LCLR – least in column, least in row) uses a simple greedy heuristic. The
B matrix column with the least number of “1” values is found (because the respective
T matrix vector would be hard to assign) and the row having a “1” value in this column and
the least “1”s in other columns is assigned to it (because the respective C matrix vector is not
so “useful” for other assignments). If a column without any “1” value is found at some
instant, the algorithm returns a failure and the whole column matching process is stopped
(when no backtracking is used). The algorithm has not succeeded in finding an assignment in
this case, however, there is still a possibility that there exists a solution.

The second, more sophisticated heuristic constructs a scoring matrix from which the best
row assignments are being picked-up. It is similar to the B matrix, but any values can be
contained in its cells. Each cell contains a value defining a “score” of a particular row
assignment. It is computed by dividing the number of ones in a respective B matrix row
by the number of ones in a respective B matrix column. An assignment having a biggest score
is done, the matched row and column is removed from the B matrix and all the values are
recomputed. The process is repeated until all test columns are assigned or an all-zero column
is encountered.

We have tested the efficiency of the algorithms on the s526 ISCAS benchmark [Brg89]
having 24 inputs, 1000 LFSR vectors were to be matched with 20 tests. We have run the
column-matching algorithm 300 times in its thorough search mode (see later), while in each
step a row assignment was performed repeatedly 1000 times, using both methods, plus
a purely random assignment, just for a comparison. In those 300 iterations 80 000 runs of the
row-assignment algorithm were required, from which 6500 were successful (there was
a solution). Figures 4.14 and 4.15 show histograms of the frequencies of the successful hits
in the 6500 row assignment passes for the three algorithms. Figure 4.15 is a close-up view
on the unsuccessful tries.

 25

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000 LCLR
 Scoring matrix
 Random

Fr
eq

ue
nc

y

Hits

Figure 4.14: Row assignment histograms

0 100 200 300 400 500 600 700 800 900
0

200

400

600

800 LCLR
 Scoring matrix
 Random

Fr
eq

ue
nc

y

Hits

Figure 4.15: Close-up view of Fig. 4.14

We can see that in most cases both the LCLR and scoring matrix based heuristics found
a solution, while the randomized method was not so successful. Particularly, the LCLR found
an assignment in 97.3% of the possible cases, the scoring matrix based method in 97.6% and
the random method in 57.2% only. The average runtimes with the percentage of the efficiency
of all the heuristics are shown in Table 4.3. All the experiments were run on a PC with
a 1200 MHz Athlon processor.

Table 4.3: Row assignment algorithms

algorithm successfulness runtime
LCLR 97.3% 0.28 ms
scoring matrix 97.6% 2.94 ms
random 57.2% 0.09 ms

We can conclude from these results that both the LCLR and scoring matrix based

algorithms are extremely efficient, unlike the random approach. Both the algorithms are
almost equally successful, however the scoring matrix method is more than 10 times slower.
For this reason, in all our experiments we use the LCLR row assignment algorithm. Since for
all the columns of the B matrix rows values in all the rows have to be examined in a case

 26

of a successful assignment, the time complexity of the algorithm is O(p�s). The algorithms are
described in [Fis04d] as well.

4.7.2 The Column Matching Algorithms

We have developed several algorithms driving the whole column-matching process. In the
exact search all the possibilities for all the matches are explored, which always yields the
optimum solution, in terms of the number of matches achieved. However, the time complexity
of this algorithm grows exponentially with the number of output variables, thus it is not
feasible to use it for practical problems.

Then a simple heuristic can be used: when a non-valid column match is encountered
(during the row assignment process), the whole process could be stopped. This is the fastest
algorithm, which is often suitable for problems with a large number of variables. Because the
row assignment is repeated after every column match and there could exist at most m column
matches, the worst-case complexity of this algorithm would be O(m�p�s). It corresponds
to a case where all the m column matches were found. This algorithm will be denoted as a fast
search.

The result may be further improved by trying other possibilities for a column match if one
column match fails. This would significantly increase the runtime. We call this algorithm
a thorough search. The worst-case complexity increases to O(n�m2

�p�s), however the
best-case complexity is equal to the fast search case. A typical progress of a thorough search
is shown in Fig. 4.16. Here the s526 ISCAS benchmark [Brg89] having 24 inputs was solved.
The test set consisted of 20 vectors and these had to be matched to 1000 LFSR vectors.
A simple fast search would end after only 3 column matches (after 30 ms), while the
thorough search ran for 198 cycles, but reached 21 column matches (in 200 ms). From this
example it is obvious that the thorough search significantly outperforms the fast search.

0 50 100 150 200
0

5

10

15

20

s526, 24 inputs
20 tests
1000 LFSR vectors

M
at

ch
es

Step

Figure 4.16: Thorough search progress

Several modifications can be yet done to improve the result quality. The selection for
column matches is being done purely at random. Thus, when the whole column matching
process is repeated several times, there is a chance that we will reach a better solution. After
every repetition the number of column matches reached is compared with the previously
reached one, and if it is bigger, it is recorded as the so far best solution. For the fast search
it is the only possibility to reach a good solution. Here the column matching can be even
further sped up: it is not necessary to perform a row assignment after each column match – the
number of up to now obtained maximum of the column matches is performed and after that

 27

it is checked for validity (by making a row assignment). When it is not valid, the whole
solution is rejected, since it cannot improve the overall solution. The repetitive fast search
might be a good way to improve the result quality for problems with a large number
of variables, however it often never outperforms the thorough search, in terms of the number
of column matches reached.

