Postgraduate Study Report DC-PSR-2004-14

Mixed-Mode BIST Based on Column Matching

Petr FiSer

Supervisoring. Hana Kubatova, CSc. September 2004

Department of Computer Science and Engineering email: fiserp@fel.cvut.cz

Faculty of Electrical Engineering WWW: cs.felk.cvut.cz/~fiserp

Czech Technical University in Prague
Karlovo nam. 13
CZ-121 35 Prague 2

Czech Republic

This report was prepared as a part of the project

Design of Highly Reliable Control Systems Built on dynamicallyreconfigurable
FPGAs

This research has been supported by grant GA102/01/0566, GA102/03/0672, GA102/04/2137
and MSM 212300014.

Ing. Petr FiSer Ing. Hana Kubatova, CSc.
g g _
postgraduate student supervisor

Contents

I 1 0o 18 X1 o] o IS TSP PPPRTTTRRR 2
2. Theoretical Background - BISTccoiiiiiiiiiiiiiiie ettt e e e e e e e ettt e e e e e e 4
T == 1= T0 I o 4 PP PPPUPPPPIN
3.1 Exhaustive Testingccooevvvivinnnniccceee.
3.2 Pseudo-random Testingccceeveeeeeennn.
3.3 Reseeding.......cccuvvuiiiiiiiiiieeeie e
3.4 Weighted Pattern BISTuuuuiiiiiiee et ittt e ettt ettt s e e e e aeb bbb e e e e e e e e e e eeeenbanaa s
3.5 Bit-Fixing and Bit-Flipping
3.6 ROW MATCHING ...ttt s ettt e e e e e et e e et aea s e e e e e e e e e eeeee b bbbbnr e e e eeeeeeaeeennnne
4. OVerview Of NEW APPIOGCKooiiiiiiiii e e e e et e e e e e e e e e eeabebaa s
4.1 Column-matching Mixed-Mode BIST Method........ oo oo 11
4.2 Principles of MiXed-MOAE BIST ...t e et e e e e e e eeeennes 12
4.3 The BIST DESIGN PIOCESSot ieeiiiiiiiitetee ettt e e e e e et ettt et b ree e e e e et eeees bbbt n e e e eeeeeeeeeennnnes 13
4.4 The PSeudo-RanNdOM PhaSE...........uiiii ettt 14
4.5 Influence of the LFSR on the BIST DeSigN PrOCESS......ccuuuiiiiiiiiieeeeeeeeieeiiiiie e 15
4.6 The DeterminiStic PRASEu e e et e e e e e e s 16
4.6.1 Problem SEatemMENT.........ouuiiiiii e 16
4.6.2 The Column-Matching MethOduuiiuiiiiii e 17
4.6.3 ONE-T0-ONE ASSIONMIENT. ...ttt e e e e e e ettt e e e et e e e e bbb e e e e eeeeas 18
4.6.4 Generalized Column MatChiNGuuuutmmmme e 19
4.6.5 Negative Column MatChING.........couuuuuuuiiimmmmm et e e e 20
4.6.6 An ISCAS Benchmark EXAMPIE..........uuuuuiieeeeeeeii ettt e e e e e e eeeeannees 20
4.6.7 One-to-One Assignment for C17 Benchmark.......cco..oiiiiiiiiiiiii e 21
4.6.8 Generalized Column Matching EXampPle...... .o 22
4.7 Column Matching EXploiting TeSt DON'L CArESuuuuuureuiiieeeeeiieiieiiiiiier e et eeeeeeeannnes 23
4.7.1 Row ASSIgNMENt AlGOMTNMS......coiiiiiiiiiiiee e e e 24
4.7.2 The Column Matching AlGOrithmSiii e e 26
4.7.3 The BasiC AIGOTTNMcoiiiiiiiiiiiiie s ettt e e ettt e e e e et e e e ettt e e e e e e e e e 27
4.7.4 Overview of the Column-Matching Alternatives iix&tl-Mode BISTooovviiiiiiiiiiiiiiiiiiinnns 28
5. EXPErMENTAI RESUITS.oieiiiiiiiiiiiitttt s ettt s e e e e e e e e ettt s e e e e e e e et e eeeaabbbb e e e e eeeeeeeeeeennnes 30
5.1 Influence of the Length of the Pseudorandom PhaSEa .. oovvvieiiiiiiiiie e 30
5.2 The DeterminiStiC PRASEuuiiiii ettt e e e e e e e eeeennanes 31
5.3 Comparison Of the RESUITSuuuiiiii et 32
5.4 Results for Standard BENCNMAIKS.ouuuuuiiiii e e 32
6. CONCIUSIONS AN FULUIE WOTK.uuuiiiii ettt e e e e et et et e e e e e e e e e eeeeennes 34
[o] N o] o] =V = 11 o] 1 PP PSSUPPPPPRIR 36
LISt Of SYMDOIS USEUoiiiiiiiiiiiiis ittt e e e e e e ettt e e e e e e e e e e e e e e e abb b es 36
RETEIEINCES ... e ettt e e ettt e e e e e e 37
DiISSEITALION TRESIS. ..ceiiiiitiiiii it oottt e e e e e ettt et bbb s e e e e e e e e e e e e esbbbbnaas 39
PUDIICAtIONS OF tNE AULNOTuuii et e et ettt e e e e e e e e e eeeeeaneaes 40

MIXED-MODE BIST BASED ONCOLUMN MATCHING

Petr FiSer
fiserp@fel.cvut.cz
Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University

Karlovo nam. 13

121 35 Prague 2

Czech Republic

Abstract

A test-per-clock BIST method for combinational or fudha circuits is proposed. The
method is based on a design of a combinational block -ddé®oder, transforming
pseudo-random LFSR code words into deterministic test pstigre-computed by some
ATPG tool. We propose a column-matching algorithm to design decoder. Here the
maximum of output variables of the decoder is tried tanbéched with the decoder inputs,
yielding the outputs be implemented as mere wires, thtisouti any logic. No memory
elements are needed to store the test patterns, whisbeean area overhead.

We describe the Column-Matching algorithm into detail and pepseveral heuristic
methods solving some of the major NP-hard problems. Tdoedff between the duration
of the execution of BIST, the solution quality and rumtii® discussed. The time complexity
of the algorithm is studied and experimentally evaluated.

Since quite a large number of test vectors if ofteeded to sufficiently test a particular
circuit, synthesizing all these vectors deterministicallyuld mean a large area overhead.
Thus, the Column-Matching method was modified to supportx@dymode testing. The
BIST is divided into two disjoint phases — the pseudaloamphase, where the LFSR patterns
are being applied to the circuit unmodified, and the detestié phase detecting all the yet
undetected faults. This enables us to reach a highdawdrage in a short test time and with
a low area overhead.

The choice of the lengths of the two phases diranflyences both the test time and area
overhead. This issue is discussed here as well.

The complexity of the resulting BIST is evaluated fog tSCAS benchmarks.

Keywords
built-in self-test, test-per-clock, pseudo-random tgstileterministic BIST

Chapter 1

Introduction

The complexity of present VLSI circuits rapidly growseir testing is becoming more and
more important, together with the tests complexity aotdl costs. Using only external test
equipment (ATE) is becoming impossible, mainly due to a faugeunt of test vectors, long
testing time and very expensive test equipment. Incorpgratie Built-in Self-Test (BIST)
becomes inevitable. It requires no external tester sbttee circuit, since all the circuitry
needed to conduct a test is included in the very circhis i§ paid by an area overhead, long
test time and often a low fault coverage. Up to nowanynBIST methods were developed
[Aga93, Tou96a, Tou96b], all of them trying to find some tradebetween these four
aspects that are mutually antipodal:

» Fault coverage

* Testtime

* Area overhead

* BIST design time

A high fault coverage means either a long test time (esthee test), or a high area
overhead (ROM-based BIST). A pseudo-random testing estafllithe simplest trade-off
between all the three criteria. With an extremely larea overhead the circuit can be tested
usually up to more than 90% in a relatively small numbeclotk cycles (thousands).
To improve fault coverage and to reduce the test timenymenhancements of this
pseudo-random principle were developed. Of course, allesh thre accompanied by some
additional area overhead. Here the BIST design timeesotn importance — a design
of a BIST structure achieving high fault coverage withva dwea overhead often takes a long
time to synthesize.

We propose a novel BIST method based on our Columcifeg principle. We introduce
an Output decoder transforming the pseudo-random patternsd@tésministic patterns
pre-computed by an ATPG (Automatic Test Pattern Gengratolr Using it the desired fault
coverage is obtained (100%), for a cost of the Decodgic.lofo reduce it, we try
to implement as many Decoder outputs as possible as, wirhout any logic. This is being
done by application of the Column-matching algorithm.

Moreover, we extend the method to support a mixed-madiede Here the test is divided
into two phases: the pseudo-random one and the detdimioile. This enables us
to significantly reduce the Decoder logic.

The study is structured as follows: the theoreticakeound and basic BIST principles are
described in Section 2, the related state-of-the-art w8agk/en in Section 3. Major principles
of our newly proposed method are presented in Sectionedgexperimental results are
presented in Section 5, Section 6 contains the conakisio

Chapter 2

Theoretical Background - BIST

The general Built-in Self-Test structure consiststlufee main parts [McC85] — see
Figure 2.1. The TPGIgst Pattern Generatpproducegest patternghat are fed to the inputs
of a Circuit under Tes{CUT) and the responses of a circuit are then evaluataResponse
Evaluator(RE).

Test Pattern Generator

Circuit under Test

Response Evaluator

Figure 2.1: BIST structure

During the test the test patterns are sequentially feldetgrimary inputs of a logic circuit
and the response at the primary outputs is checked. Ifegmonse is different from the
expected value, a fault is detected.

There are two basic testing strategies:ftimetional testingand thestructural testing The
functional testing checks the circuit’s response toitpat patterns to test the functionality
of the circuit, while its inner structure needs not bevkm On the other hand, the structural
test tries to find physical defects of the circuit bgpgagating faults to the output (by finding
a sensitive path). There may exist several kinds of phyialts, namely thetuck-atfaults
(stuck-at-one, stuck-at-zero), bridging faults, opens ahdraechnology dependent faults.
Most of the faults are easy to detect, as they caprbpagated to the circuit’s outputs
by many possible vectors (of their total numbér \gheren is the number of the primary
inputs of a circuit). However, there are faults that lsard to detecrgndom resistant fauljs
as only few test patterns propagate these faults toutpeits. Thus, the amount of faults that
can be detected by a particular test set depends onsthpatéerns. Thus we always have
to specify the set of faults on which we concentrHte. test set detects all faults from the
given fault set, it is denoted asmplete The most commonly accepted fault set consists of all
stuck-at faults.

Since the TPG can be constructed to have both paasaliédr serial outputs the BIST can
be designed in two general ways: test-per-clock andpsscan. In théest-per-clockBIST
the CUT is being fed by parallel outputs of the TPG, and #rach test pattern is processed
in one clock cycle. The response of the CUT goes toe$gonse evaluator in parallel, which
is often a MISR Multi-Input Shift Registgr A general structure of the test-per-clock BIST
is shown in Fig. 2.2.

Test Pattern Generator

PRPG

Output Decoder

Circuit under Test

Figure 2.2: Test-per-clock BIST structure

A second typical structure, suitable especially foriigssequential circuits, is denoted
as atest-per-scarmBIST. It is used in connection with CUTs having a scannchee., the
circuit’s flip-flops are connected into a chain making @tan register for testing purposes.
Here the test patterns are shifted into the scanteegi$the CUT and applied by activating
the functional clock after every full scan-in of oist pattern. The response is then scanned
out and typically evaluated by a serial signature apalfgagnature register).

In this work we deal with the test-per-clock only, howette# method can be adapted
to test-per-scan as well.

