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Abstract. Both test compression tools and ATPGs directly producing compressed test greatly benefit from don’t care values present 

in the test. Actually, presence of these don’t cares is essential for success of the compression. Contemporary ATPGs produce tests 

having more than 97% of don’t cares for large industrial circuits, thus high compression ratios can be expected. However, these 

don’t cares are placed in the test in an “uninformed” way. There are many possibilities of constructing a complete test for a circuit, 

while the ATPG chooses just one particular, without respect to the subsequent compression process. Therefore, the don’t cares cannot 

be fully exploited. In this paper we show how severe this issue is. A novel ATPG algorithm directly producing compressed test 

patterns for the RESPIN decompression architecture is presented. Test don’t cares are placed in an informed way, so that they are 

maximally exploited by compression. We compare the results with several ways of uninformed don’t care generation to show the 

benefits of the proposed method. Results for the ISCAS and ITC’99 benchmark circuits are shown and compared to state-of-the-art 

test compression techniques. 
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1. Introduction 

As the complexity of integrated circuits and systems continually increases, their testing becomes more and more difficult. 

The test data volume increases with the circuit size, making the test storing and application unfeasibly memory- and time-

consuming.  Therefore, using some kind of test compression becomes inevitable. According to the ITRS roadmap [1], the 

required test data volume compression reaches tremendous ratios: 2,700-times in 2015 and almost 50,000-times in 2028. 

The compression (and subsequent decompression) can be accomplished by several means. The test compression is performed 

algorithmically, whereas the decompression always involves some additional hardware. Basically, there are three major 

approaches: 

1. A non-compressed test is generated by a conventional Automatic Test Pattern Generation tool (ATPG) and then it is 

algorithmically compressed. The decompression is then performed by a special dedicated non-intrusive hardware, 

usually a kind of FSM. This approach comprises Huffman encoding based algorithms [2], Golomb codes [3], statistical 

(FDR) codes [4], but also the well-known LFSR reseeding [5], [6] to some extent, and the Embedded Deterministic Test 

(EDT) technique [7], which is now the industrial state-of-the-art. 

2. Generic design-for-testability (DFT) architectures are used for test decompression, while the test generation process still 

relies on a conventional ATPG. Random access scan [8], [9], Illinois scan [10]  and RESPIN-based [11], [12], [13] 

architectures belong to this category, together with rather theoretical papers with no particular architecture proposed 

[14]. 

3. Dedicated ATPGs are used to generate test for generic or dedicated architectures. Such an approach theoretically offers 

the highest possible compression ratio. The algorithm has the highest flexibility, since the compressed test generation is 

not performed in two subsequent and separated phases. Methods presented in [15], [16], and [17] are typical 

representatives. Here the ATPG is constrained or modified, so that the compressed test stream for the target architecture 

is generated directly. This is also the approach we have adopted in this paper. 

 



As for ATPGs, there are two major baselines: circuit-based ATPGs [18], [19], [20], [21] and approaches transforming the 

ATPG problem to the satisfiability (CNF-SAT) problem [22], [23]. Modern ATPGs then combine benefits of both, mostly 

by introducing structural information to help the SAT-solver compute the solution faster [24], [25], [26]. 

 

Current ATPGs are able to produce tests containing unspecified values – we call them test don’t cares. The test vectors 

(patterns) that could be incompletely specified are then referred to as test cubes. Don’t cares can be efficiently used in the test 

compression process, since they introduce a kind of flexibility, as any value can be assigned to them. However, there are many 

ways of forming a (complete) test. The following two aspects must be accounted for: 

1. Usually every single fault can be detected by many different test vectors (test patterns). Moreover, a complete set of such 

vectors usually cannot be described by a single test cube. 

2. Test compaction [27], [28] performed by ATPG tools, merging test cubes to reduce the test size, can be executed 

in different ways. Actually, it is an NP-hard process [22] and heuristics are used in practice. 

As a result, the don’t cares are placed in the test randomly, from the point of view of their subsequent usage. Even though 

the amount of test don’t cares typically reaches very high values (more than 97% for industrial designs [7]), still even more 

flexibility could be exploited by compression. In other words, the test compression process is provided a single set of test cubes 

only, out of numerous possibilities. There is no guarantee that the compression would not perform better, when given a different 

test set. 

In this paper we show how severe this issue is. We present a SAT-based ATPG producing a compressed test directly. The 

test cube generation is driven by the compression process, so that most suitable test cubes are used. Naturally, don’t cares in test 

patterns are beneficial for the compression. To obtain these don’t cares we propose a method of generating test don’t cares in an 

informed way. Then we compare the results with methods where don’t cares are obtained in an uninformed way, to show the 

benefits of the former one. 

Note that the terms “informed” and “uninformed” used throughout this paper come from the concept of informed and 

uninformed local search heuristics. The informed methods use some additional information to properly guide the neighborhood 

exploration. Here, the neighborhood are incompletely specified test patterns, and the heuristic function is the number of faults 

covered by them. 

We extend the SAT-Compress algorithm [16], [17] by injection of “don’t cares” into test patterns. The SAT-Compress ATPG 

algorithm generates the compressed test stream by constraining a conventional SAT-based ATPG. Conventional SAT solvers 

[29], [30] used as the vital part of most of SAT-based ATPG tools produce completely specified solutions, where all variables 

have a specified value in the satisfying solution. There are several ways of introducing don’t cares (unspecified variables) into 

the SAT solution. First, there are SAT-solvers producing incompletely specified solutions directly [31]-[34]. Here satisfying 

solutions comprised of minimum literals (minimal models, prime implicants) are generated. However, the optimization criterion 

is computed over all variables, which is unsuitable for our application, where values of only some variables are of interest. 

Next, optimization version of SAT can be transformed to Integer Linear Programming (ILP) [35]. Here the optimization 

criterion can be modified for our purposes, so that only some variables are accounted in its computation. In this paper we propose 

a similar method, particularly the conversion of the SAT problem minimizing the number of specified variables in the satisfying 

solution to Pseudo-Boolean Optimization (PBO) [36]. 

Finally, don’t cares can be injected into a completely specified vector obtained from a conventional SAT solver [29], [30], 

while the coverage is checked by symbolic fault simulation. When fault simulation is performed, we get additional information 

on the obtained test cube – its fault coverage [38]. Then we can, e.g., inject don’t cares while respecting the fault coverage. This 

is the informed way of obtaining test don’t cares proposed in this paper. We compare this simulation-based method with the 

uninformed ones and show its benefits in test compression, in terms of both the compressed test stream size and test compression 

time. 
The paper is organized as follows: the target architecture and basic principles of the studied compression algorithms are 

shown in Section 2. Possibilities of obtaining don’t cares in the SAT-Compress process are described in Section 3, Section 4 
presents experimental results, to show the role of don’t cares in test compression and to illustrate the benefits of informed don’t 
care injection. Section 5 concludes the paper. 