The improvement of the number of column matches reached is visualized by Fig. 4.17.
Here the same problem as in the previous example was solved by a fast search repetitively
1000 times. After the first run only 5 column matches were obtained, however in the 464th
pass 19 matches were found. More matches were not found in the following passes.

The whole process had run 11.5 seconds. Let us remind for comparison that the thorough
search had found 21 matches in 200 ms.

0 200 400 600 800 1000

4

6

8

10

12

14

16

18

20

s526, 24 inputs
20 tests
1000 LFSR vectors

M
a

tc
h

es

Iteration

Figure 4.17: Repetitive fast search

The thorough search can be augmented by repetition as well. Unfortunately, the speedup
method mentioned above cannot be used here. On the other hand, other techniques can
be applied. Since the row assignment is quite a time-consuming process, we try to avoid it at
any cost. One possibility is to keep a history. After each run of the whole algorithm we store
the column matches obtained into a special buffer. In all the following runs we check the
possibility for a column match in this buffer, and only if it is not found, the row assignment
is performed. The buffer can be efficiently constructed as a tree, where the result is obtained
in m steps at most.

Further improvement of the thorough search algorithm consists in applying a backtracking
technique. At the end of the search, when everything fails, one of the column matches is taken
back and the search continues (while the removed match cannot be repeated). This means
a big increase of a runtime – consider that all the unsuccessful matches have to be repeated.
Hence, the backtracking technique was found to be not this efficient, the repetitive thorough
search yields better results.

4.7.3 The Basic Algorithm

The summary of the basic fast search column matching algorithm is presented in this
subsection.

Since the number of the C matrix rows is often much higher then the number of the
T matrix rows, finding several initial column matches is a trivial problem: almost any two

 28

columns can be matched, because there is a big choice of possible assignments for the
C matrix rows. Thus the selection of the rows to be matched is done at random.

When two columns to be matched are selected, the match must be checked for validity
using a B matrix. Thus, after each column match the row assignment has to be performed
to determine whether the match is valid. If the assignment fails the column matching process
is terminated and the last valid assignment is considered as a final result. The row assignment
forms a truth table, which has to be further processed. Firstly, the test don’t cares in the
matched T matrix columns are substituted by “0” and “1” values according to the values
of the corresponding C matrix columns. Since most of the tests including don’t cares are not
in a compacted form (e.g., there is one test pattern for each of the s-a faults), some test
compaction technique [Ham98] should be applied after the column matching. This often
reduces the length of the BIST, and it reduces the amount of the output decoder logic as well.
Then the matched output variables are removed from the truth table and the values of the
remaining output variables are synthesized by some standard Boolean minimizer [Bra84,
Fis03b].

The algorithm can be described by the following pseudo-code. The inputs of the algorithm
are the C and T matrices, the output is in the form of a minimized Boolean function.

Algorithm 4.2: Fast Search Column Matching

ColumnMatching(C, T) {
for (k = 0; k < C_matrix_rows; k ++) // initiallize B matrix

for (l = 0; l < T_matrix_rows; l ++)
B[k, l] = “1”;

A = ∅;
do {

i = random(C_matrix_columns); // randomly select columns
j = random(T_matrix_columns);
for (k = 0; k < C_matrix_rows; k ++) // modify blocking matrix
 for (l = 0; l < T_matrix_rows; l ++)

if (T[l, j] ≠ DC && C[k, i] ≠ T[l, j]) B[k, l] = “0”;
A’ = A; // make backup of the row assignment
A = MakeRowAssignment(B); // make row assignment

} while (A ≠ FAILED);
Substitute_DCs(T); // substitute test DCs with “0” or “1”
CompactTest(T); // make test compaction
ExtractMatches(C, T); // remove matched outputs
F = Minimize(A’) // synthesize the remaining logic
return F;

}

4.7.4 Overview of the Column-Matching Alternatives in Mixed-Mode BIST

Up to now it has been assumed that applying a column match means no hardware to
implement one output. Obviously, when no column match for a particular output is found,
some combinational logic has to be added to the Output Decoder. For a mixed-mode BIST,
namely when the test is divided into the two above-mentioned phases, the Switch is present as
well. Our aim is to minimize both the Output Decoder and the switching logic. There are five
possibilities for a particular output decoder output:

• There has been found a column match between the output variable yi and the input

variable xi. Then yi will be implemented as a wire, without any output decoder logic.
Moreover, there will be no switching logic for this output; the CUT is being fed directly

 29

by an LFSR output. In our example (Fig. 4.4) it is a case of y0 and y1. Such a case will be
denoted as a direct column match.