Chapter 3

Related Work

Before describing the principles of the state-of-the nagthods, namely the Reseeding,
Weighted pattern testing, Bit-fixing, Bit-flipping and Rowarmnhing methods, we introduce
the naive BIST methods, mainly for better understandiripddatter ones.

3.1 Exhaustive Testing

There are several testing approaches differing in theicessfulness and area overhead.
The most naive method — te&haustive testing feeds the circuit with all the' patterns and
checks the responses. Obviously, for a combinationaliititbe exhaustive test provides
complete fault coverage, and can be very easily impltged (an area overhead is often the
lowest possible), but it is extremely time demanding thwg very inefficient. It is applicable
to circuits with up to 30 inputs (1(atterns, which takes 1 sec on the frequency of 1 GHz),
for more inputs the exhaustive testing is not feasibite {Est patterns are mostly generated
by an LFSR (Linear Feedback Shift Register), since itlpees 2-1 different patterns during
its period and it can be very easily implemented orchiye

A slight modification of this method calledpgeudo-exhaustive testifiglcC84] allows us
to test a circuit exhaustively without a need to usettadl 2' test patterns. The circuit
is divided into several possibly overlappingnes which are logic elements that influence
individual outputs of the circuit. Then, all the cones separately tested exhaustively, and
hereby also the whole circuit is completely testethe Tonly fault type not covered
by pseudo-exhaustive tests are bridging faults betweenestenbelonging to different
non-overlapping cones. If such an efficient decompmusi8 possible, the circuit can be tested
with much less than"2est patterns. However, for more complex circuigs ¢ones are rather
wide (the cones have a large number of inputs) and thusebdg®xhaustive testing is often
not feasible either.

3.2 Pseudo-random Testing

In a simplepseudo-random testindpe test patterns are generated by some pseudo-random
pattern generator (PRPG) and lead directly to the ¢®Ecumputs. It differs from the
exhaustive testing with a test length. If the PRPGcstre and seed are properly chosen, only
several test patterns (less thdh&e necessary to generate to completely test thaitciThe

pseudo-random testing is also widely used in a case whexothglete fault coverage is not
required, since the pseudo-random patterns often sucdpsséiéct most of the easy-to-
detect faults.

In more sophisticated pseudo-random testing methods the psmnditon code words
generated by a PRPG are being transformed by some additimia (combinational
or sequential) in order to reach better fault coveragee lthe main area overhead consists in
the combinational logic. To such methods belong theetksg-based techniques, weighted
testing, bit-fixing, bit-flipping, and others. These methaate often being referenced
as amixed-mode BIST

3.3 Reseeding

In this technique the LFSR is seeded with more than ompuied seeds during the test,
the seeds need to be stored in ROM [Koe91]. The seedét@nesmaller than the test patterns
themselves and, most importantly, more than one tégrpsiare derived from one seed. This
significantly reduces memory requirements.

One problem is that if a standard LFSR is used as arpajenerator, it may always not
be possible to find the seed producing the required testnmt#® solution of this problem
isto use a multi-polynomial LFSR (MP-LFSR), where tleedback network of a LFSR
is reconfigurable [Hel92, Hel95]. Here both the seeds anchpolials are stored in a ROM
memory and for each LFSR seed also a unique LFSR polyh@salected. The structure
of such a TPG is shown in Fig. 3.1.

MP-LFSR .
------------------- Circuit Under Test

(CUT)

Decoding

3
Scan Chain I—DI Signature Reg.

=
=1
:

Figure 3.1: Multi-polynomial BIST

This idea has been extended in [Hel0OO] where ftimdding counter which
Is a programmable Johnson counter, is used as a PRPGthElenember of folding seeds to
be stored in ROM is even more minimized.

In spite of all these techniques reducing memory overhegaleimentation of a ROM on a
chip is still very area demanding and thus the ROM merslooyld be completely eliminated
in BIST.

3.4 Weighted Pattern BIST

One of such approaches is theighted pattern testinglere the PRPG patterns are being
biased by asignal probabilityof each of the PRPG outputs (the probability of a Liejal
in order to reach required test patterns. In the wedgpégtern testing method two problems
have to be solved: first, the weight sets have teadmputed and then how to generate the
weighted signals. Many weight set computation methodge wewposed [Bar87] and it was
shown that multiple weight sets are necessary to peogatterns with a sufficient fault
coverage [Wun88]. These multiple weight sets haveetstbred on chip and also the logic
providing switching between them is complicated, thusrtieghod often implies a large area
overhead.

Several techniques reducing the area overhead of a weightethgasting were proposed
— one of them is aGenerator of Unequiprobable Random Te$GURT) presented
in [Wun87]. The area overhead is reduced to minimum, tiemwi is restricted to only one
weight set. Also the more general method based onfymoglithe GURT [Har93] uses only
one weight set and thus it is also limited to speaeaes of the tested circuits and cannot
be used in general.

Special methods using multiple weight sets that caealsdy implemented were proposed
in [Pom93] and [AIS94]. In [Pom93] three different weightues can be applied by adding
a very simple combinational logic to the PRPG outp[A$$94] on the other hand uses
specially designed PRPG flip-flops.

As the LFSR code words have very balanced propertiesletsign of the logic generating
a weighted signal can be rather difficult. Some apgves using cellular automata instead
of an LFSR were studied, and good results were reached usrapgiroach for some circuits
[Alo03, Nov98, Nov99]. Methods using inhomogeneous cellular raata to produce
weighted pattern sets are presented in [Nee93].

3.5 Bit-Fixing and Bit-Flipping

Principles of the bit-fixing [Tou95, Tou96a, Tou01] and bit-flippinyun96] methods
consist in a modification of some bits by some adudélidogic, in order to increase the fault
coverage. Both of them introduce mapping functionthat transforms the LFSR
pseudo-random code words into deterministic patterns — ge8.Ei

This idea was generalized in [Tou96b], where the problefinding a mapping function
is transformed into finding a minimum rectangle in a l@Enabatrix. Procedures used
in ESPRESSO [Bra84] were used to find a mapping logic.

General schemes of test-per-scan bit-flipping and bidixBIST methods are shown
in Figures 3.3 and 3.4 respectively. The bit-fixing method nexlithe pseudo-random
sequence by AND and OR gates, the bit-flipping method augnleatsequence by flipping
some bits by a XOR gate.

Original Transformed

ajayas ajagas a, a as
000 00D

001 001 JAgt g e

010 — 001 a

011 — 001

100 100 y

101 101

111 111

Figure 3.2: Modifying the LFSR patterns

LFSR
E:

Bit-Fixing Sequence
Generator

Scan Chain

Fix-to-0

Figure 3.3: Bit-fixing scheme

—

CUT

signature
analysis

scan path P

bit-flipping
function
BFF

Figure 3.4: Bit-flipping scheme

3.6 Row Matching

The row matchingapproach proposed in [Cha95, Cha03] is based on a veryrsidata
A simple combinational function that transforms sarhéhe PRPG patterns into test patterns
iIs being designed in order to reach better fault coverbtpre, the test patterns are
independent on the PRPG code words in a sense of a gyiathe patterns — the proper
test vectors are pre-computed by an ATPG tool; they @reerived from the original PRPG
code words as it was being done in the previous methods.

The row matching means finding an assignment of thesgatistrns to the code words,
as it is shown in Fig. 3.5. Each of the test patternddvée assigned to some PRPG pattern
to generate the required test. Here the problem to bedsabnsists in finding such a row
matching that the pattern transformation function isiagple as possible. Similar idea is also
exploited in our BIST methods presented in this report.

0011100
0001110
0000111
1100011
1010001
1001000
0100100 0011001
0010010 0110101
0001001 0000100
1100100 0010011
0110010 - 1100000
0011001 0001111

1101100
0110110 TARGET PATTERNS

0011011
1101101
1010110
0101011
1110101
1011010

Figure 3.5: Row matching principle

The cost functionof the row matching is used as a criterion for findingwa match. The
cost function is an estimation of the complexity of ¢benbinational function performing the
pattern transformation. The cost of a matchigfor an n-input CUT (and thus the
combinational block has outputs) is defined as follows:

o) = (1 w(1) (3.1)

wherel; is called annput indexof the output variableand it is defined as a set of input
variables of an output decoder that are neededtairothe values of thieth output — i.e.,
the support of tha-th output variable. The weightV is used to take into account
a non-linear relation between the size ofltrend the area overhead.

The aim is to find a row matching that minimizesstfunction. This is, however,
an NP-hard problem and thus some heuristic mustidegl. In the proposed algorithm
[Cha95] the rows are being matched sequentialle-fmrone) preferring the match that
locally minimizes the cost function. After the mhaittg is done, the result is in a form of
a truth table, which has to be minimized by someol8an minimizer (ESPRESSO)
to obtain the final solution. The truth table cepending to the example from Fig. 3.5
is shown in the following Figure:

Input Qutput values required at

Vector OTIT2T73T74[5[6
O0ITOOTJfOJOJT|TJO]O0]1
ITI0I0T O JIJIJOJTIJO]TI
OOO0OO0ITTHOJOJO[O[ITOTD
O0TO0OOTOJJOJOJT]JOJOJT |1
ITTOOOITIJTI[OfO[O]O0T]0
OOOTITOJOJOJO[TTTTT]|I

Figure 3.6: The final truth table

In addition to introducing a mapping function, @&esjal kind of a PRPG is exploited here —
a GLFSR (generalized LFSR). In principle, it belsagemnilarly to a weighted-pattern TPG,
however the weighted patterns are being generatex hodification of a LFSR. However,
this modification introduces an additional logic tiee whole BIST structure, and thus
it disturbs otherwise good results.

1C

Chapter 4

Overview of New Approach

4.1 Column-matching Mixed-Mode BIST method

We propose a novel test-per-clock BIST method. Tdst patterns are applied to the
primary inputs of the circuit-under-test (CUT) iarpllel, thus in each clock cycle one test
vector is being processed. The response is thevndram the primary outputs and analyzed
in the response evaluator (RE), which is mostlydtinmput shift register (MISR).

This method aims at the decrease of the area aertieat may be achieved by the
simplification of the test pattern generator (TP®)e have used deterministic test patterns
generated by some ATPG (Automatic Test Pattern @aemg tool, thus the fault coverage
achieved strictly depends on these patterns. Noanem used for their storage, since the
memory mostly causes a big area overhead on aketom a global point of view [Str02], our
method is based on a synthesis of a finite statthima (FSM) that produces algorithmic test
patterns.

The test pattern generator consists of two blotks: pseudo-random pattern generator
(PRPG) and the output decoder, which is a comlmnatiblock transforming the PRPG
patterns into deterministic tests. The PRPG is nasinstructed as a linear feedback shift
register (LFSR) with an appropriate generating poiyial, or as a cellular automaton
[Nee93, Nov98, Nov99, Alo03,]. The basic structafesuch a test-per-clock BIST is shown
in Fig. 4.1.

Test Pattern Generator

PRPG

Output Decoder

Circuit under Test

Figure 4.1: Test-per-clock BIST structure

11

Synthesis of the combinational logic transforminge tpseudo-random patterns into
deterministic tests is based on our column-matctafgprithm [Fis02, FisO3a]. We try
to implement most of the outputs of the decodercldry assigning them to the inputs, thus
implement them without any circuitry. An enhancetmeinthis method enabled us to support
a mixed-mode BIST, which significantly reduces thetput decoder logic [FisO4a]. The issue
of adjusting the BIST synthesis parameters, naiiyinfluence of the ratio of the test don't
cares and the durations of the pseudo-random atstnaaistic phases are discussed here
as well, and in [FisO4b, FisO4c].

The method was extensively tested on standard 1SkE8hmarks. Here a big scalability
of the method, in terms of the trade-off betweea tbst time and area overhead, was
observed.