2. The decompression architecture and compression algorithms 

2.1. The RESPIN architecture 

The SAT-Compress algorithm [16], [17] and also its enhancements proposed in this paper and [38] are based on the RESPIN 

architecture [11], which is targeted to System-on-Chip (SoC) designs compliant with the IEEE Std. 1500 [39], [40]. Only a very 

small modification of IEEE Std. 1500 (addition of one multiplexer) can accomplish the test decompression job. 



The basic idea of RESPIN is illustrated in Figure 1. Multiple embedded cores are considered here. To test one core (CUT – 

Core under Test), the test decompression is performed by another core (ETC – Embedded Tester Core). 

RESPIN uses two features of IEEE Std. 1500 – the serial and parallel test access modes. The compressed test bitstream 

serially enters the ETC, which is configured as a shift-register. Then the decompressed data is applied to the CUT, which is tested 

in the parallel scan-chain mode. 

The ETC is provided with a multiplexer, enabling rotation of the pattern. Thereby, if no data come from the ATE, no 

information on the stored pattern is lost. This opens a simple way to compression: when the deterministic non-compressed test 

patterns overlap when rotated by p bits, each test pattern to be applied to the CUT involves only p bits coming from the ATE. 

Actually, rotation needs not be used in practice. Typically, one bit comes from ATE in each cycle (p = 1), while the remaining 

bits of the pattern are formed by shifting the previous pattern by one bit. This approach eliminates the need for any control data 

provided by ATE. For details see [11]. 

2.2. Patterns overlapping based approaches 

An illustrative example of an overlapping-based compression is shown in Figure 2. Here the non-compressed test length 

equals to the number of patterns multiplied by the number of CUT scan-chain cells, 105 = 50 bits in the example case. When 

properly overlapped, the compressed test length is only 16 bits. 

Note that by shifting the pattern by one bit only, the overlap needs not be always achieved. Then two or more clock cycles 

(shifts) must be applied. Such a case is in [11] referred to as a presence of link patterns. They do not increase the fault coverage, 

but may increase the defect coverage. In Figure 2 there are link patterns in the 6th and 11th clock cycle. 

Since the RESPIN decompression architecture is based on full scan, only combinational logic is tested. Therefore, the order 

of patterns in which they are applied to the CUT is insignificant. The patterns may then be reordered, to reach maximum 

compression (i.e., maximum overlap). 

Further, as mentioned above, standard circuit-based ATPGs [21] are able to generate test patterns with a huge amount of don’t 

care values. Test don’t cares are greatly beneficial for the compression, since they can be overlapped with any value (see Figure 

2). Thus, don’t cares bring more freedom into the overlapping process. These two principles are aimed to be fully exploited 

by RESPIN-based compression techniques [11], [12], [13], [15], [16], [17]. 

2.3. The RESPIN algorithm 

In order to show the main differences between the original RESPIN compression algorithm [11] and SAT-Compress [16], 

[17], whose enhancement is proposed in this paper, we will briefly review both.  

 

The RESPIN algorithm (see Figure 3) starts with running a conventional ATPG to produce a test T for the circuit (1). Then 

the constraints cube c is initialized with the initial test pattern (2). This can be the previous content of the ETC scan-chain, an 

all-zero vector, or it can be decided by the compression algorithm. For the latter case, c is initialized to an all-DC vector. 

Then all test cubes from T are tried for merging with c (5). If it is possible (there is a non-empty intersection of the cubes), c 

is constrained by T (6) and T is removed from the test set (7). 

When all test vectors have been tried for merging, a new bitstream bit is formed (10), the constraints cube is shifted by one 

bit (11), and the released position is assigned a don’t care (12). The process repeats, until the test set is not empty (3). Then the 

bitstream is completed by the remaining bits in c (14). 

Note that if the merging (4, 5) fails for all vectors from T, a new bitstream bit is formed anyway; the link pattern is thus 

generated (see Subsection 2.2). 

Such an approach is apparently greedy, and its efficiency is crucially influenced both by the pre-generated test T and its 

ordering. Don’t care values in the test enable easier cube merging (5), thus higher compression. 

 

Let us note that other algorithms used to find an optimum overlapping of pre-generated test vectors exist. For example, in [14] 

the authors transform the problem to the Travelling Salesman Problem (TSP) [22]. 

In COMPAS [12], [13], there is a fault simulation employed, in order to efficiently remove dominated test patterns. 

2.4. The SAT-Compress algorithm 

Unlike in the previously mentioned approaches ([7]-[14]), SAT-Compress does not rely on pre-generated test patterns. Even 

though test patterns produced by conventional ATPGs contain many unspecified (don’t care) values, there is still some 

information lost in the ATPG process, as discussed in the Introduction. 



Therefore, SAT-Compress uses an implicit representation of all test patterns for a given fault as a SAT instance described 

in a conjunctive normal norm (CNF). Any satisfying solution of the related CNF-SAT problem represents a test vector for the 

fault [23] and vice versa. If the CNF is not satisfiable, the fault is undetectable (redundant). 

The size of the SAT instance is linear with the circuit size, therefore such an approach imposes no computational and memory 

overhead, benefiting the scalability of the approach. For details of the circuit-to-CNF conversion, see [23], [24], [16], [17]. 

The compressed test for RESPIN is produced by constraining SAT instances by patterns stored in the ETC. Note that a similar 

approach was proposed in [15]. Here a conventional (commercial) ATPG was constrained in a similar way. However, SAT-based 

representation of test vectors offers much higher flexibility and possibilities of speed-up [17]. 

Similarly to RESPIN and COMPAS, SAT-Compress tries to find the best overlap of test patterns by gradually building the 

compressed test bitstream, while each generated test pattern imposes constraints on the subsequent test patterns. The basic 

algorithm is shown in Figure 4. 

First, a fault list for the circuit is generated (1), from which redundant faults are removed by constructing and solving a SAT 

instance for each (2). The constraints cube is set to the initial test pattern, as in RESPIN (3). The compressed bitstream is 

gradually constructed in the main loop of the algorithm (4-18), fault by fault (5). A CNF is generated for the processed fault (6) 

[23], the constraints in form of unit clauses are applied to this CNF (7), and SAT is solved (8). If the constrained formula  is 

satisfiable, the constraints are tightened by the assignment of primary inputs (PIs) in the SAT solution (10). Then the loop is 

terminated (11). Note that the new constraint cube is a subcube of the former one, since the original constraints imposed to PIs 

are included in the SAT instance (7). 