• There has been found a negative column match between the output variable yi and the
input variable xi. Then the decoder logic for yi could be implemented as a negator. The
switching logic for yi will be a multiplexer. In praxis, it is more advantageous to join
these two gates into a single XOR gate. In our example (Fig. 4.4) it is a case of y2. Such
a case will be denoted as a negative direct column match.

• The variable yi has been matched with the xj variable, while i � j. If the first BIST phase
weren’t present, yi would be implemented as a wire. In mixed-mode BIST there has to be
a multiplexer switching yi between xi and xj LFSR outputs added. In Fig. 4.4 it is the y3

case. Such a match will be denoted as an indirect column match.
• An indirect negative column match is a similar case. Here an inverter has to be added to

the matched LFSR output. However, the D flip-flops used in the LFSR are often provided
with the negated output as well, so no additional inverter would be needed in this case.

• No column matching was found for some yi. Here the output decoder has to synthesize
the proper output values, while an additional multiplexer has to be present in the
switching block. This is a case of y4 in Fig. 4.4.

The first case mentioned is, of course, the one with the lowest BIST area overhead, in the

latter ones the overhead gradually increases. Thus, the intention of the algorithm should be to
prefer the direct matches, and only when no such are possible, the indirect column matches
should be made. This is the way how the column-matching heuristic selects the candidates to
match – it gradually scans all the unmatched output variables for a possibility for a direct
column match. When one is found, it is performed and the search continues. When there is no
possibility for a direct match any more, the indirect ones are being made. When no matches
are possible, the resulting outputs are synthesized by BOOM [Hla01, Fis03b].

 30

Chapter 5

Experimental Results

5.1 Influence of the Length of the Pseudorandom Phase

To illustrate the importance of properly choosing the parameters of the pseudo-random
phase we have designed a BIST structure for several ISCAS benchmarks [Brg85, Brg89].
We have varied the length of the pseudo-random phase, while the length of the deterministic
phase was kept constant, 1000 cycles. As a fault simulator FSIM was used [Lee91],
as an ATPG we have used Atalanta [Lee93]. For all the benchmarks a test covering all the
irredundant faults was produced by this tool.

The results are shown in Table 5.1. The benchmark name and the number of its inputs are
shown in the first two columns. The “PR” column indicates the length of the pseudo-random
phase, the “UD” column shows the number of s-a faults that were left undetected after the
“PR” pseudo-random cycles. “vct.” gives then the number of deterministic vectors generated
to test these faults. The “M” column shows the total number of column matches obtained,
“DM” the number of direct column matches. The “SW GEs” column describes the
complexity of the Switch and “OD GEs” column of the Decoder, in terms of the gate
equivalents [DeM94]. These two values are summed together in the next column, to obtain
the total area overhead of the combinational block. The time needed to complete the
column-matching procedure is indicated in the last column. The runtimes of the fault
simulation and Boolean minimization were negligible comparing to the column-matching
runtimes. The experiment was run on a PC with Athlon CPU, on 1 GHz, under Windows XP.

Table 5.1: Influence of the pseudo-random phase on the result

bench inps PR UD vct. M DM SW GEs OD GEs Total GEs Time [s]
c1908 33 1000 65 39 20 11 33 48 81 4.88
 2000 23 10 33 23 15 0 15 0.18
c2670 233 1000 309 86 193 173 90 109.5 199.5 166
 2000 306 86 192 175 87 102.5 189.5 166
 5000 216 73 198 164 103.5 91 194.5 143
 10000 154 69 199 178 82.5 84 166.5 123
c3540 50 300 165 66 38 29 31.5 78 109.5 10.26
 500 92 42 44 29 31.5 25 56.5 3.88

 31

 1000 36 26 49 32 27 1 28 1.02
 2000 9 9 50 41 13.5 0 13.5 0.19
 5000 1 1 50 49 1.5 0 1.5 0.02
s1196 32 200 228 104 26 25 10.5 100 110.5 5.05
 500 141 79 27 23 13.5 63.5 77 3.87
 1000 90 51 27 24 12 38.5 50.5 2.00
 2000 52 37 28 23 13.5 23.5 37 1.20
 5000 23 17 29 25 10.5 6.5 17 0.48
 10000 9 4 32 28 6 0 6 0.04

It can be concluded from this table that the pseudorandom phase plays a very important role

here. If its length is selected so that many easy-to-detect faults are covered by it, only few
faults are to be covered by the deterministic phase, thus the Decoder logic would be
negligible. However, for circuits having a large number of hard-to-detect faults (c2670) the
amount of the Decoder logic cannot be influenced by this phase too much.

5.2 The Deterministic Phase

In the deterministic phase deterministic vectors are synthesized from some of the LFSR
patterns that follow after the pseudo-random phase. With increasing number of LFSR patterns
the chance to find more column matches increases as well. This is due to having more
freedom for selecting the LFSR vectors to be assigned to the deterministic vectors. However,
with the number of vectors the design runtime rapidly increases.

This is illustrated by Table 5.2. Its format is retained from Table 5.1, the “Det.” column
indicates the length of the deterministic phase.