4.2 Principles of Mixed-Mode BIST

Most of the mixed-mode BIST techniques involve gssome kind of transformation and
switching logic accompanying the pseudo-randomepatigenerator (PRPG). A general
structure of our mixed-mode BIST design is showrFig. 4.2. The pseudo-random code
words are produced by an LSFR. Then they are tvemsfd by the Decoder into deterministic
vectors. The Switching logic selects the pattem$e applied to the CUT. After that the
circuit’s response is evaluated, usually in thetminput shift register (MISR).

TPG LFSR

mode

CUT

Fig. 4.2: Mixed-mode BIST structure

The main difference between our algorithm and thapetitive methods [Tou95, Tou96b,
Cha03] consists in a separation of the pseudo-rarmiad deterministic phases. In the other
methods the LFSR patterns that do not detect arlisfare identified and modified. Here the
switching logic consists of coupled AND and OR gadtethe bit-fixing method [Tou95] — see
Fig. 3.3, or a XOR gate for bit-flipping [Wun96]See Fig. 3.4.

In praxis, several initial pseudo-random vectorsede faults, but the fault detection
capability of the latter ones quickly drops to zéfbus, it could be more advantageous to run
the unmodified pseudo-random phase for severalkcloeles and then switch to the
deterministic one at once, as it is being done un @pproach. The switching logic then
consists omultiplexers, in the most general ca3ée area overhead caused by the switching
logic needs not be too big, since we try to elirtenaven these multiplexers using a modified
column-matching method. Moreover, the size of atipleker, when implemented using
transmission gates, is 1.5-times the size of alst@NAND gate [DeM94].

In the first, pseudo-random phase, all the mulkipte are set so they feed the circuit with
the unmodified LFSR patterns; the Decoder is ctit 8tibsequently, in the deterministic
phase, all the MUXes switch to the Decoder outpuid only the modified patterns are

12

applied to the CUT. Thenodesignal driving the multiplexers can be generatedraally
(by ATE), or some kind of a counter can be useckrEn this case the area overhead of this
counter can be negligible, since the BIST-contratleunter can be exploited, or we can use
an extra counter that can be shared by many IR aoee complex design.

4.3 The BIST Design Process

The Decoder logic is synthesized using our colunateilning algorithm. The Decoder
is a combinational block transforming some of tiRPE patterns into deterministic patterns
pre-computed by an ATPG. Our aim is to design theoder to be as small as possible. Its
design is based on “matching” maximum of the decadsputs with its inputs. Particularly,
when the test vectors are reordered and assignge toFSR vectors in such a way that the
values in the respective matched columns (i.e.utignd output variables) are equal, the
matched output will be implemented as a wire, withany logic. Since the BIST is designed
for combinational circuits, any reordering can teefy done. Moreover, the deterministic test
can be much longer than the computed test sequémie few of the PRPG patterns produce
the required test vectors and the rest represenndin-testing “gaps”. This gives us a big
freedom how to select the appropriate matches.véhees of the non-matched outputs have
to be synthesized by some Boolean minimizer, i@OB® [Hla01, FisO3b].

The whole BIST design process can be divided intw phases:

1. Simulate severalRR) pseudo-random patterns for the CUT and deterntiee t
undetected faults (by a fault simulator).

2. Compute deterministic test patterns for these damftan ATPG tool.

3. For the following pseudo-random LFSR patteiDet] and the deterministic tests do
the column matching (see Section 6).

4. Synthesize the unmatched decoder outputs by BOOM.

An artificial illustrative example is shown in Fig.3. The 5-bit LFSR is run for 5 cycles
first and the easily testable faults are detecién we run the fault simulation to find the
undetected faults, for which the test vectors agregpted by an ATPG. At the end the
decoder logic is synthesized for these tests amdsuticceeding LFSR patterns. The resulting
circuitry is shown in Fig. 4.4. Here we can seet tloan some outputs {y y1) there is no
decoder and switching logic needed, for some tlsetiee switching logic only ¢y ys). Such
cases should be preferred when the BIST is beismded.

LFSR
v Final test sequence
5010 10100
Pseudo-random gg1o] §_omulate JNon-covered| AIPG | Test 01010
sequence 10110 faults Vectors ?8 1 ?8
01011 > 01011

10001 ———> 10100~
11100 ——> 1101 1%—

Deterministic
sequence 01110 ———— > 01011 (hon-det) ———11011 01011
00111 ———» 00001 —>————— x000] 00001
10111 — > 10000 10000
— —
XoXy YoV

13

Figure 4.3: Test sequence generation

LFSR
X X X, Xs X, Yo =X
L
o Y, =X,
De‘rrironénels‘nc Vv, =X,

. - Y. = X’o+'x
Yo |V Y2 Ys Y
CUT

Figure 4.4: Resulting BIST circuitry

4.4 The Pseudo-Random Phase

The aim of the pseudo-random phase is to coveraawy faults as possible, while keeping
the test time acceptable. Two aspects play role:tbe LFSR polynomial and seed and the
test length. Computing a LFSR polynomial and seedrder to achieve good fault coverage
Is an extremely computationally demanding problgms we select it at random and evaluate
the effectiveness.

Selection of a LFSR and a seed might significamifuence the fault coverage. The
frequency distribution of covering a particular riuam of faults is illustrated by Fig. 4.5. Here
sets of 50, 100, 500 and 1000 LFSR patterns wepdiedpto the c¢3540 ISCAS circuit
[Brg85], 1000 samples for each test size (seedhbe durves in Fig. 5.1). Each LFSR and its
seed were selected randomly. The distribution ef mamber of faults, which remained
undetected, is shown. We can see that it followsGhussian distribution. For a low number
of patterns many faults are left undetected, whiso their number varies a lot. When
increasing the number of the test patterns the rurmbundetected faults rapidly decreases,
while the variation of this number decreases ad. Wélis means that when a high fault
coverage is obtained by a long test sequencenthemnce of the LFSR and seed on the fault
coverage is negligible.

8004 | 1000 patterns
7004
] c3540
600+
> 500+ 500 patterns
=]
2 400
o

g]
{300+ 100 patterns

200+ 50 patterns
1004
0 ? T

0 20 400 600 800 1000 1200 1400
Undetected Faults

Figure 4.5: Pseudo-random fault coverage

14

The number of the covered faults as a functiomefriumber of LFSR cycles applied to the
CUT follows the well-known saturation curve shownm kig. 4.6 (for the ¢3540 circuit
[Brg85]). First few vectors detect the majorityfatilts, and then the fault coverage increases
only slightly. The total number of detectable statkfaults is 3428. This number was not
reached even after applying 50 000 LFSR cycles.

3500

3000 -
1 c3540

= N N
a o a
o o o
o o o
1 1

Covered Faults

1000

500+

—T T T T T
0 1000 2000 3000 4000 5000 6000 7000 8000
Cycles

Figure 4.6: Fault coverage saturation curve

A conclusion can be made from these two graphsirder to reach a satisfactory fault
coverage by the first phase, we should determiaefahlt coverage saturation curve for the
CUT by fault simulation. The appropriate lengthtlod PR phase can be easily derived from
it. The pseudo-random phase should be stopped thieefault coverage is not improving for
a given number of cycles. This number can be fradiysted, according to the application
specific requirements (the trade-off between tisétime and area overhead). Usually, we set
this threshold to 1000 cycles. Thus, for the c3bdchmark we determirfeR = 2500cycles
(see Fig. 4.6). The influence of the test lengththenfinal result is discussed in [FisO4c].

4.5 Influence of the LFSR on the BIST Design Procss

The fault coverage reached in the first phase tsinfluenced only by the length of the
pseudo-random test. The number of detected faildts depends on the properties of the
pseudo-random sequence, thus it is influenced kB ERSR polynomial and seed.
For different LFSRs, significantly different resulire produced, even when the lengths of the
phases are retained. For illustration, we havegdesi a BIST for the c1908 ISCAS
benchmark circuit [Brg85]. The pseudo-random phaas run for 2000 cycles, the LFSR
polynomial was set constant (1-tap, see [FisO4td) \ee have repeatedly randomly reseeded
it. Then the deterministic phase was run for 10@ckc cycles. The simulation results
are shown in Table 4.1. THed.” column indicates the number of undetected faultghe
first phase,*vct.” gives the number of deterministic vectolGEs” shows the complexity
of the resulting BIST structure, in terms of theegaquivalents [DeM94]. The entries are
sorted by the number of faults not detected irpgeudo-random phase.

We can see that the complexity of the final circtitictly depends on the LFSR seed
selected — it varies from 7.5 GEs up to 69 GEs.

To compute a proper LFSR seed and/or generatingnpuoiial analytically is impossible
for practical examples, due to the complexity a$ ghroblem. Thus, in praxis we repeatedly
reseed the polynomial and conduct the fault sinaraseveral times, while we pick out the

15

best seed for further processing. The fault sinmais often a very fast process, thus it does
not significantly influence the BIST design time.

Table 4.1: Influence of the LFSR seed

ud. VCt. GEs ud. VCt. GEs

19 10 7.5 33 15 37
21 9 19.5 34 16 33
24 13 23.5 36 18 38
26 15 28 37 20 40.5
26 13 25 39 22 53

28 15 37.5 44 26 40
28 14 22.5 46 22 42.5

30 14 36 48 24 44
32 16 31 52 28 63.5
33 17 27.5 62 34 69

4.6 The Deterministic Phase

In the deterministic phase the deterministic vexctoe synthesized from some of the LFSR
patterns that follow the pseudo-random phase. TesaotheColumn-Matchingalgorithm
Is used. First, let us state the problem formally.

4.6.1 Problem Statement

Let us have an-bit PRPG running fop clock cycles in the deterministic phase. The code
words generated by this PRPG can be described@ymatrix (code matrix of dimensions
(p, N. These code words are to be transformed intddsepatterns pre-computed by some
ATPG tool. They are described byramatrix ¢est matriy. For anr-input CUT and the test
consisting ofs vectors thel' matrix will have dimensionss(r). The rows of the matrices will
be denoted agectors

The tests can be presented either in a form ofmetestic patterns (minterms) or they may
contain don’t care values, depending on the ATRfBraéhm used for the test set generation.
We can take advantage of these don't cares inlgariam, since they give us more freedom
to select the column matches.

There are some obvious restrictions for the meagrideanensions. The number of test
patternsp must be maximally 2 1 (the maximum number of distinct patterns getegra
by a LFSR) ang =s, because there must be enough patterns to impleatiet@st vectors
generated by the ATPG. On the other hand, therenarstrict requirements regarding the
relationship oh andr, since the number of LFSR stages can be evenesriadin the number
of CUT inputs.

The output decoder logic modifies tBematrix vectors in order to obtain all thematrix
vectors. As the proposed method is restricted mbaoational circuits, the order in which the
test patterns are fed to the CUT is insignificdiitus, thel matrix vectors can be reordered
in any way. Finding a transformation from tkematrix to theT matrix means finding
a coupling of each of therows of T matrix with rows of theC matrix — thus finding aow
assignment(see Fig. 4.7), i.e., to determine whi€h matrix rows will be transformed
to T matrix rows and how. The excessive patterns daisbarb testing, they only extend the

16

test length. If a low-power testing is required, mvay use some pattern inhibition techniques
- see [Gir99]. Our method can be easily modifiedarrthese considerations.