Then a new bitstream bit is formed (14), faults detected by the pattern are removed from the fault-list (15), and new constraints 

are formed by a shift left (16-17). The test generation continues until the fault list is not empty (4). Finally, the bitstream is 

completed by the bits remaining in c (19). 

The faults are processed in the order defined by the pre-generated fault-list (5). We have observed that this ordering, together 

with the initial pattern selection, crucially influences the result quality (see Subsection 4.1), similarly as does the ordering of test 

cubes in RESPIN [42]. Despite of thorough investigations, we were not able to find a way of determining a “good” ordering, 

e.g., by preferring hard-to-detect faults. Actually, similar influences occur in almost all local search heuristics [41], [42] and the 

problem is difficult to be fought. We reduce the influence of faults ordering by making the algorithm more robust and more 

efficient (see Subsection 4.1). 

 

Note that compared to RESPIN and related algorithms, there is no concept of test set in SAT-Compress; the test is represented 

implicitly. On the other hand, RESPIN does not operate with concepts as fault and circuit – these are treated in the ATPG phase 

run prior to the compression algorithm. 

3. Obtainig test don’t cares 

If a conventional SAT solver ([29], [30]) is used in step (8) of the algorithm in Figure 4, completely specified satisfying 

solutions are returned. As a result, the produced test patterns (which also impose constraints on the subsequent patterns) are 

completely specified too. Then the only don’t care values occurring in the algorithm are obtained by the pattern shifting (17), 

thus they appear at the “tail” of the constraints cube only. 

However, a less specified SAT solution can be obtained, yielding less constraints. Possibilities of doing so will be discussed 

in this section. 

3.1. Special SAT solvers 

There is a group of special optimization SAT solvers that minimize the number of specified variables in the solution. So 

called “minimal models” [31], [33], [34] or “prime implicants” [32] are computed here. There are also techniques converting the 

optimization SAT problem to Integer Linear Programming (ILP) [35]. 

These SAT solvers return a satisfying assignment of variables as a solution, while the total number of variables assigned a 

value is minimized.  

The SAT instances used in SAT-Compress (and all SAT-based ATPGs) contain variables representing the circuit primary 

inputs (n in Figure 4), but also incomparably more other variables describing the circuit structure, fault propagation, etc. [23], 

[24]. However, the constraints are derived from values of primary inputs only (line 10 in Figure 4); values of the other variables 

are of no interest in the overall algorithm. Therefore, minimizing the number of specified primary input variables only makes 

sense. All the above mentioned techniques, except ILP, minimize the number of all specified variables. This renders those 

techniques almost useless for our purpose, since there is no guarantee (or at least a promise) that the number of specified input 

variables, which form a very small subset, will be near minimum. For this reason, these techniques will not be studied in this 

paper, and more suitable techniques will be devised instead. 



3.2. Pseudo-Boolean optimization 

Similarly to [35], the optimization SAT problem can be converted to Pseudo-Boolean Optimization (PBO) and solved 

by available efficient PBO solvers, like MiniSAT+ [37]. The resulting problem is an optimization one, in contrast to the original 

constructive problem. The principles of the conversion will be described in this subsection. 

For our purposes, it is convenient to obtain a maximally unspecified test vector that is a solution with maximum of unspecified 

values at primary inputs. This criterion is often phrased as maximum don’t cares. As we show here, such a use collides with 

don’t cares (DC) in function description. To avoid confusion, we use the term unspecified value in this section, and use the 

symbol U for such value. 

 

For better understanding, we will start with a conversion of a MIN-SAT problem, where the number of variables assigned 

to “1” is minimized, to PBO: 

1) Let 𝑥1, … , 𝑥𝑚 be variables of the original MIN-SAT problem. 

2) For each clause (𝑙1 + 𝑙2 + ⋯ + 𝑙𝑗), where 𝑙𝑖 are individual literals (variables or their negations) construct an inequality 

𝑙1 + 𝑙2 + ⋯ + 𝑙𝑗 ≥ 1. 

3) If a literal 𝑙𝑖 = 𝑥𝑘 (variable in its direct form), substitute 𝑙𝑖 = 𝑥𝑘 in the inequality. 

4) If a literal 𝑙𝑖 = 𝑥𝑘̅̅ ̅ (variable in its negated form), substitute 𝑙𝑖 = (1 − 𝑥𝑘). 

5) Form the optimization criterion as 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚 = 𝑚𝑖𝑛. 
 

Example: 

Let us have a CNF formula of 3 variables: 

(𝑥1 + 𝑥2)(𝑥2 + 𝑥3)(𝑥2̅̅ ̅ + 𝑥3̅̅ ̅) 

It will be transformed into the following PBO formulation: 

𝑥1 + 𝑥2 ≥ 1 
𝑥2 + 𝑥3 ≥ 1 
(1 − 𝑥2) + (1 − 𝑥3) ≥ 1 ⇒ −𝑥2 − 𝑥3 ≥ −1 
𝑥1 + 𝑥2 + 𝑥3 = 𝑚𝑖𝑛. 

There are three satisfying solutions of the SAT instance: 

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0
𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 0
𝑥1 = 1, 𝑥2 = 0, 𝑥3 = 1 

When solved as PBO, a single solution minimizing the number of variables assigned to “1” will be returned: 

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0 

  
 

Still, all the variables are in the Boolean domain, while we need to encode unspecified values. For this purpose, we must use 

two Boolean variables to encode each literal, for example, as shown in TABLE I.  

In this encoding, 𝑥𝑖
𝐴 value indicates whether the particular variable is assigned a value, 𝑥𝑖

𝑉 is then the value. 

The optimization criterion can be then formed as: 

 

𝑥1
𝐴 + 𝑥2

𝐴 + ⋯ + 𝑥𝑛−1
𝐴 = 𝑚𝑖𝑛. (5) 

where 𝑥1 … 𝑥𝑛−1 are primary inputs. 

Detecting a fault means to control specified values in the circuit, and to observe specified values at outputs. Hence, the 

propagation of unspecified values must be observed, and every original CNF variable must be doubled in PBO. 

The CNF is then rewritten into a PBO instance in a straightforward way, as shown in the Example above. The solution of the 

PBO instance maximizes the number of unspecified PI values, i.e., a maximum of test don’t cares is obtained.  