It can be observed that a trade-off between the test time and area overhead can be freely
adjusted here too, according to demands of the BIST designer.

The lengths of both the phases significantly influence the BIST design time as well. The
design process is being sped up when increasing the length of the pseudo-random phase, since
the number of deterministic vectors is being reduced this way. On the other hand,
an increasing length of the deterministic phase slows down the process.

Table 5.2: Influence of the deterministic phase on the result

bench inps PR Det. vct. M DM SW GEs OD GEs Total GEs Time [s]
c1908 33 1000 500 39 18 9 36 54.5 90.5 1.6
 1000 20 11 33 48 81 4.88
 2000 20 13 30 50 80 8.47
 5000 22 13 30 38.5 68.5 25.78
c3540 50 1000 200 26 48 31 28.5 5.5 34 0.32
 500 49 31 28.5 1 29.5 0.52
 1000 49 32 27 1 28 1.02
 2000 50 39 16.5 0 16.5 1.47
 5000 50 45 7.5 0 7.5 2.93
s1196 32 5000 200 23 27 22 15 10.5 25.5 0.17
 500 29 20 18 7 27 0.32
 1000 29 25 10.5 6.5 17 0.48

 32

 2000 29 26 9 8 17 1.52
 5000 31 27 7.5 1.5 9 2.16
 10000 32 29 4.5 0 4.5 5.83

5.3 Comparison of the Results

We have compared our results with two state-of-the-art methods, namely the bit-fixing
method [Tou95] and the row matching method proposed in [Cha03]. The comparison
is shown in Table 5.3. The “TL” columns indicate the total length of the test, the “GEs”
columns give the number of gate equivalents of the BIST combinational circuits. The
column-matching GEs in bold indicate that our method was better than both the other
methods in the particular case, in terms of the complexity of the transforming combinational
logic. Let us note here, that a special kind of a PRPG is used in the row-matching approach
[Cha03]. Such a circuit causes quite a large area overhead in most cases, for many XOR gates
present. This overhead is not included in the table. Our method is independent on a PRPG
used, in general, thus in all the cases we have used an LFSR with two XOR gates only,
independently on its width. Thus, sometimes bigger area overhead of our method could be
compensated by a small area of the PRPG used. The empty cells indicate that the data for the
respective circuit was not available to us.

Table 5.3: Comparison results

 Column-matching Bit-fixing Row-matching
Bench TL GEs TL GEs TL GEs
c880 1 K 10.5 1 K 27 1 K 21
c1355 2 K 15 3 K 11 2 K 0
c1908 3 K 7.5 4 K 12 4.5 K 8
c2670 5 K 172 5 K 121 5 K 119
c3540 5.5 K 1.5 4.5 K 13 4.5 K 4
c7552 8 K 586 10 K 186 8 K 297
s420 1 K 24.5 1 K 28 - -
s641 4 K 15 10 K 12 10 K 6
s713 5 K 16.5 - - 5 K 4
s838 6 K 130 10 K 37 - -
s1196 10 K 6 - - 10 K 36

5.4 Results for Standard Benchmarks

Since the comparison shown in Table 5.3 describes results for a few benchmark circuits
only, we will present a more exhaustive result table, for most of ISCAS [Brg85, Brg89]
benchmarks. For each benchmark the BIST circuitry was synthesized in two modes – for the
first one, the test length was set to be relatively small (the white rows). In the second one the
test was longer, to keep the area overhead as small as possible. Thus, the tradeoff between the
test length and area overhead can be seen well.

The “inps” column indicates the number of the benchmark inputs, in the “PRand” column
the number of pseudo-random vectors needed to be applied to the CUT to be completely
tested is shown, just to show the effectiveness of the method. The “TL” column gives the

 33

lengths of the pseudorandom and deterministic phases. The “M” and “DM” columns show
the number of total and direct column matches reached. The complexity of the switching logic
is shown in the “SW GEs” column, the complexity of the output decoder in “OD GEs” . These
numbers are summed together in the “Total GEs” column. The runtime needed to complete
the column-matching process is indicated in the last column.

Table 5.4: ISCAS benchmarks

Bench inps PRand TL M DM SW
GEs

OD
GEs

Total
GEs

Time [s]