The Output Decoder is a combinational block that convesta-dimensional vectors of the
C matrix into sr-dimensional vectors of thd matrix. The decoder is represented
by a Boolean function with inputs andr outputs, where only values eterms are defined
and the rest are don’t cares. This Boolean funatexm be easily described by a truth table,
where the output part corresponds to Theatrix, while the input part consists ®C matrix
vectors assigned to th& matrix rows. The set of such vectors will be dexdot
as aprunedC matrix

C matrix
n

—"—

0010010010 T matrix .
0001001001 Pruned C matrix
1001100100 r 'l

0100110010 ——

0010011001 1-110-10 0010010010 1-110-10

1000001100 M01-111 0010000011 1104111
0100000110 0-101010 0100110010 0-101010
0010000011 01-00101 0110100000 01-00104
1000000001 no1-01) g 1001000110 0101-001 |
1101000000 1-11110 0001101000 11-11110
0 0110100000 01001-00 1000001100 01001=00
0011010000 1 011-11 0000110100 1 041-11
e — 1100101000 001-0001
A0-10-00 0000011010 10-10-00

0001101000
0000110100
0000011010
oooo001101
100100011
0100100011

Test Patterns Output decoder

1011010001
110010100

PRPG Patterns

Figure 4.7: Assignment of the rows

4.6.2 The Column-Matching Method

The column-matching method is based on assignirtgeal matrix rows to some of thé
matrix rows so that some columns of thematrix will be equal to some columns in the
prunedC matrix. This yields absolutely no logic necesstyyimplement thesd matrix
columns (output variables of the decoder); theyimpemented as mere wires.

The principles of the column matching are showrFig. 4.8. The ten LFSR patterns
represented by & matrix are to be transformed into 10 determinigtst vectors described
by aT matrix. The PRPG outputs are entering the outggbder as variables x x, the
outputs of the decoder (thus the CUT inputs) aretézl as y- y4. A case of a test without
don’t cares was chosen for simplicity. Two columatohes can be made in this example. The
C matrix column x has been matched with tliematrix column y, similarly % with yo has
been matched. Thus, the outpuisagd y are implemented without any combinational logic,
while the remaining outputs have to by synthesugidg some standard two-level Boolean
minimization tools, like ESPRESSO [Bra84] or BOOMI401, FisO3b]. The matches were
obtained by reordering thE matrix rows, in order to have equal values indberesponding
columns. TheC matrix rows are then assigned to thematrix rows in the ascending order
(A-h, B-g, C-e, etc.). Thus, the whole TPG gener#lte test patterns in the order h-g-e-i-, etc.

17

C-Matrix T-Matrix Reordered T-Matrix

x0-x4 v0-v4

a 11 a 00110 h 61031

B 11 b 11100 g [Lo000|

¢ ol c 10111 e 11014 ¥0 = x3

D 11 d4 10100 Ragrder 1 11001 vl = x0'x2xd'+x0xd

E 11 e 11011 £ 1000 ¥2 = H2'xd+X0' Kd+K2' K3
F o0 £ 10001 d [1o100] ¥3 = XO'®2+x2'x3'

G 11 g 10000 b 1100 ¥d = x2

H o1 h 01001 c [1o11]

I1 i 11001 3 |op11fo

T o § 01110 a_[ojo11p)

Figure 4.8: Column matching example

4.6.3 One-to-One Assignment

As a one-to-one assignment will be denoted the whseep = s, thus all the PRPG vectors
are to be assigned to the test vectors and noPiRIBG cycles are present. In this case the
minimum number of PRPG vectors is needed to gemdts deterministic test vectors,
however, the amount of logic needed to implemeattlitput decoder is often large.

Generally, when doing the column matching, someictisns for theC andT matrix rows
that are to be assigned to each other must beedpgliery time a column match is done. If,
e.g., thei-th C matrix column is matched with theh T matrix column, theC matrix rows
containing “1” value in the-th column can be assigned only to Thenatrix rows containing
“1” value in thej-th column and vice versa. If the test set contdms't cares, thd matrix
rows having a don’t care in theth column can be assigned amy C matrix row (while
respecting the restrictions given by the previousigde matches). The don't cares are
substituted by “0” or “1” values form th& matrix after the final row assignment is known.
The column-matching process for a test with domites will be described into detail
in Section 7.

The most important feature of the one-to-one assgmn is the fact that all the PRPG
vectors that are to be transformed into test padteare known in advance; there are
no excessive vectors. Determining a column mattheis a simple task: it is possible to make
a match if the counts of ones (and zeros) in theesponding columns arequal In our
previous example (Fig. 4.8) the counts of oneh@C matrix for columns¢-x4 are {6, 7, 5,

7, 6}, the counts of ones in tiAe matrix for columnsy-y, are {7, 5, 5, 4, 5}, thus there are
five possible column matchegi{yo, Xs-Yo, Xo-Y1, Xo-Y2, Xo-Ya}.

After selecting a column match the two matrices ggeomposed into two disjoint parts
containing the rows with zeros and ones respegtivelthe matching columns, let the
submatrices be denoted @g C; andTo, T;. Then any vector from th& submatrix can be
assigned to any vector fro@y, as well as any vector from tfig submatrix can be assigned
to any vector fronC,, but not otherwise. In our example, when kg, match is selected
first, Co={B, F, G, I,J},,C1={A,C,D,E,H}, To={a, b, d, g, j}, andl'1 = {c, e, f, h, i}.

18

C-Matrix T-Matrix

H0-x4 vO-y4

—= —
a 11101 ->= C1 a o011 -> TO
B 11010 ->= CO b 11100 -> TO
¢ 01110 - C1 c 10114 -> T1
D 11111 - C1 d 10100 -> TO
E 11110 ->= C1 e 11011 -> T1
F 00011 -> CO £ 10004 -> T1
G 11011 - CO g 10000 -> TO
H 01111 ->= C1 h oioo0g -> T1
I 10001 -> CO i 11000 -> T1
hy uﬂﬁuu - C0 3 o111 -> TO

Figure 4.9: The first assignment to the submatrices

Finding all possible column matches consists in@esssive decomposition of each of the
original matrices into set systems until no furtileIcomposition is possible. This happens
when no more columns with equal one and zero coargsavailable in any tw@; and T;
submatrices.

The problem of selecting a proper set of columnched is NP-hard. Thus, the selection
of the candidate columns for a match is controllsd a heuristic, which measures the
proportion of zeros and ones in both the candidatemns and selects the most balanced
decomposition. Another possibility is to useeathaustive column match seargfhere all the
possible combinations of column matches are tri€dis method is applicable only
to problems with a low number of possible columriahes.

The output of this algorithm are two systems ofseib of theC andT matrices. Each two
corresponding subsets contain vectors that carsdigreed to each other in any order. We do
the final assignment at random, since it influentBe final result only negligibly
(it influences only the final minimization).

4.6.4 Generalized Column Matching

In practice, it is often more advantageous toHetRRPG run more cycles than needed and
pick out only several suitable vectors (see Fig).4Then idle test cycles are present, however
this method significantly reduces the complexityhe output decoder.

The column matching principle is very efficientlppicable here. Unlike the method
described in the previous subsection, we cann@richte a column match by comparing the
number of ones in the corresponding columns, becexesdo not know in advance whi€h
matrix vectors will be included in the final rowsagnment. However, we can freely choose
among the code words (f >> s). Finding an exact match is then a trivial prolldor
several initial matches practically any two coluncas be successfully matched.

Making an assignment of tiematrix rows to the&C matrix rows is then very similar to the
set system based method proposed above. Boti ti&d T matrices are being divided into
two disjoint parts, while in this case their size=ed not be equal; the number of vectors
in eachC; must begreater or equako the number of vectors in the correspondinglf not,
there would exist some test patterns that canngg & matrix vector assigned and then the
matching procedure ends. After that, like in thégioal algorithm, some row-matching
method is used to accomplish the final assignmewtcors.

The set system based column-matching algorithmhave below. The inputs to the
algorithm are th&€ andT matrices, the output is a valid system of sgtdescribing the total
decomposition of th€ andT matrix vectors. From this decomposition, the rane assigned

19

to each other randomly and then the final resulobsained after completing a Boolean
minimization.

Algorithm 4.1: Set System Based Column Matching

ColumnMatching(C, T) {

={[C, TI} /I initialize system of sets
do
{(i, D)= SelectColumnsToBeMatched(C, T);
& =10;
for(u=0; u<]| <&, u++){ // for all items in set system
c’%°= 0 /I generate subsets
c'= 0
for (k=0; k< C_matrix_rows; k ++)
if 9k, i 1==0C °=C ° 0 9Kk
elseC '=C 'O 9KkK];
T %=
T'= 0
for (| =0; | < T_matrix_rows; | ++)
if(ML) 1==0)T °=T°0 &I

elseT =710 &MIY;
if(C °|<IT °[IIC Y<|T *)retun A
& =& 0{C °T[c LT // add the split sets
&= &

4.6.5 Negative Column Matching

As we have described above, the idea of the columatching is based on finding a
maximum of the decoder outputs that can be impléecejust as wires, thus without any
logic. This happens when the value of the matchggub variable is equal to the value of
some input variable in all care terms.

In most cases the PRPG outputs are drawn direaiiy the outputs of flip-flops. These
flip-flops often have also the negative value @itloutputs provided. Then, also thegative
matching should be considered as a possibility to implensnhe variable of the output
decoder as a simple wire. This happens when theevaf the matched output variable
is complement to the value of some input variableali care terms. The possibility of a
negative column matching should be then considered.

4.6.6 An ISCAS Benchmark Example

To illustrate the principles of the method we hal®sen the cl17 ISCAS benchmark
[Brg85] for its simplicity. As an input to the algdhm we have a complete test set generated
by an ATPG tool. The test consists of 10 test paste(see Fig. 4.10). Our goal
is to implement a BIST structure applying the givest set to the c17 benchmark circuit.

It should be mentioned that the test set shownig #.10 is used here for strictly
illustrative purposes. It is well known that c1hdae completely tested with 4 patterns and
that, on the other hand, if we used an exhaustise(tvhich would be easy to implement due
to the small size of the circuit), the output demodircuitry would completely disappear.

20

01111
00001
01101
10001
01110
10111
00101
10011
00011
01000

Figure 4.10: ISCAS c17 test vectors

As a PRPG we have selected a 5-stage LFSR witha@mgepolynomial X+ x* + 1 seeded
with a vector 00010. In the following two subsensowve will illustrate both the one-to-one
assignment and the generalized matching process.

4.6.7 One-to-One Assignment for c17 Benchmark

In this example we show how the decomposition dfrices into set systems is being done
for the one-to-one assignment into detail. Weve two matrices as an input: tGematrix
represents the patterns generated by the LFSRT theatrix contains pre-generated test
patterns shown in Fig. 4.10.

First, the counts of ones in all columns in bothnmoes are enumerated: for tBematrix
these counts are {4, 4, 5, 5, 4}, formatrix {3, 4, 5, 5, 8}. Thus, all possible colummatches
are {Xo-y1, Xa-Y1, Xo-Y2, Xo-Ys, Xa-Y2, Xs-Y3, X-Yi}. At the beginning we seleck-y, match and
perform the decomposition of the matrices. Thennigative column matcki,-y; is chosen
and at the end we select the matgly;. No exact matches are possible any more, thue ther
has been three exact column matches found.

[———1

—

B 00001 b 00001 C 10100 b 00001 co1g |€ 10100 b ooOOL)

C 10100 d 10001 co1fE 00101 d 10001 |ygg E 00101 d 10001
co |[E 00101 h 10011|pg I 11100 5 01000 €011[I 11100 3 01000|T001
X3-y2 H 10001 i 00011 %2-y3 cgoB 00001 h 100D1[= wxi-yl coogB 00001 h 10011, .