 

During the circuit-to-CNF conversion, characteristic functions of all gates in the circuit in CNF form are added to the SAT 

instance. For a gate with inputs 𝑥1 … 𝑥𝑚 and output y, the signature of the characteristic function F is 



𝐹: {0,1}𝑚+1  → {0,1} 

For our problem, we need to take undefined value U into account, and the function F becomes 

𝐹: {0,1,U}𝑚+1  → {0,1} 

The strategy is to calculate F in some form, then to encode it by TABLE I. into  

 

𝐹: {0,1}2𝑚+2  → {0,1} 

 

or, alternatively, into two functions 

 

𝐹𝑉: {0,1}2𝑚+1  → {0,1} 

𝐹𝐴: {0,1}2𝑚+1  → {0,1} 

 

which have 𝑦𝑉 resp. 𝑦𝐴 as the last argument, and to convert them to CNF form. 

The main task is to find a concise and complete representation of F. By completeness we mean that all possible combinations 

at input and output are covered, so that the origin, propagation, and termination of undefined values can be calculated. For this 

purpose, we adapted D-intersection [43]. Because we represent F as a set of terms in tabular form, TABLE II. includes also the 

‘-‘ symbol. Notice that incompatibility cannot occur here. 

 

The complete algorithm for generation of a CNF for a given gate is shown in Figure 5. Let us assume that gate is a table 

describing the on-set of a completely specified Boolean function with one output, and that the columns of the table are labeled 

𝑥1, … , 𝑥𝑚−1, 𝑦. Furthermore, if t is a term, let t[j] be the symbol of t in the column labelled j.  

The algorithm has four main phases. The first one (lines 1 to 5) derives the characteristic function. Lines 6 to 16 are the main 

phase, which adds terms describing the behavior of undefined values to the function. Finally, the third phase (line 18) encodes 

the table and phase four (19 – 27) outputs the resulting CNF, using CNF and DNF duality. Before phase four, F can be split into 

FV and FA. In many cases, the resulting functions are smaller and easier to complement.  

For simplification of the truth table and, more importantly, off-set computation (complementation), the Espresso minimizer 

is used [44]. 

The algorithm is as feasible as Espresso minimization [44] and off-set generation are. Large XOR gates are difficult and have 

large characteristic functions, but are manageable to 10 inputs. Specialized algorithms can be devised for even larger gates, this 

one, however, has the advantage of being universal. 

A complete example of a 2-NAND gate to CNF conversion is shown in Figure 6. 

For purposes of the test compression algorithm, a library of CNF descriptions for every supported gate is created using the 

procedure from Figure 5. Thus, the conversion is run only once. 

3.3. Injection techniques 

Don’t cares can also be obtained by “injection” into a completely specified vector (completely specified SAT solution). The 

most straightforward injection method will be to try to inject don’t cares (“unassign” variable values) into a completely specified 

SAT solution, while checking whether the incompletely specified solution is still a satisfying one, under all assignments of don’t 

cares. However, this would require the number of SAT-solver calls exponential with the number of injected don’t cares. This 

makes this approach impractical. 

In SAT-Compress, we can benefit from the nature of the problem. Indeed, we primarily require a cube that covers a particular 

fault as a solution. Hence, the above exponential satisfiability checking job can be accomplished by symbolic fault simulation 

[45], which can be conducted in polynomial time with the circuit size. This idea can be extended further more – we even need 

not insist on covering the fault the CNF was constructed for; a test cube covering any other fault is a no less valuable solution. 

Naturally, the more specified the test pattern is, the more faults it covers. On the other hand, unspecified bits (don’t cares) 

alleviate the constraints and thus maximize the possible overlap of subsequent patterns. Thus, there are two extreme cases here: 

either we can try to inject as many don’t cares as possible, sacrificing the fault coverage of the test cube (which can drop 

to covering one fault only), or we can try to inject only don't cares retaining the original coverage. Even in the latter case, some 

don’t cares can be injected. Any compromise between these two extremes can be used, by driving the injection by some factor. 

This will be denoted as CL in this paper, the Coverage Loss. 

The don’t cares injection algorithm is shown in Figure 7. It is supposed to be run after a completely specified SAT solution 

in Algorithm from Figure 4 is obtained (step 8). The SAT solution (s), the constraints cube (c), and the CL parameter are the 

inputs to this procedure. 



First, the number of faults detected by s is determined by symbolic fault simulation (1) [45]. Then the test cube (s) is tried 

for don’t care injection in a greedy way (5). Don’t cares can be injected into positions allowed by the constraints cube only (4). 

If the number of faults covered by the resulting cube does not sink below the CL factor, the injection is made permanent (7). The 

procedure returns an expanded test cube, while its fault coverage is no more than by the CL factor less than the coverage of the 

original one. 

This procedure is greedy; its complexity is polynomial with the circuit size (depending on the fault simulation subroutine 

used). Therefore, it imposes no big run-time overhead. 

Note the two extremes: for CL = 0, no fault coverage drop is allowed. This technique will be referred to as Coverage 

Preserving Don’t Care Injection (CPDCI) [38]. For CL approaching 1, maximum don’t cares are injected, while the fault 

coverage may drop to one fault only. 

Summarized, low values of CL represent cases, where the coverage is not lost by the pattern, however less don’t cares are 

injected. High CL values induce injecting more don’t cares, at expense of losing fault coverage of the pattern. The issue of CL 

choice will be further discussed in the following section. 

Note that the CL values in the experimental section will be represented in per cent units (0-100%). 

4. Experimental results 

The experimental results will be presented in this section. All the measurements were performed on a CPU i5-2400 3.1GHz 

with 8GB RAM. Atalanta [21] with Hope [45] was used for the fault list generation and fault simulation purposes, MiniSAT 

v1.14 [29] as the SAT solver, and MiniSAT+ v1.0 [37] was used as the PBO solver. 

The experiments have been performed on a subset (170 benchmark circuits) of the ISCAS'85 [46], ISCAS'89 [47], ITC'99 

[48], and LGSynth [49] benchmark circuits. 

The result quality of most EDA processes based on local heuristics depends on random aspects coming from the input 

description [41], [42]. This issue is discussed and documented in Subsection 4.1. To diminish the influence of randomness 

on evaluation, most experiments were conducted repeatedly, with random initial patterns and random faults ordering, and the 

results were averaged. 

4.1. Influence of randomness on the ATPG process 

As stated before, there are many random aspects that influence the test generation process. First of all, it is the selection of the 

initial test pattern (tp0 in Figure 4). It defines the initial constraints and therefore it influences the whole run of the greedy 

algorithm. The same holds for the ordering of the fault list; the fault list is traversed sequentially until a test vector detecting 

some fault is found (see Figure 4, step 5). Different orderings of the fault list will induce different runs of the test generation 

heuristic. Also the order in which don’t cares are injected (see Figure 7, line 3) influences the final bitstream length. 