c880 60 2.5 K 100 + 100 53 22 57 12.5 69.5 0.50
 500 + 500 60 50 15 0 15 0.04
c1908 33 3 K 1000 + 500 18 9 36 54.5 90.5 1.6
 2000 + 500 33 16 25.5 0 25.5 0.14
c2670 233 2.4 M 1000 + 1000 193 173 90 109.5 199.5 166
 10000 + 5000 204 179 81 73.5 154.5 673
c3540 50 5 K 1000 + 500 50 34 24 0 24 0.40
 2000 + 1000 50 41 13.5 0 13.5 0.19
c5315 178 2 K 500 + 500 168 121 85.5 20.5 106 6.43
 1000 + 500 178 154 36 0 36 0.13
c7552 207 > 100 M 7000 + 1000 131 33 261 325 586 500
 10000 + 2000 133 36 256.5 248.5 505 887
s420 34 165 K 400 + 600 32 21 21 3.5 24.5 0.75
 3000 + 1000 35 21 21 0 21 0.41
s526 24 5 K 500 + 500 21 20 6 8 14 0.20
 1000 + 1000 24 21 4.5 0 4.5 0.11
s641 54 200 K 500 + 500 52 40 21 2 23 0.47
 3000 + 1000 54 44 15 0 15 0.21
s713 54 300 K 500 + 500 52 38 24 3 27 0.56
 3000 + 1000 54 42 18 0 18 0.32
s820 23 10 K 1000 + 1000 20 19 6 9.5 15.5 0.50
 3000 + 1000 23 18 7.5 0 7.5 0.15
s832 23 10 K 1000 + 1000 19 19 6 8.5 14.5 0.40
 3000 + 1000 22 19 6 2 8 0.20
s838 67 > 100 M 1000 + 1000 37 13 81 45 126 26.20
 10000 + 2000 46 14 79.5 29 108.5 51.51
s953 45 15 K 1000 + 1000 42 38 10.5 6 16.5 1.23
 2000 + 1000 45 39 9 0 9 0.58
s1196 32 200 K 2000 + 1000 28 23 13.5 23.5 37 1.20
 9000 + 1000 32 28 6 0 6 0.04
s1238 32 20 K 1000 + 1000 27 22 15 43 58 2.51
 5000 + 1000 30 23 13.5 4.5 18 0.44
s1423 91 10 K 1000 + 1000 89 63 42 2 44 1.43
 5000 + 1000 91 82 13.5 0 13.5 0.06
s1488 14 2 K 300 + 200 9 8 9 55.5 64.5 0.13
 500 + 500 13 10 6 2 8 0.12
s1494 14 2 K 300 + 200 10 8 9 41 50 0.12
 500 + 500 12 12 3 13 16 0.12

 34

Chapter 6

Conclusions and Future Work

A mixed-mode BIST method based on the column-matching approach has been proposed.
Here the pseudorandom LFSR code words are being transformed into deterministic test
patterns computed by some ATPG tool. The transformation is being done by a purely
combinational block. Here we try to match as many of its outputs as possible with its inputs,
which yields no logic necessary to implement these outputs.

The method is designed for a test-per-scan BIST, however it can be easily adopted
to full-scan or multiple-scan circuits. The pseudo-random and deterministic phases are
separated, which enables to reach smaller area overhead. The method is based on a design
of a decoder transforming the LFSR code words into deterministic test vectors testing the
hard-to-detect faults. In all the mixed-mode designs, some kind of switching logic is involved.
A method reducing both the transformation and switching logic is proposed here.

The test is divided into two phases, the pseudo-random and deterministic. The lengths
of both phases might be freely adjusted, to find a trade-off between the test time and area
overhead. It has been shown that the length of the pseudo-random phase has a crucial impact
on the result and we present a methodology for choosing its length efficiently.

The length of the deterministic phase influences the result as well, however not too
significantly. The impact of the test lengths on the duration of the BIST design process is
considered as well.

A big scalability of the method, in terms of the area overhead, test time and design time
was shown.

Our BIST method can be used for any fault model, if a proper fault simulator and ATPG
tool is provided. The fault coverage reached is dependent only on the ATPG tool as well; a
trade-off between the fault coverage and BIST area overhead can be adjusted too.

The method was tested on the standard ISCAS benchmarks and the results were compared
with other state-of-the-art methods.

As the future work we plan to do several minor modifications, which could help us to

slightly reduce the complexity of the resulting BIST. Namely it is using cellular automata or
other more complex structures as the PRPG.

More essential modification of the algorithm will enable us to adjust the width of the
PRPG. Until now, we have assumed that the number PRPG outputs is equal to the number of
CUT inputs, at least in the mixed-mode method. There would be no modification of the
algorithm for this case. However, for a wider PRPG the algorithm cannot decide what PRPG
outputs should be connected to the CUT inputs in the pseudo-random phase - until now they

 35

are connected in an ascending order, however it is possible to choose any other order. This
problem gives us a hint for another possibility of improvement of our algorithm – to consider
a permutation of wires, not to just connect it straight.

This would be possible to do by incorporating the ATPG tool into the algorithm more
extensively. Particularly, the deterministic test won’t be generated in one step, but iteratively
with a chance to change unwanted tests and to enable the column-matching algorithm to take
hints from the ATPG. For example, for a particular set of faults we will be able to select a test
vector having don't care values in the positions of the already matched columns. Thus, the
restrictions put on the following column match will be reduced.

Such a major modification could significantly reduce both the area overhead and the test
length.

To be able to cope with most of VLSI core designs we will modify our method to support
the test-per-scan BIST, even for multiple scan-chains.

Larger circuits are often hard to test, especially for their huge number of inputs (arising
from the scan-chain). Thus, we will try to propose a partitioning method, splitting large
circuits into smaller ones, for which would be the BIST constructed separately. Such a
partitioning should be done in such a way that the CUT performance should not be affected,
nor the area overhead would significantly increase.