13 I 11100 3 01000 H 10001 i 00011 H 10001 i 00011
A 00010 a 01111 F 10110 ¢ 01101 €11dF 10110 g 00101| T100
D 01010 ¢ 01101 €11y g1110 g ooi01|Tt? €111]7 01110 ¢ 01101|T101
C1|F 10110 e 01110|T1 ln ooo10 a 01111 c100/A 00010 £ 10111 Til0

G 01011 f 10111 C10D 01010 e 01110|T11 c10g|P 01010 a 01111
J 01110 00101 E 0i011 £ 10111 ¢ 01011 e 01i1p| T111

Figure 4.11: One-to-one exact column matching examp

In all the subsets th€; vectors are assigned i vectors and the remaining logic is
minimized by BOOM or ESPRESSO. The resulting schignmshown in Fig. 4.12.

21

Remaining Logic

HO-H4
——
10110

10100
o010l
01011
01010
oool1o0
11100
oooo01
10001
01110

¥0,v4

01
o1

11 minimization

TR —
o1
11
[1]1]
11

o1
o1

o
¥l
¥2
3
vd

x0'x1'
x1

=3

x2'

®xO'xd ' +H1!

LFSR
=0 Ll 2 3 xd
I o
I &
& &
¥0 ¥l ¥2 ¥3 vd
CuUT

Figure 4.12: BIST implementation for c17 circuit

4.6.8 Generalized Column Matching Example

We have found three exact column matches for at@mse assignment in the previous
example, whereas the decoder for the remainingviamables needed to be synthesized. Now
we will try to let the LFSR run for more than thentmum required 10 cycles and see if more

exact matches will be achieved.

We have found experimentally, that when we rethetFSR generating polynomial and
seed from the previous example, 19 LFSR cyclesieeeled to matchll the columns. Thus,
absolutely no additional logic is needed to build butput decoder. In Fig. 4.13 we show one
of the possible assignments of the test pattera® wf the 19 LFSR patterns and the resulting
combinational logic of the output decoder, whicloemed just as a permutation of wires in
this case. For comparison, let us note that anustive test set having an equally simple
output decoder would require 32 patterns. The ezalcimn matches found for our example

are obvious from the final solution.

XK0-x4
——
ooo10

ooooi
10100
01010
ooiol
10110
01011
10001
11100
01110
ooi11
10111
11111
11011
11001
11000
01100
oo1i1io0
ooo1i1

¥0-v4

01111
oooo1
01101
10001
01110
10111
00101
10011
ooo11
01000

Final Assignment

10110 01111
00011 00001

Resulting Logic

10111 01101 ¥0 = x1
01011 10001 ¥l = =0
10100 01110 ¥2 = =2
01110 10111 ¥3 = xd
00111 00101 ¥d = %3

01010 10011
00010 00011
10001 01000

Figure 4.12: Assignment of rows for c17 circuit

22

4.7 Column Matching Exploiting Test Don’t Cares

Until now, we have assumed that tiie matrix contains only test patterns in their
compacted form, i.e., minterms. Some ATPG toolsipce test patterns containing don't care
values (DCs). Such a test is often significantlgger than the compacted one, but on the
other hand the don't cares can be advantageouglyited in the output decoder design.

The problem of constructing the output decoden ithis case similar to the previous one:
all theT matrix vectors are to be assigned to @henatrix vectors, whiless< p. TheT matrix
contains don't care values, tkkmatrix contains only minterms, since concrete mexctre
produced by a PRPG.

When the don’t cares are not present in the tésteaeh of the test vectors can be assigned
to a set of PRPG patterns at every instant, whihese sets are disjoint. But when the don’t
cares are present, these sets become non-disjdiist.is because we cannot decide what
values to assign to the don't cares, until alltfetches are done. Thus the algorithm consists
of two linked NP-hard problems. We have found tising the set system approach here is
rather time-consuming, although it is not impossibl

An efficient heuristic based onbbocking matrix B has been proposed in [FisO3a]. The
blocking matrix is a binary matrix (it contains griD” and “1” values) of dimension$(s).
Thus, it has as many columns as thereTammatrix rows and as many rows as there are
C matrix rows. The value "1" in the cdlk, I] indicates that th&-th C matrix row may be
assigned to thieth T matrix row, "0" value indicates the contrary.

At the beginning of the algorithm all thg matrix cells are filled with a "1" value, since
there are no restrictions for row assignments.rAfiei-th C matrix column is matched with
thej-th T matrix column column, thB matrix cells k, I] are set to "0" when thketh input
row contains in ath column the opposite value to theéh output row in g-th column. Thus,
rows that contain opposite values in the matchdwhwas cannot be assigned to each other.

B[k,] := “0” when C[k, i] # T[l, j] Tl j] # don’t care) (4.2)

If the negative column match is to be performee, Bhmatrix cells are set to “0” when
equal values are present in the respective position

When making the row assignment, distinct rows havbe assigned to each other. It is a
trivial problem for a test without don't cares, @nthere does not exisBamatrix row having
“1” value in more than one column (one PRPG codedveannot be assigned to more than
one test pattern). The final assignment then ctmsisselecting one row from the possible
ones for each of the columns. Unfortunately, in ¢b&imn matching exploiting don’t cares
the B matrix rows may have ones in more than one colusmte some values in the test
patterns will be determined after the assignmehis Takes the assignment to be a NP-hard
problem. An example of an assignment is shown inléf'd.2. Here all the output vectogdd
are to be assigned to the LFSR vecta+sscThere are two possible solutions to this problem:

Table 4.2: Row assignment using a B matrix

||| ls]ts
al1l0[0| 1] 0 -G
o|lo[1[0 o o b-gorg
lo[1[0 o] o ts3— G
|0 0]1] 0] 0 -G
slolol 1] o] 1 ts— G
slolol o] 1] 1

23

Since theB matrix is mostly rather large, solving this prahlexactly becomes impossible.
Thus some heuristic has to be used. Selecting gepgorithm is of a key importance for
reaching good results. For instance, if an assiginmiec to t, in Table 4.2 was chosen at the
beginning, the algorithm would yield no solutiorthere won't be any possible assignment
for t;.

4.7.1 Row Assignment Algorithms

It would be often extremely time-consuming to sallies problem exactly, thus we use a
greedy incremental heuristic. Since the column-mate algorithm needs to solve this
problem after every column match, the row assigrirheuaristic should be fast. Moreover, the
whole process is being guided by the result ofaegignment. If the assignment fails, the
column-matching will stop. Thus, the algorithm sladbbe precise enough as well. For this
reason we have tried out several methods and cechplae results to select the best one.

One method (LCLR 4east in column, least in rguwuses a simple greedy heuristic. The
B matrix column with the least number of “1” values found (because the respective
T matrix vector would be hard to assign) and the hawing a “1” value in this column and
the least “1”s in other columns is assigned tdédc@use the respecti@matrix vector is not
so “useful” for other assignments). If a columnheiit any “1” value is found at some
instant, the algorithm returns a failure and theol@hcolumn matching process is stopped
(when no backtracking is used). The algorithm hatssucceeded in finding an assignment in
this case, however, there is still a possibiligtttinere exists a solution.

The second, more sophisticated heuristic constiaustsring matrix from which the best
row assignments are being picked-up. It is simitathe B matrix, but any values can be
contained in its cells. Each cell contains a vadiedining a “score” of a particular row
assignment. It is computed by dividing the numbkoles in a respectivB matrix row
by the number of ones in a respect/enatrix column. An assignment having a biggestescor
is done, the matched row and column is removed filweB matrix and all the values are
recomputed. The process is repeated until allc@simns are assigned or an all-zero column
Is encountered.

We have tested the efficiency of the algorithmstloa s526 ISCAS benchmark [Brg89]
having 24 inputs, 1000 LFSR vectors were to be hemtownith 20 tests. We have run the
column-matching algorithm 300 times in its thorouggarch mode (see later), while in each
step a row assignment was performed repeatedly 1id0€s, using both methods, plus
a purely random assignment, just for a comparisothose 300 iterations 80 000 runs of the
row-assignment algorithm were required, from whiébh00 were successful (there was
a solution). Figures 4.14 and 4.15 show histografhthe frequencies of the successful hits
in the 6500 row assignment passes for the thremitdgns. Figure 4.15 is a close-up view
on the unsuccessful tries.

24

6000 1 EXVLCLR

5000 - E—JRandom

Scoring matrix

£y
8

Frequency
w
=}
8

2000 -

1000 -

0 200

.::F!E.L@ra.g.

400 600 800
Hits

1000

Figure 4.14: Row assignment histograms

800 LCLR
E=—=Random

Scoring matrix

600 -

400 <

Frequency

200

o'mgwa%%é

0 100 200 300 400 500 600 700 800

Hits

Figure 4.15: Close-up view of Fig. 4.14

We can see that in most cases both the LCLR anghgcmatrix based heuristics found
a solution, while the randomized method was nafusessful. Particularly, the LCLR found
an assignment in 97.3% of the possible casesctintng matrix based method in 97.6% and
the random method in 57.2% only. The average rwegimith the percentage of the efficiency
of all the heuristics are shown in Table 4.3. Aletexperiments were run on a PC with

a 1200 MHz Athlon processor.

Table 4.3: Row assignment algorithms

algorithm successfulnessruntime
LCLR 97.3% 0.28 ms
scoring matrix | 97.6% 2.94 mg
random 57.2% 0.09 ms

We can conclude from these results that both th& R.Gnd scoring matrix based
algorithms are extremely efficient, unlike the ramd approach. Both the algorithms are
almost equally successful, however the scoring imatethod is more than 10 times slower.
For this reason, in all our experiments we useLtDeR row assignment algorithm. Since for
all the columns of th& matrix rows values in all the rows have to be eraoh in a case

25

of a successful assignment, the time complexithefalgorithm is Q¢'s). The algorithms are
described in [Fis04d] as well.

4.7.2 The Column Matching Algorithms

We have developed several algorithms driving thelevlsolumn-matching process. In the
exact search all the possibilities for all the matches are expth which always yields the
optimum solution, in terms of the number of matchelsieved. However, the time complexity
of this algorithm grows exponentially with the nuenbof output variables, thus it is not
feasible to use it for practical problems.

Then a simple heuristic can be used: when a nad-walumn match is encountered
(during the row assignment process), the wholege®could be stopped. This is the fastest
algorithm, which is often suitable for problemstwé large number of variables. Because the
row assignment is repeated after every column matdhthere could exist at mastcolumn
matches, the worst-case complexity of this algorittvould be Ofrp-s). It corresponds
to a case where all tle column matches were found. This algorithm willdenoted as tast
search.

The result may be further improved by trying otpessibilities for a column match if one
column match fails. This would significantly incesathe runtime. We call this algorithm
athorough search. The worst-case complexity increases ton-@¢p-s), however the
best-case complexity is equal to flast searctcase. A typical progress of a thorough search
is shown in Fig. 4.16. Here the s526 ISCAS benchrfBrg89] having 24 inputs was solved.
The test set consisted of 20 vectors and thesetdvd® matched to 1000 LFSR vectors.
A simple fast searchwould end after only 3 column matches (after 30, m#hile the
thorough searchran for 198 cycles, but reached 21 column mat¢ime200 ms). From this
example it is obvious that the thorough searchifsagmtly outperforms the fast search.

204

154 .
s526, 24 inputs

20 tests
1000 LFSR vectors

Matches
=
o

o s0 100 150 200
Step

Figure 4.16: Thorough search progress

Several modifications can be yet done to improwe rsult quality. The selection for
column matches is being done purely at random. ,Tiwhen the whole column matching
process is repeated several times, there is a elthat we will reach a better solution. After
every repetition the number of column matches redds compared with the previously
reached one, and if it is bigger, it is recordedhasso far best solution. For tfest search
it is the only possibility to reach a good solutidtere the column matching can be even
further sped up: it is not necessary to perforrova assignment after each column match — the
number of up to now obtained maximum of the columatches is performed and after that

26

it is checked for validity (by making a row assigemt). When it is not valid, the whole
solution is rejected, since it cannot improve therall solution. Therepetitive fast search
might be a good way to improve the result qualiy problems with a large number
of variables, however it often never outperfornes tforough search, in terms of the number
of column matches reached.