The influence of the initial test pattern is shown in Figure 8 and Figure 9 for two illustrative benchmark circuits (c432 and 

c880). The algorithm was executed 5,000-times, each time with a randomly generated initial pattern. The frequencies 

of occurrence of the resulting bitstreams of different lengths (the x-axis) are shown, both for the basic SAT-Compress (Figure 

4) and the SAT-Compress augmented with CPDCI. 

We can see that the histograms follow the Gaussian distribution, which is expectable. More importantly, the two distributions 

have different mean values, advantageously to the CPDCI. CPDCI also has smaller standard deviation, thus randomness plays a 

smaller role here, making CPDCI more robust than the standard SAT-Compress [41]. Nevertheless, the influence of randomness 

is still crucial (even though reduced in the CPDCI case), and worse results can be obtained by CPDCI accidentally, see Figure 

8, where the histograms overlap. Similar frequency distributions were observed for different orderings of faults and don’t care 

injections. 

4.2. Choice of the CL parameter in the simulation-based don’t care injection 

It is difficult to say intuitively, what CL values will produce best results. Low values preserve the fault coverage of test 

patterns, which may theoretically speed up the whole compression process. Since patterns covering more faults are generated, 

less patterns (and therefore SAT instances) will be needed to achieve the complete fault coverage, and thus the main loop will 

be shorter. However, these patterns will be rather constrained (low number of don’t cares), and thus the chances of a successful 

overlap decrease. 

Conversely, high CL values induce many don’t cares, the patterns will more likely overlap, however, more patterns would 

be probably needed to achieve the complete fault coverage. 

While the influence of CL on the number of generated SAT instances and injected don’t cares is quite clear, it is discussable 

what effects will these two aspects have on the final bitstream length and the compression run-time. Therefore, we have evaluated 

the influence of the CL value on the algorithm execution experimentally. 



The results for one representative ISCAS'85 [46] benchmark circuit c3540 are shown in TABLE III. Here the SAT-Compress 

algorithm was run with different values of the CL parameter and the absolute numbers of injected don’t cares (“DC injected”), 

the absolute numbers of SAT instances solved (“SATs”), the final bitstream length (“Bits”), and the compression run-time 

(“Time [s]”) were measured. The values were obtained from averaging values of 30 runs with random initial patterns, to diminish 

the influence of randomness and obtain more precise results (see Subsection 4.1). 

These results are also visualized in Figure 10 - Figure 13, more precisely. Here the minimum, maximum, and average values 

from the 30 runs are shown. 

We can see that the initial assumptions were confirmed: the number of injected don’t cares monotonously grows with 

increasing CL, while the number of solved SAT instances increases too. 

The most important observation concerns the final bitstream length: the average bitstream length monotonously increases 

with CL (see Figure 12), with best results obtained for CL = 0, i.e., the CPDCI technique. Also the run-time decreases for low 

values of CL (Figure 13). 

Similar experiments were performed on many other benchmark circuits and exactly the same behavior was observed in all 

cases. Results for some other ISCAS benchmarks are shown in TABLE IV. The final bitstream length only was measured. The 

data was obtained by averaging 30 runs with random initial patterns, the values are rounded to integer values. 

This experiment has shown that no fault coverage of every single pattern should be sacrificed, even though more don’t cares 

would be injected otherwise. Therefore, the usage of the CPDCI technique from [38] is fully justified; there is no need for looking 

for a compromise between the number of injected don’t cares and the fault coverage. 

Note that the extreme two cases, CL = 0 and CL  100% represent the completely informed and completely uninformed 

don’t care injection techniques, respectively. 

4.3. Comparison of CPDCI and PBO 

As a consequence of the previous experiments, uninformed SAT solvers producing don’t care values, including the 

PBO-based technique from Subsection 3.2 seem to be compromised. Don’t cares must be injected with care (in our case, the 

fault coverage is of the major concern), and definitely not only their number in the SAT solution must be the optimization 

criterion. 

To confirm this, we have made a comparison with the PBO-based technique. The PBO technique produces test patterns with 

the real maximum of don’t cares, however in an uninformed way, too. The results for some benchmark circuits [48], [49] and 

the three processes (uninformed don’t care injection, CPDCI, and PBO) are shown in TABLE V. The final bitstream lengths and 

the average percentages of test don’t cares (out of the number of PIs) are shown. The values were obtained from 1,000 

randomized measurements (random initial pattern) and averaged (see Subsection 4.1). The average values over all the circuits 

are computed in the last table row. 

We can see that even though maximum of don’t cares is obtained by PBO, the resulting bitstreams are typically longer than 

those obtained by CPDCI. 

4.4. Comparison of SAT-Compress variants 

In this subsection we present a more thorough comparison of the original SAT-Compress algorithm (Figure 4) and 

SAT-Compress extended by don’t care injection. The experiments were conducted using a subset of the ISCAS benchmarks 

[46], [47]. 

The results are shown in TABLE VI. After the circuit name, the number of its faults is given, as the measure of the circuit 

complexity. Then results of three variants of SAT-Compress are shown: the original SAT-Compress, i.e., without don’t care 

injection, the uninformed don’t care injection (CL  100%), and the informed one (CL = 0, CPDCI). The absolute numbers 

of injected don’t cares (where applicable), the lengths of the final bitstreams, relative bitstream length improvements w.r.t. the 

original SAT-Compress, and the compression times are shown. Average values are shown in the last table row. 

We can see that the don’t care injection helps to reduce both the final bitstream length and the test compression time. Even 

the uninformed don’t care injection significantly reduces both in some cases. On the other hand, in some cases the injected don’t 

cares make the solution worse. This indicates that the uninformed injection can sometimes do more bad than good. The average 

bitstream size reduction is positive, by 15%. 

Finally, the CPDCI technique reduces the bitstream length by 31% on average and the deteriorating cases are only rare and 

not significant. This experiment justifies the CPDCI one last time. 



4.5. Summary comparison results 

A comparison of the basic SAT-Compress algorithm and its extension by Coverage Preserving Don’t Care Injection 

technique (CPDCI) will be presented in this Subsection. The results for some selected circuits are shown in TABLE VII.  

The first column of the table (“Circuit”) represents the name of the benchmark circuit. The second column “Faults” gives 

the number of faults in the circuit, which reflects its size. The next two columns “Bits” and “Time” represent the number of bits 

of the compressed bitstream and the time spent by compression by the basic SAT-Compress algorithm. The next columns show 

results for the SAT-Compress algorithm with the CPDCI technique. The lengths of the compressed bitstreams and the 

compression times are shown there too. The percentage test length and time improvements w.r.t. the basic SAT-Compress 

algorithm are shown in the “Bits impr.” and “Time impr.” columns. 