Then, after all, we plan to combine our method with other methods, namely to exploit the
reseeding principle. This would make Column-matching a universal BIST design method.

 36

List of Abbreviations

ATE....................Automatic Test Equipment
ATPGAutomatic Test Pattern Generator
BISTBuilt-in Self-Test
CUT....................Circuit under Test
DCDon’t Care
FSM....................Finite State Machine
GEGate Equivalent
LFSRLinear Feedback Shift Register
MISR..................Multiple-Input Shift Register
PRPG..................Pseudo-Random Pattern Generator
RE.......................Response Evaluator
TPGTest Pattern Generator

List of Symbols Used

CPRPG code words matrix
TTest matrix
ia particular C matrix column (to be matched)
ja particular T matrix column (to be matched)
k..........................a particular C matrix row
la particular T matrix row
m.........................number of column matches
n..........................number of PRPG bits; number of C matrix columns
p..........................number of PRPG cycles; number of C matrix rows
rnumber of CUT inputs; number of T matrix columns
s..........................number of deterministic test vectors; number of T matrix rows
xiinput variable (LFSR output, Decoder input)
yjoutput variable (Decoder output, CUT input)

 37

References

[Aga93] V.K. Agarwal, C.R. Kime and K.K. Saluja. A tutorial on BIST, part 1: Principles,
IEEE Design & Test of Computers, vol. 10, No.1 March 1993, pp.73-83, part 2:
Applications, No.2 June 1993, pp. 69-77

[Alo93] K. Aloke, K. and D.P. Chaudhuri. Vector Space Theoretic Analysis of Additive
Cellular Automata and Its Application of Pseudoexhaustive Test Pattern Generation, IEEE
Transactions on Computers, Vol. 42, No. 3, March 1993, pp. 340-352

[AlS94] M.F. AlShaibi and C.R. Kime. Fixed-Biased Pseudorandom Built-In Self-Test for
Random Pattern Resistant Circuits, Proc. of International Test Conference, pp. 929-938,
1994

[Bar87] P.H. Bardell, W.H. McAnney and J. Savir. Buit-In Test for VLSI: Pseudorandom
Techniques, New York: Wiley, 1987

[Bra84] R.K. Brayton, et al. Logic Minimization Algorithms for VLSI Synthesis, Boston, MA,
Kluwer Academic Publishers, 1984

[Brg85] F. Brglez and H. Fujiwara. A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortan, Proc. of International Symposium on Circuits
and Systems, pp. 663-698, 1985

[Brg89] F. Brglez, D. Bryan and K. Kozminski. Combinational Profiles of Sequential
Benchmark Circuits, Proc. of International Symposium of Circuits and Systems, pp. 1929-
1934, 1989

[Cha95] M. Chatterjee and D.K. Pradhan. A novel pattern generator for near-perfect fault
coverage, Proc. of VLSI Test Symposium 1995, pp. 417-425

[Cha03] M. Chatterjee and D.K. Pradhan. A BIST Pattern Generator Design for Near-Perfect
Fault Coverage, IEEE Transactions on Computers, vol. 52, no. 12, December 2003, pp.
1543-1558

[DeM94] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994

[Gir99] P. Girard, et al.: A test vector inhibiting technique for low energy BIST design. IEEE
VLSI Test Symposium, May 1999, pp. 407-412.

[Ham98] I. Hamzaoglu and J.H. Patel. Test Set Compaction Algorithms for Combinational
Circuits, Proceedings of the International Conference on Computer-Aided Design
(ICCAD), November 1998.

[Har93] J. Hartmann and G. Kemnitz. How to Do Weighted Random Testing for BIST, Proc.
of International Conference on Computer-Aided Design (ICCAD), pp. 568-571, 1993

[Hel92] S. Hellebrand, S. Tarnick and J. Rajski. Generation of Vector Patterns Through
Reseeding of Multiple-Polynomial Linear Feedback Shift Registers, Proc. of International
Test Conference, pp. 120-129, 1992

 38

[Hel95] S. Hellebrand, et al. Built-In Test for Circuits with Scan Based on Reseeding of
Multiple-Polynomial Linear Feedback Shift Registers. IEEE Trans. on Comp., vol. 44, No.
2, February 1995, pp. 223-233

[Hel00] S. Hellebrand, H. Liang and H.J. Wunderlich. A Mixed Mode BIST Scheme Based on
reseeding of Folding Counters, Proc. IEEE ITC, 2000, pp.778-784

[Koe91] B. Koenemann. LFSR – Coded Test Patterns for Scan Designs. Proc. Europian Test
Conf., Munich, Germany, 1991, pp. 237-242

[Lee91] H.K. Lee and D.S. Ha. An Efficient Forward Fault Simulation Algorithm Based on
the Paralel Pattern Single Fault Propagation, Proc. of the 1991 International Test
Conference, pp. 946-955, Oct. 1991

[Lee93] H.K. Lee and D.S. Ha. Atalanta: an Efficient ATPG for Combinational Circuits.
Technical Report, 93-12, Dep't of Electrical Eng., Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, 1993