The improvement of the number of column matcheshed is visualized by Fig. 4.17.
Here the same problem as in the previous examptesetved by a fast search repetitively
1000 times. After the first run only 5 column mashwvere obtained, however in the 464
pass 19 matches were found. More matches wer@unod fin the following passes.

The whole process had run 11.5 seconds. Let usiwdefar comparison that the thorough
search had found 21 matches in 200 ms.

164 s526, 24 inputs
20 tests
1000 LFSR vectors

T v T v T v T v T v T 1
0 200 400 600 800 1000
lteration

Figure 4.17: Repetitive fast search

The thorough search can be augmented by repetisonell. Unfortunately, the speedup
method mentioned above cannot be used here. Owmtlieg hand, other techniques can
be applied. Since the row assignment is quite a-ionsuming process, we try to avoid it at
any cost. One possibility is to keegiatory. After each run of the whole algorithm we store
the column matches obtained into a special bufferll the following runs we check the
possibility for a column match in this buffer, aadly if it is not found, the row assignment
is performed. The buffer can be efficiently consted as a tree, where the result is obtained
in m steps at most.

Further improvement of the thorough search algoritonsists in applying backtracking
technique. At the end of the search, when evergtfails, one of the column matches is taken
back and the search continues (while the removedhmzannot be repeated). This means
a big increase of a runtime — consider that allihsuccessful matches have to be repeated.
Hence, the backtracking technique was found todighis efficient, the repetitive thorough
search yields better results.

4.7.3 The Basic Algorithm

The summary of the basiast searchcolumn matching algorithm is presented in this
subsection.

Since the number of th€ matrix rows is often much higher then the numb&the
T matrix rows, finding several initial column matehis a trivial problem: almost any two

27

columns can be matched, because there is a bigecludi possible assignments for the
C matrix rows. Thus the selection of the rows tovizched is done at random.

When two columns to be matched are selected, thehnmaust be checked for validity
using aB matrix. Thus, after each column match the rowgmssent has to be performed
to determine whether the match is valid. If theégssent fails the column matching process
is terminated and the last valid assignment isidensd as a final result. The row assignment
forms a truth table, which has to be further preeds Firstly, the test don’'t cares in the
matchedT matrix columns are substituted by “0” and “1” veduaccording to the values
of the correspondin@ matrix columns. Since most of the tests includiog't cares are not
in a compacted form (e.g., there is one test patl@r each of the s-a faults), some test
compaction technique [Ham98] should be appliedrafie column matching. This often
reduces the length of the BIST, and it reducestheunt of the output decoder logic as well.
Then the matched output variables are removed flwartruth table and the values of the
remaining output variables are synthesized by setaadard Boolean minimizer [Bra84,
FisO3Db].

The algorithm can be described by the followinguasecode. The inputs of the algorithm
are theC andT matrices, the output is in the form of a minimiZablean function.

Algorithm 4.2: Fast Search Column Matching

ColumnMatching(C, T) {

for(k=0; k< C_matrix_rows; k ++) 1 initiallize B matrix
for(| =0; | < T_matrix_rows; | ++)
B[k, I]="17
A= [;
do
i =random(C_matrix_columns); 1l randomly select columns
j= random(T_matrix_columns);
for(k=0; k< C_matrix_rows; k ++) 1 modify blocking matrix
for(1 =0; | < T_matrix_rows; | ++)
if(T[I,j] #DC&&C[k,i] #T[I,j DB[k1]="0"
A=A I make backup of the row assignment
A = MakeRowAssignment(B); I make row assignment
} while (A # FAILED);
Substitute_DCs(T); 1 substitute test DCs with “0” or “1”
CompactTest(T); I make test compaction
ExtractMatches(C, T); i remove matched outputs
F = Minimize(A") 1l synthesize the remaining logic
return F;

4.7.4 Overview of the Column-Matching Alternatives in MixedMode BIST

Up to now it has been assumed that applying a aolomtch means no hardware to
implement one output. Obviously, when no columnamdor a particular output is found,
some combinational logic has to be added to thep@udecoder. For a mixed-mode BIST,
namely when the test is divided into the two abmextioned phases, the Switch is present as
well. Our aim is to minimize both the Output Decodad the switching logic. There are five
possibilities for a particular output decoder otitpu

* There has been found a column match between theuowariabley; and the input

variablex. Theny; will be implemented as a wire, without any outpletcoder logic.
Moreover, there will be no switching logic for thasitput; the CUT is being fed directly

28

by an LFSR output. In our example (Fig. 4.4) iaisase ofp andy;. Such a case will be
denoted as direct column match.

* There has been found a negative column match batéeeoutput variablg; and the
input variablex,. Then the decoder logic fgr could be implemented as a negator. The
switching logic fory; will be a multiplexer. In praxis, it is more advageous to join
these two gates into a single XOR gate. In our gtaifFig. 4.4) it is a case g. Such
a case will be denoted asiegative direct column match.

» The variabley; has been matched with tikevariable, whilei # j. If the first BIST phase
weren't presenty; would be implemented as a wire. In mixed-mode Bilsdre has to be
a multiplexer switching; betweenx, andx; LFSR outputs added. In Fig. 4.4 it is the
case. Such a match will be denoted amdirect column match.

* An indirect negative column match is a similar case. Here an inverter has to bedttle
the matched LFSR output. However, the D flip-flased in the LFSR are often provided
with the negated output as well, so no additioma¢rter would be needed in this case.

* No column matching was found for soiye Here the output decoder has to synthesize
the proper output values, while an additional rpldxer has to be present in the
switching block. This is a case wfin Fig. 4.4.

The first case mentioned is, of course, the oné thié lowest BIST area overhead, in the
latter ones the overhead gradually increases. Thasntention of the algorithm should be to
prefer the direct matches, and only when no suehpassible, the indirect column matches
should be made. This is the way how the column-hmadcheuristic selects the candidates to
match — it gradually scans all the unmatched outpuiables for a possibility for a direct
column match. When one is found, it is performed @ search continues. When there is no
possibility for a direct match any more, the indirenes are being made. When no matches
are possible, the resulting outputs are synthesiyed®lOOM [HIa01, FisO3b].

28

Chapter 5

Experimental Results

5.1 Influence of the Length of the Pseudorandom Plsa

To illustrate the importance of properly choosimg tparameters of the pseudo-random
phase we have designed a BIST structure for seV®@AS benchmarks [Brg85, Brg89].
We have varied the length of the pseudo-randomephaisile the length of the deterministic
phase was kept constant, 1000 cycles. As a faniulator FSIM was used [Lee91],
as an ATPG we have used Atalanta [Lee93]. Forhalldenchmarks a test covering all the
irredundant faults was produced by this tool.

The results are shown in Table 5.1. The benchmamnkenand the number of its inputs are
shown in the first two columns. THER” column indicates the length of the pseudo-random
phase, théUD” column shows the number of s-a faults that wefteuledetected after the
“PR’ pseudo-random cyclesvct.” gives then the number of deterministic vectorsegaied
to test these faults. TH#M” column shows the total number of column matchesioéd,
“‘DM” the number of direct column matches. ThH8W' GEs” column describes the
complexity of the Switch andOD GEs” column ofthe Decoder, in terms of the gate
equivalents [DeM94]. These two values are summeeétter in the next column, to obtain
the total area overhead of the combinational blotke time needed to complete the
column-matching procedure is indicated in the laslumn. The runtimes of the fault
simulation and Boolean minimization were negligilWemparing to the column-matching
runtimes. The experiment was run on a PC with Atlgd® U, on 1 GHz, under Windows XP.

Table 5.1: Influence of the pseudo-random phasthemnesult

bench| inps| PR UD| vct] M| DM SWGHs ODGEs Total GEs Tish¢ [
c1908| 33 | 1000 | 65| 39| 20/ 11| 33 48 81 4.88
2000 |23 | 10 | 33| 23| 15 0 15 0.18
c2670| 233 | 1000 | 309 86| 198 173 90 109.5 199.5 166
2000 | 306| 86 | 192 175 87 102.5 189.5 166
5000 | 216| 73 | 198 164 103.5 91 194.5 143
10000 | 154| 69 | 199 178 825 84 166.5 123
c3540| 50 | 300 165 66| 38 29 315 78 109.5 10.2¢
500 92 | 42 | 44| 29| 315 25 56.5 3.88

3C

1000 |36 | 26 | 49 | 32| 27 1 28 1.02
2000 | 9 9 50 | 41| 135 |O 13.5 0.19
5000 |1 1 50 | 49| 15 0 15 0.02
s1196| 32 | 200 228 104 26| 25 10.5 100 110.5 5.05
500 141 79 | 27| 23| 135 63.5 77 3.87
1000 |90 | 51 | 27 | 24| 12 38.5 50.5 2.00
2000 |52 | 37 | 28| 23| 135 23.5 37 1.20
5000 |23 | 17 | 29| 25| 10.5 6.5 17 0.48
10000 | 9 4 32 | 28| 6 0 6 0.04

It can be concluded from this table that the pseartbiom phase plays a very important role
here. If its length is selected so that many easyetect faults are covered by it, only few
faults are to be covered by the deterministic phakses the Decoder logic would be
negligible. However, for circuits having a largenmher of hard-to-detect faults (c2670) the
amount of the Decoder logic cannot be influencethizyphase too much.

5.2 The Deterministic Phase

In the deterministic phase deterministic vectors synthesized from some of the LFSR
patterns that follow after the pseudo-random phésth increasing number of LFSR patterns
the chance to find more column matches increasewedls This is due to having more
freedom for selecting the LFSR vectors to be assigo the deterministic vectors. However,
with the number of vectors the design runtime rigpittreases.

This is illustrated by Table 5.2. Its format isaieed from Table 5.1, th#et.” column
indicates the length of the deterministic phase.

It can be observed that a trade-off between thetites and area overhead can be freely
adjusted here too, according to demands of the BEZIgner.

The lengths of both the phases significantly inflces the BIST design time as well. The
design process is being sped up when increasinigiigéh of the pseudo-random phase, since
the number of deterministic vectors is being redudhis way. On the other hand,
an increasing length of the deterministic phase/sidown the process.

Table 5.2: Influence of the deterministic phasehanresult

bench| inps| PR| Det.| vef{ M| DM SWGHEs ODGEs Total GEs Tahe
c1908| 33 | 1000 500 | 39| 18] 9| 36 54.5 90.5 1.6
1000 20 | 11 | 33 48 81 4.88
2000 20 | 13 | 30 50 80 8.47
5000 22 | 13| 30 38.5 68.5 25.78
c3540| 50 | 1000 200 | 26| 48| 31 285 5.5 34 0.32
500 49 | 31 | 285 1 29.5 0.52
1000 49 | 32 | 27 1 28 1.02
2000 50 | 39 | 16,5 |0 16.5 1.47
5000 50 | 45 | 7.5 0 7.5 2.93
s1196| 32 | 5000 200 | 23] 27| 22 15 10.5 25.5 0.17
500 29 | 20 | 18 7 27 0.32
1000 29 | 25 | 105 6.5 17 0.48

31

2000 29 | 26 | 9 8 17 1.52
5000 31 | 27 | 75 1.5 9 2.16
10000 32 | 29| 45 0 4.5 5.83

5.3 Comparison of the Results

We have compared our results with two state-ofaittemethods, namely the bit-fixing
method [Tou95] and the row matching method proposedCha03]. The comparison
is shown in Table 5.3. Th&L” columns indicate the total length of the test, 1G&Ss”
columns give the number of gate equivalents of BA8T combinational circuits. The
column-matching GEs in bold indicate that our mdthwas better than both the other
methods in the particular case, in terms of theplexrity of the transforming combinational
logic. Let us note here, that a special kind ofRPB is used in the row-matching approach
[Cha03]. Such a circuit causes quite a large aveshead in most cases, for many XOR gates
present. This overhead is not included in the tabler method is independent on a PRPG
used, in general, thus in all the cases we havd aseLFSR with two XOR gates only,
independently on its width. Thus, sometimes biggrela overhead of our method could be
compensated by a small area of the PRPG used.ipiy eells indicate that the data for the
respective circuit was not available to us.