Furthermore, the column “DCs tried” shows the absolute numbers of care bits tried for DCs injection and the “DCs inj.” 

column the number of successfully injected bits. The percentage of successfully injected don’t cares is then shown in the 

“Success” column. 

Finally, results of the test compression tool COMPAS [12], [13] are shown. This tool was chosen for comparison, because it 

represents the current state-of-the-art and it is based on the same principles (the RESPIN architecture). However, as well as 

RESPIN, it relies on a pre-computed test, instead of generating the compressed test sequence adaptively. 

The compressed bitstream lengths are given in the “Bits” column, the bitstream length differences w.r.t. the proposed CPDCI 

technique is shown in the last column. COMPAS runtimes are not present, since the experiments were conducted on different 

platforms, thus they are hardly comparable. 

The last row of the table shows average values obtained from all measured 170 benchmarks. 

We can see that the CPDCI technique can significantly decrease the length of the compressed bitstream and accelerate the 

algorithm. The bitstream length is reduced by 46.31% on average and the compression time is reduced to 35.18% in comparison 

with the basic SAT-Compress algorithm.  Even the success of the CPDCI technique in don’t care injection is remarkable; more 

than 65% of bits tried were successfully assigned a don’t care. 

The CPDCI technique increased the efficiency of the SAT-Compress algorithm, both in the compressed test length and test 

generation runtime. However, there are cases where the extended SAT-Compress algorithm produced worse results, e.g. for the 

c499 circuit. We assume that this is caused by the random noise introduced by the algorithm, as shown in Subsection 4.1. 

The scalability of the method is naturally given by the circuit size, particularly the number of faults, but also by its efficiency 

– the more faults are detected in each algorithm step, the faster is the overall algorithm. Therefore, the CPDCI technique 

maximizing the number of covered faults in each step also significantly reduces the runtime. 

In comparison with COMPAS we reach a 6% improvement on average. There are benchmarks, for which SAT-Compress 

strikingly overcomes COMPASS (e.g., c1355, c2670). For some benchmarks COMPAS wins, however, the differences are not 

so large (except of some extreme cases, like s35932). This is probably due to a huge amount of randomness introduced into the 

ATPG process, as shown in Subsection 4.1. We can conclude that these two techniques are competitive. 

5. Conclusions 

The role of don’t cares in the compressed test generation was studied in this paper. Several techniques for obtaining don’t 

cares in the test are proposed, both uninformed and informed ones. We have shown that don’t cares obtained in an uninformed 

way cannot be efficiently exploited in test compression and sometimes they even have disturbing effects. 

The observations resulted in an efficient enhancement of the SAT-Compress ATPG algorithm, the Coverage Preserving 

Don’t Care Injection technique (CPDCI). Basically, the SAT-Compress algorithm gradually constructs compressed test patterns 

by repetitively solving the SAT problem for instances constrained by patterns generated in previous steps. The CPDCI technique 

significantly alleviates these constraints by substituting defined values by don’t cares, without any loss of the fault coverage 

in each step. This is accomplished by a procedure based on a symbolic fault simulation. Less constrained SAT instances allow 

reaching better results, both in test bitstream size (by 46% on average) and test generation time (by 35% on average). We see 

that even though the fault simulation imposes some computational overhead, the resulting run-time is significantly reduced, 

because of shorter bitstreams generated. 
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Figure 1. RESPIN architecture [11] 

 

 

Figure 2. Patterns overlapping 

RESPIN(circuit) 

1 Generate test T for circuit 

2 c = tp0 

3 while (T  ) { 

4  for each t  T { 

5   if (c  t   ) { 

6    c = c  t 
7    T = T – t 

8   } 

9  } 

10  bitstream += c[0] 

11  c[0...n-2] = c[1...n-1]  // n is the number of primary inputs 

12  c[n-1] = DC 

13 } 

14 bitstream += c[0...n-2] 

15 return bitstream 

Figure 3. The RESPIN algorithm 
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SAT-Compress(circuit) 

1 Generate FL for circuit 

2 FL = FL – Redundant_faults 

3 c = tp0 

4 while (FL  ) { 

5  for each f  FL { 

6    = Create_CNF(circuit, f) 

7    = Apply_constraints(c, ) 

8   s = SAT() 

9   if (s  ) { 
10    c = Assignment_of_PIs(s) 

11    break  

12   } 

13  } 

14  bitstream += c[0] 

15  FL = FL – Detected_by_simulation(c) 

16  c[0...n-2] = c[1...n-1]  // n is the number of primary inputs 

17  c[n-1] = DC 

18 } 

19 bitstream += c[0...n-2] 

20 return bitstream 

Figure 4. The SAT-Compress algorithm 



CNFlib(gate) 

1 // generate the characteristic function  

2 minimize gate // espresso 

3 add the off-set to gate // espresso 

4 move the output column to input columns of gate 

5 put all 1s into the output column of gate 

6 // calculate intersections 

7 do { 

8  for each unordered pair (t1, t2) of terms from gate { 

9   let s  be the intersection of t1[y] and t2[y] 

10   if (s == U) { 

11   let t be the intersection of t1 and t2 

12   if t is not in gate 

13    insert t into gate with output symbol 1  

14   } 

15  } 

16 } while new terms are added to gate 

17 // encode and convert to Boolean domain 

18 encode gate using TABLE II. giving F 

19 // produce CNF 

20 turn F into off-set description // espresso 

21 for each term t in F { 

22  start a new clause 

23  for each column label j { 

24   if (t[j] == 0) output j 

25   if (t[j] == 1) output j 

26  } 

27 } 

Figure 5. An algorithm generating the CNF characteristic function of a library gate for gate-to-CNF transformation with 

encoded undefined values 
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Figure 6. Example of a) nand2 function b) its characteristic function, c) with undefined values propagation, d) encoded FA, 

e) FA in CNF 

 

InjectDCs(s, c, CL) 

1 d1 = |detected_by_simulation(c)| 

2 s_tmp = s 

3 for (i = 0; i < n; i++) { 

4  if ( c[i] == DC ) { 

5   s_tmp[i] = DC 

6   d2 = |detected_by_simulation(s_tmp)| 

7   if ( (d1 - d2) / d1 ≤ CL ) s = s_tmp 

8  } 

9 } 

10 return s 

Figure 7. The don’t cares injection algorithm 

 

 

Figure 8. Frequency of bitstream lengths distribution (c432) 



 

Figure 9. Frequency of bitstream lengths distribution (c880) 

 

Figure 10. Influence of CL on the total number of injected 

don’t cares  

 

Figure 11. Influence of CL on the total number of SAT 

instances solved 

 