[McC84] E.J. McCluskey. Pseudo-Exhaustive Testing for VLSI Devices, CRC Technical
Report No. 84-6, Dept. of Electrical Engineering and Computer Science, Stanford
University, USA, August 1984

[McC85] E.J. McCluskey. BIST techniques. IEEE Design & Test of Computers, vol. 2 No.2
Apr. 1985, pp.21-28, BIST structures. vol. 2 No.2 Apr. 1985. pp. 29-36

[Nee93] D.J. Neebel and C.R. Kime. Inhomogeneous Cellular Automata for Weighted
Random Pattern Generation, Proc. of International Test Conference, pp. 1013-1022, 1993

[Nov98] O. Novák and J. Hlavi�ka. Design of a Cellular Automaton for Efficient Test Pattern
Generation. Proc. IEEE ETW 1998, Barcelona, Spain, pp. 30-31

[Nov99] O. Novák. Weighted Random Patterns for BIST Generated in Cellular Automata,
Proc. of 5-th IOLTW, Rhodes, Greece, July 1999, pp. 72-76

[Pom93] I. Pomeranz and S.M. Reddy. 3-Weight Pseudo-Random Test Generation Based on a
Deterministic Test Set for Combinational and Sequential Circuits, IEEE Transactions on
Computer-Aided Design, Vol. 12, No. 7, pp. 1050-1058, July 1993

[Str02] E.C. Stroud. A Designer's Guide to Built-In Self-Test, Boston, MA, Kluwer Academic
Publishers, 2002

[Tou95] N.A. Touba. Synthesis of mapping logic for generating transformed pseudo-random
patterns for BIST, Proc. of International Test Conference, pp. 674-682, 1995

[Tou96a] N.A. Touba and E.J. McCluskey. Synthesis Techniques for Pseudo-Random Built-In
Self-Test, Technical Report, (CSL TR # 96-704), Departments of Electrical Engineering
and Computer Science Stanford University, August 1996

[Tou96b] N.A. Touba and E.J. McCluskey. Altering a Pseudo-Random Bit Sequence for
Scan-Based BIST, Proc. of International Test Conference, 1996, pp. 167-175

[Tou01] N.A. Touba and E.J. McCluskey. Bit-Fixing in Pseudorandom Sequences for Scan
BIST, IEEE Transactions on CAD, Vol. 20, No. 4, April 2001, pp. 545-555

[Wun87] H.J. Wunderlich. Self-Test Using Unequiprobable Random Patterns, Proc. of
FTCS-17, pp. 258-263, 1987

[Wun88] H.J. Wunderlich. Multiple Distributions for Biased Random Test Patterns, Proc. of
International Test Conference, pp. 236-244, 1988.

[Wun96] H.J. Wunderlich and G. Keifer. Bit-Flipping BIST, Proc. ACM/IEEE International
Conference on CAD-96 (ICCAD96), San Jose, California, November 1996, pp. 337-343

 39

Dissertation Thesis

Title: Mixed-Mode BIST Based on Column Matching

Abstract
Dissertation Thesis will focus on a design of built-in self-test circuitry for combinational or

scan-based circuits. The method will be based on our novel method – the Column Matching.
The mixed-mode BIST will be supported, while the test will be divided into two disjoint
phases – the pseudo-random and deterministic. In the deterministic phase the test vectors are
generated by a purely combinational block – the Output Decoder. When designing the
Decoder we try to match as many of its outputs with the inputs as possible, which yields no
logic needed to implement them.

Better incorporation of the ATPG tool into the algorithm will be studied, to improve the
quality of the result. Partitioning of large tested circuits will be considered as well, to reduce
the BIST design time and even the resulting BIST area overhead.

The methodology will be verified on standard benchmarks (ISCAS, ITC).

Keywords: built-in self-test, test-per-clock, pseudo-random testing, deterministic BIST

 40

Publications of the Author

[Fis00] P. Fišer and J. Hlavi�ka. Efficient minimization method for incompletely defined

Boolean functions. Proc. 4th Int. Workshop on Boolean Problems, Freiberg (Germany)
21.-22.9.2000, pp.91-98

[Fis01a] P. Fišer and J. Hlavi�ka. Implicant Expansion Method used in the BOOM Minimizer.
Proc. IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop
(DDECS'01), Gyor (Hungary), 18.-20.4.2001, pp. 291-298

[Fis01b] P. Fišer and J. Hlavi�ka. On the Use of Mutations in Boolean Minimization. Proc.
Euromicro Symposium on Digital Systems Design, Warsaw (Poland) 4.-6.9.2001, pp.
300-305

[Fis01c] P. Fišer and J. Hlavi�ka. BOOM - a Boolean Minimizer. Research Report DC-2001-
05, Prague, CTU Publishing House, June 2001, 37 pp.