Table 5.3: Comparison results

Column-matching Bit-fixing| Row-matching
Bench TL GEs TL| GEs TL GEs
c880 | 1K 10.5 1K |27 1K |21
c1355|2 K 15 3K |11 2K | 0
c1908|3 K 7.5 4K |12 |45K]| 8
c2670|5 K 172 5K | 121 | 5K | 119
c3540/5.5K |15 45K|13 |45K| 4
c7552|8 K 586 10K| 186 | 8K | 297
s420 | 1K 24.5 1K |28 - -
s641 | 4K 15 10K 12 10K 6
s713 | 5K 16.5 - -| 5K | 4
s838 | 6 K 130 10K 37 - -
$1196|10 K 6 - - |10K | 36

5.4 Results for Standard Benchmarks

Since the comparison shown in Table 5.3 describsslis for a few benchmark circuits
only, we will present a more exhaustive result @éalfbr most of ISCAS [Brg85, Brg89]
benchmarks. For each benchmark the BIST circuitag synthesized in two modes — for the
first one, the test length was set to be relatigahall (the white rows). In the second one the
test was longer, to keep the area overhead as amptissible. Thus, the tradeoff between the
test length and area overhead can be seen well.

The*“inps” column indicates the number of the benchmark spuatthe"PRand’ column
the number of pseudo-random vectors needed to pkedpo the CUT to be completely
tested is shown, just to show the effectivenesthefmethod. Th&TL” column gives the

32

lengths of the pseudorandom and deterministic ghad®e“M” and“DM” columns show
the number of total and direct column matches re@chhe complexity of the switching logic
is shown in théSW GES column, the complexity of the output decodef@D GESs”. These
numbers are summed together in thetal GES’ column. The runtime needed to complete
the column-matching process is indicated in thedakimn.

Table 5.4: ISCAS benchmarks

Bench| inps PRand TL M DM SW OD | Total | Time [s]
GEs | GEs | GEs
c880 |60 | 25K 100 + 100 53 22 57 125 695 0.50
500 + 500 60 |50 15 0 15 0.04
c1908 | 33 | 3K 1000 + 500 18 9 36 54%5 905 1.6
2000+500 |33 |16 [255 |0 25.5 |0.14
c2670 | 233 | 2.4 M 1000 + 1000 193 178 90 109.5 19966
10000 + 5000|204 [179 |81 73.5 |154.5 |673

c3540 | 50 | 5K 1000 + 500 |50 |34 24 0 24 0.40
2000 + 1000 |50 |41 135 |0 13,5 |0.19
c5315 | 178 | 2K 500 + 500 168 121 855 205 106 6.43

1000 + 500 178|154 |36 0 36 0.13
c7552 | 207 | >100 M| 7000 + 1000 131 33 261 326 586 0 50
10000 + 2000|133 | 36 256.5 |248.5 |505 |887
s420 | 34 | 165K 400 + 600 32 21 21 3.5 245 0.75
3000 + 1000 |35 |21 21 0 21 0.41
s526 | 24 | 5K 500 + 500 21 20 6 8 14 0.20

1000 + 1000 |24 |21 |4.5 0 4.5 0.11
s641 | 54 | 200 K 500 + 500 52 40 21 |2 23 0.47
3000 + 1000 |54 |44 15 0 15 0.21
s713 | 54 | 300 K 500 + 500 52 38 24 3 27 0.56
3000 + 1000 |54 |42 18 0 18 0.32
s820 | 23 10K 1000 + 1000 20 19 6 9.5 155 0.50
3000 + 1000 |23 |18 7.5 0 7.5 0.15
s832 | 23 10K 1000 + 1000, 19 19 6 8.5 145 0.40

3000 + 1000 |22 |19 6 2 8 0.20
s838 | 67 | >100M| 1000+ 1000, 37 13 81 45 126 26.2P
10000 + 2000/46 |14 79.5 |29 108.5 |51.51
s953 | 45 15K 1000 + 1000 42 38 10.1 16)5 1.23
2000 + 1000 (45 |39 9 0 9 0.58
s1196 | 32 | 200K 2000 + 1000, 28 23 136 235 37 1.20
9000 + 1000 |32 |28 6 0 6 0.04
s1238 | 32 | 20K 1000 + 1000] 27 22 15 43 58 2.51
5000 + 1000 |30 |23 135 |45 18 0.44

(=4}
(o]

s1423 | 91 | 10K 1000 + 1000 89 63 42 2 44 1.43
5000 + 1000 |91 |82 135 |0 13.5 |0.06

s1488 | 14 | 2K 300 + 200 9 8 9 55.5 645 0.13
500 + 500 13 |10 6 2 8 0.12

s1494 | 14 | 2K 300 + 200 10 8 9 41 50 0.12

500 + 500 12 |12 3 13 16 0.12

33

Chapter 6

Conclusions and Future Work

A mixed-mode BIST method based on t@umn-matchingapproach has been proposed.
Here the pseudorandom LFSR code words are beimgforaned into deterministic test
patterns computed by some ATPG tool. The transfoomas being done by a purely
combinational block. Here we try to match as mahisooutputs as possible with its inputs,
which yields no logic necessary to implement thasputs.

The method is designed for a test-per-scan BISTWweker it can be easily adopted
to full-scan or multiple-scan circuits. The pseudadom and deterministic phases are
separated, which enables to reach smaller aredeaer The method is based on a design
of a decoder transforming the LFSR code words aeterministic test vectors testing the
hard-to-detect faults. In all the mixed-mode desjgrmme kind of switching logic is involved.
A method reducing both the transformation and s$wiritg logic is proposed here.

The test is divided into two phases, the pseuddeamand deterministic. The lengths
of both phases might be freely adjusted, to finttaale-off between the test time and area
overhead. It has been shown that the length opsleeido-random phase has a crucial impact
on the result and we present a methodology for gihgats length efficiently.

The length of the deterministic phase influences tésult as well, however not too
significantly. The impact of the test lengths oe tturation of the BIST design process is
considered as well.

A big scalability of the method, in terms of thee@aroverhead, test time and design time
was shown.

Our BIST method can be used for any fault moded, froper fault simulator and ATPG
tool is provided. The fault coverage reached iseddpnt only on the ATPG tool as well; a
trade-off between the fault coverage and BIST axeshead can be adjusted too.

The method was tested on the standard ISCAS bemkbraad the results were compared
with other state-of-the-art methods.

As the future work we plan to do several minor rfiodiions, which could help us to
slightly reduce the complexity of the resulting BlSNamely it is using cellular automata or
other more complex structures as the PRPG.

More essential modification of the algorithm wilhable us to adjust the width of the
PRPG. Until now, we have assumed that the numb@G 8&utputs is equal to the number of
CUT inputs, at least in the mixed-mode method. &heould be no modification of the
algorithm for this case. However, for a wider PRIP& algorithm cannot decide what PRPG
outputs should be connected to the CUT inputs enpgeudo-random phase - until now they

34

are connected in an ascending order, howeverpbssible to choose any other order. This
problem gives us a hint for another possibilityraprovement of our algorithm — to consider
a permutation of wires, not to just connect itigtna

This would be possible to do by incorporating th€P& tool into the algorithm more
extensively. Particularly, the deterministic tesinkt be generated in one step, but iteratively
with a chance to change unwanted tests and toestiabdlcolumn-matching algorithm to take
hints from the ATPG. For example, for a particidat of faults we will be able to select a test
vector having don't care values in the positionshef already matched columns. Thus, the
restrictions put on the following column match viaé reduced.

Such a major modification could significantly redugoth the area overhead and the test
length.

To be able to cope with most of VLSI core desigreswill modify our method to support
the test-per-scan BIST, even for multiple scansthai

Larger circuits are often hard to test, especitdlytheir huge number of inputs (arising
from the scan-chain). Thus, we will try to propasepartitioning method, splitting large
circuits into smaller ones, for which would be tB&T constructed separately. Such a
partitioning should be done in such a way that@GhEl performance should not be affected,
nor the area overhead would significantly increase.

Then, after all, we plan to combine our method wither methods, namely to exploit the
reseeding principle. This would make Column-matgtaruniversal BIST design method.

35

List of Abbreviations

ATE ..o Automatic Test Equipment
ATPG ... Automatic Test Pattern Germrat
BIST .o Built-in Self-Test

(O1 U Circuit under Test
DC.reiieeen, Don't Care

FSM.....covviinennn. Finite State Machine

GE .cooiiiiiiiii Gate Equivalent

LFSR ..., Linear Feedback Shift Registe
MISR......cccoee Multiple-Input Shift Register
PRPG......cc.cee...o. Pseudo-Random Pattern Gemerat
RE......ccoiiiin Response Evaluator

TPG ..o, Test Pattern Generator

List of Symbols Used

O PRPG code words matrix

T Test matrix

L e a particula® matrix column (to be matched)

J e a particulafF matrix column (to be matched)
Koo a particula@ matrix row

L a particulafF matrix row

0 P number of column matches

TR number of PRPG bits; vemof C matrix columns
o IR number of PRPG cyclesnber ofC matrix rows
e number of CUT inputsymoer ofT matrix columns
Settereiiee e eeend number of deterministic test vectors; number ofatrix rows
Xi ceeeeeennneeennnneeennnns input variable (LFSR outpDecoder input)

)/ RTTTTTTTTTTTR output variable (Decodertput, CUT input)

36

References

[Aga93] V.K. Agarwal, C.R. Kime and K.K. Saluja tutorial on BIST, part 1: Principles
IEEE Design & Test of Computers, vol. 10, No.1 Mai®93, pp.73-83, part 2:
Applications, No.2 June 1993, pp. 69-77

[Alo93] K. Aloke, K. and D.P. ChaudhunNector Space Theoretic Analysis of Additive
Cellular Automata and Its Application of Pseudoexdiave Test Pattern GeneratioificEE
Transactions on Computers, Vol. 42, No. 3, Marcd3lp. 340-352

[AIS94] M.F. AlShaibi and C.R. Kimerixed-Biased Pseudorandom Built-In Self-Test for
Random Pattern Resistant Circyiroc. of International Test Conference, pp. 938;9
1994

[Bar87] P.H. Bardell, W.H. McAnney and J. SaBuit-In Test for VLSI: Pseudorandom
TechniquesNew York: Wiley, 1987

[Bra84] R.K. Brayton, et al.ogic Minimization Algorithms for VLSI Syntheds®oston, MA,
Kluwer Academic Publishers, 1984

[Brg85] F. Brglez and H. Fujiwar#@ Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in FortaRroc. of International Symposium on Circuits
and Systems, pp. 663-698, 1985

[Brg89] F. Brglez, D. Bryan and K. KozminskKiombinational Profiles of Sequential
Benchmark CircuitsProc. of International Symposium of Circuits é&ybtems, pp. 1929-
1934, 1989

[Cha95] M. Chatterjee and D.K. Pradh&nnovel pattern generator for near-perfect fault
coverage Proc. of VLSI Test Symposium 1995, pp. 417-425

[Cha03] M. Chatterjee and D.K. Pradh&nBIST Pattern Generator Design for Near-Perfect
Fault CoveragelEEE Transactions on Computers, vol. 52, no Dgtember 2003, pp.
1543-1558

[DeM94] G. De Micheli.Synthesis and Optimization of Digital CircuidcGraw-Hill, 1994

[Gir99] P. Girard, et al.A test vector inhibiting technique for low enerd$B designlEEE
VLSI Test Symposium, May 1999, pp. 407-412.