 



 

Figure 12. Influence of CL on the generated bitstream 

length 

 

Figure 13. Influence of CL on the compression run-time 

 

TABLE I.  LITERALS TRANSCRIPTION 

𝑥𝑖 𝑥𝑖
𝑉 𝑥𝑖

𝐴 

0 0 1 

1 1 1 

unspecified any 0 

TABLE II.  SYMBOL INTERSECTION 

 0 1 - U 

0 0 U 0 U 

1 U 1 1 U 

- 0 1 - U 

U U U U U 



TABLE III.  INFLUENCE OF LOSING FAULT COVERAGE 

CL [%] DCs injected SATs  Bits  Time [s] 

0 3410.7 772.0 822.0 269.3 

5 3436.7 771.8 821.8 262.1 

10 3555.6 775.5 825.5 261.0 

15 3563.1 773.5 823.5 247.2 

20 3774.9 798.2 848.2 252.0 

25 3913.4 810.0 860.0 251.6 

30 3985.1 815.4 865.4 252.1 

35 4303.1 848.6 898.6 260.9 

40 4406.7 848.7 898.7 261.8 

45 4512.9 857.9 907.9 261.6 

50 5145.0 937.4 987.4 255.3 

55 5210.8 943.4 993.4 254.6 

60 5497.9 970.5 1020.5 267.9 

65 5604.0 977.7 1027.7 266.7 

70 6061.7 1028.8 1078.8 275.1 

75 6493.1 1079.3 1129.3 291.0 

80 6701.7 1101.3 1151.3 282.0 

85 7108.0 1132.6 1182.6 302.8 

90 7768.5 1187.1 1237.1 323.7 

95 8598.3 1241.0 1291.0 338.3 

 100 9743.6 1297.6 1347.6 364.5 



TABLE IV.  INFLUENCE OF LOSING FAULT COVERAGE – FINAL BITSTREAM LENGTHS FOR MORE CIRCUITS 

Circuit / CL [%] 0 10 20 30 40 50 60 70 80 90 100 

br1 503 509 518 550 575 623 649 685 716 746 754 

c1908 545 538 540 542 551 551 551 560 563 577 609 

c2670 1778 1800 1850 1869 1891 1927 1948 1927 1945 2021 2030 

c3540 822 826 848 865 899 987 1021 1079 1151 1237 1348 

c5315 773 772 774 764 760 783 795 823 866 921 1179 

c7552 3608 3620 3630 3700 3706 3948 3934 3971 4080 4195 4398 

chkn 3611 3636 3677 3798 3964 4526 4604 4921 5310 5558 5617 

comp 559 555 563 562 585 613 615 624 655 650 655 

duke2 1010 1018 1043 1072 1080 1146 1177 1201 1262 1310 1349 

example2 630 622 633 643 647 685 691 709 728 758 778 

frg1 2156 2171 2186 2202 2246 2349 2379 2459 2544 2584 2635 

i2 5179 5173 5157 5185 5225 5723 5730 5735 5795 5747 5747 

i4 898 899 904 908 911 918 930 949 959 950 962 

in0 790 814 840 863 900 931 958 965 980 1008 1025 

in2 731 733 730 735 742 776 764 787 822 875 923 

in4 865 863 868 899 917 957 990 1044 1085 1145 1202 

in5 701 709 731 751 816 930 978 1048 1135 1206 1235 

in6 993 1004 1003 1017 1022 1060 1062 1079 1111 1137 1151 

jbp 840 856 849 870 874 913 928 947 993 1033 1080 

s1196 862 864 866 878 900 932 935 949 961 976 1011 

s1238 886 886 887 902 925 942 935 963 982 1002 1000 

s1423 608 626 635 645 684 719 718 746 781 804 814 

s420.1 600 595 605 640 627 663 675 707 714 732 741 

s5378 1920 1933 1954 1982 2030 2140 2151 2203 2275 2301 2344 

s820 669 668 669 673 672 705 712 726 747 783 821 

s832 665 651 661 673 660 687 694 722 746 771 807 

s838 986 978 1022 1003 1036 1190 1238 1262 1302 1358 1337 

s838.1 1620 1638 1668 1655 1657 1810 1848 1800 2002 1979 2022 



TABLE V.  COMPARISON OF CPDCI AND PBO 

Circuit 
SAT-Compress, CL  100% SAT-Compress, CL = 0 (CPDCI) PBO 

Bits DCs [%] Bits DCs [%] Bits DCs [%] 

5xp1 155.58 8.56 102.32 0.52 106.82 1.82 

b03_C 139.29 12.7 113.12 2.31 111.71 5.80 

b06_C 39.78 30.75 35.27 27.23 37.45 39.61 

b9 271.23 9.11 215.10 4.14 217.76 9.94 

c1355 292.18 1.80 265.57 0.29 264.09 0.79 

c432 245.26 9.50 185.93 5.11 193.58 13.70 

c499 222.66 2.18 198.28 0.29 200.74 0.90 

c8 363.39 24.05 276.09 15.00 281.74 36.32 

dc2 133.97 14.44 91.24 8.70 98.20 16.65 

f51m 273.02 12.44 163.93 3.35 167.55 5.93 

cht 156.09 6.76 133.98 4.94 138.03 6.77 

i1 189.25 8.74 152.75 6.10 164.25 21.36 

i3 392.22 8.55 349.81 4.83 361.34 13.15 

average 221.07 11.51 175.65 6.37 180.25 13.29 

TABLE VI.  SAT-COMPRESS VARIANTS 

Circuit  Faults 

No don’t cares CL  100% CL = 0 (CPDCI) 

Bits Time [s] DCs Bits Impr.  Time [s] DCs Bits Impr.  Time [s] 