[Fis02a] P. Fišer and J. Hlavi�ka. Column-Matching Based BIST Design Method. Proc. 7th
IEEE Europian Test Workshop (ETW'02), Corfu (Greece), 26.-29.5.2002, pp. 15-16

[Fis02b] P. Fišer and J. Hlavi�ka. A Set of Logic Design Benchmarks. Proc. IEEE Design and
Diagnostics of Electronic Circuits and Systems Workshop (DDECS'02), Brno (Czech
Rep.), 17.-19.4.2002, pp. 324-327

[Fis02c] P. Fišer and J. Hlavi�ka. A Flexible Minimization and Partitioning Method. Proc. 5th
Int. Workshop on Boolean Problems, Freiberg (Germany) 19.-20.9.2002, pp. 83-90

[Fis03a] P. Fišer, J. Hlavi�ka and H. Kubátová. Column-Matching BIST Exploiting Test
Don't-Cares. Proc. 8th IEEE Europian Test Workshop (ETW'03), Maastricht (The
Netherlands), 25.-28.5.2003, pp. 215-216

[Fis03b] P. Fišer and J. Hlavi�ka. BOOM - A Heuristic Boolean Minimizer, Computers and
Informatics, Vol. 22, 2003, No. 1, pp. 19-51

[Fis03c] P. Fišer and J. Hlavi�ka. A Flexible Minimization and Partitioning Method, Proc. of
Workshop 2003 (web). Prague : CTU, 2003, vol. A, p. 312-313. ISBN 80-01-02708-2

[Fis03d] P. Fišer, J. Hlavi�ka and H. Kubátová. Coverage-Directed Assignment Approach to
BIST, Proc. IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop
(DDECS'03), Poznan (Poland), 14.-16.4.2003, pp. 87-92

[Fis03e] P. Fišer, J. Hlavi�ka and H. Kubátová. FC-Min: A Fast Multi-Output Boolean
Minimizer, Proc. 29th Euromicro Symposium on Digital Systems Design (DSD'03),
Antalya (TR), 1.-6.9.2003, pp. 451-454

[Fis04a] P. Fišer and H. Kubátová. An Efficient Mixed-Mode BIST Technique, Proc. 7th IEEE
Design and Diagnostics of Electronic Circuits and Systems Workshop 2004, Tatranská
Lomnica, SK, 18.-21.4.2004, pp. 227-230

 41

[Fis04b] P. Fišer and H. Kubátová. Pseudorandom Testability - Study of the Effect of the
Generator Type, Proc. 6th International Scientific Conference on Electronic Computers
and Informatics 2004 (ECI'04), Her�any, SR, 22.-24.9.04

[Fis04c] P. Fišer and H. Kubátová. Influence of the Test Lengths on Area Overhead in Mixed-
Mode BIST, Proc. 9th Biennial Conference on Electronics and Microsystem Technology
2004 (BEC'04), Tallinn (Estonia), 3.-6.10.2004

[Fis04d] P. Fišer and H. Kubátová. Survey of the Algorithms in the Column-Matching BIST
Method, Proc. 10th International On-Line Testing Symposium 2004 (IOLTS'04),
Madeira, Portugal, 12.-14.7.2004, pp. 181

[Fis04e] P. Fišer and H. Kubátová. Two-Level Boolean Minimizer BOOM-II, Proc. 6th Int.
Workshop on Boolean Problems, Freiberg, (Germany), 23.-24.9.2004

[Fis04f] P. Fišer and H. Kubátová. Single-Level Partitioning Support in BOOM-II, Proc. 2nd
Descrete-Event System Design 2004 (DESDes'04), Dychów, Poland, 15.-17.9.04, pp.
149-154

[Fis04g] P. Fišer and H. Kubátová. Boolean Minimizer FC-Min: Coverage Finding Process,
Proc. 30th Euromicro Symposium on Digital Systems Design (DSD'04), Rennes (FR),
31.8. - 3.9.04, pp. 152-159

[Hla00] J. Hlavi�ka and P. Fišer. Algorithm for Minimization of Partial Boolean Functions.
Proc. IEEE Design and Diagnostics of Electronic Circuits and Systems (DDECS00)
Workshop, Smolenice, (Slovakia) 5.-7.4.2000, ISBN 80-968320-3-4, pp.130-133

[Hla01] J. Hlavi�ka and P. Fišer. BOOM - a Heuristic Boolean Minimizer. Proc. International
Conference on Computer-Aided Design ICCAD 2001, San Jose, California (USA), 4.-
8.11.2001, pp. 439-442

[Hla01a] J. Hlavi�ka and P. Fišer. A Heuristic method of two-level logic synthesis. Proc. The
5th World Multiconference on Systemics, Cybernetics and Informatics SCI'2001,
Orlando, Florida (USA) 22.-25.7.2001, pp. 283-288, vol. II

[Hla01b] J. Hlavi�ka and P. Fišer. BOOM - a Heuristic Boolean Minimizer. Proc.
International Conference on Computer-Aided Design ICCAD 2001, San Jose, California
(USA), 4.-8.11.2001, pp. 439-442

[Hla02] J. Hlavi�ka and P. Fišer. Minimization and Partitioning Method Reducing Input Sets.
Proc. 1st International Workshop on Electronic Design, Test & Applications (DELTA
2002), New Zealand, 29.-31.1.2002, pp. 434-436