[Ham98] I. Hamzaoglu and J.H. Patéést Set Compaction Algorithms for Combinational
Circuits, Proceedings of the International Conference omi&der-Aided Design
(ICCAD), November 1998.

[Har93] J. Hartmann and G. Kemnitdow to Do Weighted Random Testing for BIBibc.
of International Conference on Computer-Aided DegIi€ CAD), pp. 568-571, 1993

[Hel92] S. Hellebrand, S. Tarnick and J. Rajg&keneration of Vector Patterns Through

Reseeding of Multiple-Polynomial Linear Feedbacikt$tegisters Proc. of International
Test Conference, pp. 120-129, 1992

37

[Hel95] S. Hellebrand, et aBuilt-In Test for Circuits with Scan Based on Relgag of
Multiple-Polynomial Linear Feedback Shift RegistéEEEE Trans. on Comp., vol. 44, No.
2, February 1995, pp. 223-233

[Hel00] S. Hellebrand, H. Liang and H.J. WunderlidhMixed Mode BIST Scheme Based on
reseeding of Folding CounterBroc. IEEE ITC, 2000, pp.778-784

[Koe91] B. KoenemanrLFSR — Coded Test Patterns for Scan Designsc. Europian Test
Conf., Munich, Germany, 1991, pp. 237-242

[Lee91] H.K. Lee and D.S. Han Efficient Forward Fault Simulation Algorithm Bakon
the Paralel Pattern Single Fault PropagatidProc. of the 1991 International Test
Conference, pp. 946-955, Oct. 1991

[Lee93] H.K. Lee and D.S. Hatalanta: an Efficient ATPG for Combinational Cirtsi
Technical Report, 93-12, Dep't of Electrical Engrginia Polytechnic Institute and State
University, Blacksburg, Virginia, 1993

[McC84] E.J. McCluskeyPseudo-Exhaustive Testing for VLSI Devi¢RC Technical
Report No. 84-6, Dept. of Electrical Engineeringl @omputer Science, Stanford
University, USA, August 1984

[McC85] E.J. McCluskeyBIST techniquedEEE Design & Test of Computers, vol. 2 No.2
Apr. 1985, pp.21-28, BIST structures. vol. 2 No& AL985. pp. 29-36

[Nee93] D.J. Neebel and C.R. Kimlehomogeneous Cellular Automata for Weighted
Random Pattern GeneratipRroc. of International Test Conference, pp. 10032, 1993

[Nov98] O. Novak and J. Hlatka. Design of a Cellular Automaton for Efficient Tesittern
Generation Proc. IEEE ETW 1998, Barcelona, Spain, pp. 30-31

[Nov99] O. Novak Weighted Random Patterns for BIST Generated iru@elAutomata
Proc. of 5-th IOLTW, Rhodes, Greece, July 1999, %76

[Pom93] I. Pomeranz and S.M. Red8yWeight Pseudo-Random Test Generation Based on a
Deterministic Test Set for Combinational and Seqjak€ircuits, IEEE Transactions on
Computer-Aided Design, Vol. 12, No. 7, pp. 1050-8,0fuly 1993

[Str02] E.C. StroudA Designer's Guide to Built-In Self-TeBbston, MA, Kluwer Academic
Publishers, 2002

[Tou95] N.A. ToubaSynthesis of mapping logic for generating transkdmpseudo-random
patterns for BISTProc. of International Test Conference, pp. 682;8995

[Tou96a] N.A. Touba and E.J. McClusk&ynthesis Techniques for Pseudo-Random Built-In
Self-TestTechnical Report, (CSL TR # 96-704), DepartmentSlectrical Engineering
and Computer Science Stanford University, Augu9619

[Tou96b] N.A. Touba and E.J. McCluske&dltering a Pseudo-Random Bit Sequence for
Scan-Based BISProc. of International Test Conference, 1996,1167-175

[TouO1] N.A. Touba and E.J. McCluskeBit-Fixing in Pseudorandom Sequences for Scan
BIST, IEEE Transactions on CAD, Vol. 20, No. 4, Apid@L, pp. 545-555

[Wun87] H.J. WunderlichSelf-Test Using Unequiprobable Random Patteliec. of
FTCS-17, pp. 258-263, 1987

[Wun88] H.J. WunderlichMultiple Distributions for Biased Random Test Pats2 Proc. of
International Test Conference, pp. 236-244, 1988.

[Wun96] H.J. Wunderlich and G. KeifdBit-Flipping BIST Proc. ACM/IEEE International
Conference on CAD-96 (ICCAD96), San Jose, Califpriovember 1996, pp. 337-343

38

Dissertation Thesis

Title: Mixed-Mode BIST Based on Column Matching

Abstract

Dissertation Thesis will focus on a design of bunlself-test circuitry for combinational or
scan-based circuits. The method will be based amowel method — the Column Matching.
The mixed-mode BIST will be supported, while thsetteill be divided into two disjoint
phases — the pseudo-random and deterministic.elnléberministic phase the test vectors are
generated by a purely combinational block — the pOutDecoder. When designing the
Decoder we try to match as many of its outputs With inputs as possible, which yields no
logic needed to implement them.

Better incorporation of the ATPG tool into the aigfom will be studied, to improve the
quality of the result. Partitioning of large testactuits will be considered as well, to reduce
the BIST design time and even the resulting BIS¥arverhead.

The methodology will be verified on standard benaha (ISCAS, ITC).

Keywords: built-in self-test, test-per-clock, pseudo-randasting, deterministic BIST

39

Publications of the Author

[FisO0] P. FiSer and J. Hlaska. Efficient minimization method for incompletely defi
Boolean functionsProc. 4th Int. Workshop on Boolean Problems,lfey (Germany)
21.-22.9.2000, pp.91-98

[FisOla] P. Fiser and J. Hl&ka. Implicant Expansion Method used in the BOOM Mingniz
Proc. IEEE Design and Diagnostics of Electronic@its and Systems Workshop
(DDECS'01), Gyor (Hungary), 18.-20.4.2001, pp. 298

[FisO1b] P. FiSer and J. Hlakia. On the Use of Mutations in Boolean Minimizati&mnoc.
Euromicro Symposium on Digital Systems Design, \&aréPoland) 4.-6.9.2001, pp.
300-305

[FisOlc] P. FiSer and J. Hlaka. BOOM - a Boolean MinimizeResearch Report DC-2001-
05, Prague, CTU Publishing House, June 2001, 37 pp.

[FisO2a] P. Fiser and J. Hl&ka. Column-Matching Based BIST Design MethBobc. 7th
IEEE Europian Test Workshop (ETW'02), Corfu (Grge26é.-29.5.2002, pp. 15-16

[FisO2b] P. FiSer and J. Hla¥a. A Set of Logic Design Benchmarksoc. IEEE Design and
Diagnostics of Electronic Circuits and Systems Vgbdp (DDECS'02), Brno (Czech
Rep.), 17.-19.4.2002, pp. 324-327

[FisO2c] P. FiSer and J. Hlaa. A Flexible Minimization and Partitioning MethoBroc. 5th
Int. Workshop on Boolean Problems, Freiberg (Geynaf.-20.9.2002, pp. 83-90

[FisO3a] P. FiSer, J. Hlatka and H. Kubatovd&Column-Matching BIST Exploiting Test
Don't-Cares Proc. 8th IEEE Europian Test Workshop (ETW'03aastricht (The
Netherlands), 25.-28.5.2003, pp. 215-216

[FisO3b] P. Fiser and J. Hla¥a. BOOM - A Heuristic Boolean Minimize€omputers and
Informatics, Vol. 22, 2003, No. 1, pp. 19-51

[FisO3c] P. FiSer and J. Hlaa. A Flexible Minimization and Partitioning MethpBroc. of
Workshop 2003 (web). Prague : CTU, 2003, vol. A312-313. ISBN 80-01-02708-2

[Fis03d] P. FiSer, J. Hlagka and H. Kubatov&overage-Directed Assignment Approach to
BIST, Proc. IEEE Design and Diagnostics of Electronicuts and Systems Workshop
(DDECS'03), Poznan (Poland), 14.-16.4.2003, p®37-

[FisO3e] P. FiSer, J. Hlatka and H. Kubatov&C-Min: A Fast Multi-Output Boolean
Minimizer, Proc. 29th Euromicro Symposium on Digital Systémesign (DSD'03),
Antalya (TR), 1.-6.9.2003, pp. 451-454

[FisO4a] P. FiSer and H. Kubatovén Efficient Mixed-Mode BIST Technigioc. 7th IEEE

Design and Diagnostics of Electronic Circuits arydt&ms Workshop 2004, Tatranska
Lomnica, SK, 18.-21.4.2004, pp. 227-230

40

[FisO4b] P. FiSer and H. Kubatowdseudorandom Testability - Study of the Effechef t
Generator TypgeProc. 6th International Scientific Conferencekdectronic Computers
and Informatics 2004 (ECI'04), Hany, SR, 22.-24.9.04

[FisO4c] P. FiSer and H. Kubatovafluence of the Test Lengths on Area Overheadixe®4
Mode BISTProc. 9th Biennial Conference on Electronics lslictosystem Technology
2004 (BEC'04), Tallinn (Estonia), 3.-6.10.2004

[FisO4d] P. FiSer and H. Kubatov@urvey of the Algorithms in the Column-MatchingBIS
Method Proc. 10th International On-Line Testing Symposk004 (IOLTS'04),
Madeira, Portugal, 12.-14.7.2004, pp. 181

[FisO4e] P. FiSer and H. Kubatovewo-Level Boolean Minimizer BOOM-Proc. 6th Int.
Workshop on Boolean Problems, Freiberg, (Germ&Z8/}24.9.2004

[FisO4f] P. FiSer and H. Kubatov&ingle-Level Partitioning Support in BOOM-PRroc. 2nd
Descrete-Event System Design 2004 (DESDes'04), @ycRoland, 15.-17.9.04, pp.
149-154

[FisO4q] P. FiSer and H. KubatovBoolean Minimizer FC-Min: Coverage Finding Process
Proc. 30th Euromicro Symposium on Digital Systeresiin (DSD'04), Rennes (FR),
31.8. - 3.9.04, pp. 152-159

[HIa00] J. Hlavéka and P. FiSeAlgorithm for Minimization of Partial Boolean Funechs
Proc. IEEE Design and Diagnostics of Electronic@is and Systems (DDECSO00)
Workshop, Smolenice, (Slovakia) 5.-7.4.2000, ISEN9®8320-3-4, pp.130-133

[Hla01] J. Hlavéka and P. FiSeBOOM - a Heuristic Boolean MinimizelProc. International
Conference on Computer-Aided Design ICCAD 2001, Bme, California (USA), 4.-
8.11.2001, pp. 439-442

[HlaO1a] J. Hlamvika and P. FiSer Heuristic method of two-level logic synthe$lsoc. The
5th World Multiconference on Systemics, Cybernegind Informatics SCI'2001,
Orlando, Florida (USA) 22.-25.7.2001, pp. 283-284, I

[Hla01b] J. Hlavéka and P. FiSeBOOM - a Heuristic Boolean MinimizelProc.
International Conference on Computer-Aided Des@@BAD 2001, San Jose, California
(USA), 4.-8.11.2001, pp. 439-442

[HIa02] J. Hlaveka and P. FiSeMinimization and Partitioning Method Reducing Inj@ets
Proc. 1st International Workshop on Electronic Desilest & Applications (DELTA
2002), New Zealand, 29.-31.1.2002, pp. 434-436

41