c1355 1566 330 29.3 159 367 -11% 31.3 19 334 -1% 28.8 

c1908 1869 660 121.6 371 583 12% 106.2 92 538 18% 110.5 

c2670 2629 3758 1714.1 18934 1977 47% 738.3 9905 1874 50% 1050.0 

c3540 3291 3188 3600.4 9711 1426 55% 1075.2 3358 774 76% 834.6 

c432 520 209 3.0 460 185 11% 2.7 234 176 16% 2.9 

c499 750 182 3.1 154 241 -32% 3.8 28 219 -20% 3.5 

c5315 5291 1194 698.0 19137 1207 -1% 600.3 1750 795 33% 724.5 

c7552 7419 6408 7856.4 21741 4314 33% 4149.1 6030 3819 40% 5878.1 

c880 942 1134 107.1 3747 702 38% 45.2 1465 458 60% 25.9 

s1196 1242 2430 262.1 5993 1066 56% 117.0 3553 864 64% 81.2 

s1488 1486 502 61.0 170 662 -32% 96.2 11 557 -11% 63.3 

s208 215 185 0.9 329 207 -12% 0.9 129 195 -5% 0.7 

s298 308 243 1.2 613 166 32% 1.0 337 140 42% 0.8 

s349 348 127 1.1 620 155 -22% 1.2 215 108 15% 1.1 

s400 418 212 1.4 654 205 3% 1.2 230 144 32% 0.8 

s510 564 180 1.7 126 232 -29% 2.2 2 165 8% 1.6 

s641 463 1186 27.5 4223 613 48% 20.2 1972 493 58% 13.9 

s713 543 1456 35.3 4440 598 59% 18.3 1894 464 68% 14.3 

s820 850 700 25.7 142 855 -22% 38.8 65 664 5% 23.4 

s953 1079 3360 322.9 5812 959 71% 78.6 3693 771 77% 48.4 

average 1590 1382 743.7 4877 836 15% 356.4 1749 678 31% 445.4 



TABLE VII.  EXPERIMENTAL RESULTS FOR THE BASIC SAT-COMPRESS ALGORITHM AND CPDCI 

Circuit Faults 
SAT-Compress SAT-Compress with CPDCI COMPAS 

Bits Time [s] Bits 
Bits Impr. 

[%] 
Time [s] 

Time impr. 
[%] 

DCs tried DCs inj. 
Success 

[%] 
Bits 

Diff. 
[%] 

alu4 6435 3349 1994.97 3048 8.99% 1773.53 11.10% 3380 349 10.33% - - 
b04_C 1666 5408 463.67 910 83.17% 88.25 80.97% 7659 6876 89.78% - - 

b05_C 1928 1091 90.95 631 42.16% 55.57 38.90% 1593 1018 63.90% - - 

b07_C 1084 997 9.89 706 29.19% 7.88 20.32% 1444 895 61.98% - - 
b11_C 1675 863 41.90 562 34.88% 32.00 23.63% 1557 1084 69.62% - - 

c1355 1566 330 13.40 334 -1.21% 13.43 -0.22% 312 19 6.09% 1040 67.88% 

c1908 1869 607 44.66 495 18.45% 36.71 17.80% 542 82 15.13% 1009 50.94% 
c2670 2629 3103 556.27 1806 41.80% 387.30 30.38% 11276 9791 86.83% 6553 72.44% 

c3540 3291 3422 1618.65 833 75.66% 323.90 79.99% 4146 3415 82.37% 747 -11.51% 
c432 520 209 1.39 156 25.36% 1.28 7.91% 368 256 69.57% 195 20.00% 

c499 750 182 1.51 219 -20.33% 1.67 -10.60% 206 28 13.59% 260 15.77% 

c5315 5291 1205 261.30 815 32.37% 275.89 -5.58% 2410 1812 75.19% 1255 35.06% 
c7552 7419 6581 2739.73 3522 46.48% 1902.73 30.55% 9029 5998 66.43% 6005 41.35% 

c880 942 1195 35.71 614 48.62% 15.16 57.55% 2250 1765 78.44% 540 -13.70% 

duke2 1302 1486 56.80 986 33.65% 35.13 38.15% 1717 810 47.18% - - 
ex5p 5430 276 38.72 276 0.00% 42.12 -8.78% 268 0 0.00% - - 

intb 1893 2070 220.27 1653 20.14% 171.01 22.36% 2103 471 22.40% - - 

jbp 1132 2174 41.42 843 61.22% 16.69 59.71% 2281 1563 68.52% - - 
misex3 9251 3556 5240.01 3467 2.50% 5220.65 0.37% 3551 100 2.82% - - 

s1196 1242 2487 109.33 876 64.78% 36.36 66.74% 4292 3474 80.94% 740 -18.38% 
s1238 1286 2705 141.46 876 67.62% 40.06 71.68% 4926 4105 83.33% 741 -18.22% 

s13207 9664 114390 285075.00 5498 95.19% 22678.30 92.04% 206673 202598 98.03% 4163 -32.07% 

s1423 1501 1179 46.38 628 46.73% 39.53 14.77% 2346 1871 79.75% 596 -5.37% 
s15850 11336 77582 147342.00 5734 92.61% 22686.30 84.60% 179148 174836 97.59% 8234 30.36% 

s344 342 161 0.59 95 40.99% 0.47 20.34% 280 210 75.00% 85 -11.76% 

s35932 35110 3686 308382.00 4998 -35.59% 390677.00 -26.69% 2971215 2969101 99.93% 1860 -168.71% 
s382 399 255 0.61 131 48.63% 0.39 36.07% 258 161 62.40% 123 -6.50% 

s420 430 526 2.81 370 29.66% 1.62 42.35% 748 463 61.90% 352 -5.11% 

s526n 553 830 5.27 471 43.25% 2.70 48.77% 1197 785 65.58% 344 -36.92% 
s5378 4511 19847 6765.48 1989 89.98% 870.94 87.13% 31022 29444 94.91% 2148 7.40% 

s641 463 1335 13.35 469 64.87% 5.62 57.90% 2282 1919 84.09% 397 -18.14% 
s713 543 1223 11.64 454 62.88% 6.08 47.77% 2199 1859 84.54% 428 -6.07% 

s820 850 702 10.30 664 5.41% 9.97 3.20% 692 65 9.39% 460 -44.35% 

s838 857 2078 32.20 955 54.04% 19.27 40.16% 2957 2242 75.82% 920 -3.80% 
s9234 6475 24395 25844.19 5688 76.68% 10238.03 60.39% 53308 48599 91.17% 11594 50.94% 

s953 1079 3131 95.99 771 75.38% 20.23 78.92% 4317 3693 85.55% 723 -6.64% 

t481 2853 5541 1808.29 5147 7.11% 1561.09 13.67% 5433 304 5.60% - - 
table3 2487 2025 382.11 2085 -2.96% 413.89 -8.32% 2134 69 3.23% - - 

table5 2384 3191 703.46 2821 11.60% 609.92 13.30% 3301 547 16.57% - - 

term1 1314 6221 405.79 1418 77.21% 102.96 74.63% 5443 4089 75.12% - - 
vda 1970 680 31.95 594 12.65% 27.24 14.74% 652 103 15.80% - - 

vg2 1122 2507 59.94 1403 44.04% 32.53 45.73% 2430 1093 44.98% - - 
x1 2504 7583 886.07 2953 61.06% 354.54 59.99% 7689 5013 65.20% - - 

average 3396 7649 23209.59 1585 46.31% 13907.19 35.18% 86341 85018 65.54 1981 6.14% 
 

 


