
Techniques for SAT-Based Constrained Test Pattern Generation 

Jiri Balcarek, Petr Fiser, Jan Schmidt 

Dept. of Computer Science & Engineering 

Czech Technical University in Prague, FIT 

Thakurova 9, CZ-160 00, Prague 6 

fax: +420 22435 9819,  tel: +420 22435 9848 

balcaji2@fit.cvut.cz, fiserp@fit.cvut.cz, schmidt@fit.cvut.cz 

 

Corresponding author: 

Jiri Balcarek 

Dept. of Computer Science & Engineering 

Czech Technical University in Prague, FIT 

Thakurova 9, CZ-160 00, Prague 6 

fax: +420 22435 9819,  tel: +420 22435 9848 

balcaji2@fit.cvut.cz 
 

Abstract: Testing of digital circuits seems to be a completely mastered part of the design flow, but 

Constrained Test Patterns Generation (CTPG) is still a highly evolving branch of digital circuits testing. Our 

previous research on CTPG proved that we can benefit from an implicit representation of test patterns set. The 

set of test patterns is implicitly represented as a Boolean formula satisfiability problem in CNF, like in common 

SAT-based ATPGs. However, the CTPG process can be much more memory or time consuming than common 

TPG, thus some techniques of speeding up the constrained SAT-based test patterns generation are described and 

analyzed into detail in this paper. These techniques are experimentally evaluated on a real SAT-based algorithm 

performing a test compression based on overlapping of test patterns. Experiments are performed on ISCAS’85, 

‘89 and ITC’99 benchmark circuits. Results of the experiments are discussed and recommendations for further 

development of similar SAT-based tools for CTPG are given.  

Keywords: testing, implicit representation, SAT, ATPG, constrained test. 

1 Introduction 

As the number of analog and mixed signal parts in electronic devices continuously grows, more and more 

attention of researchers is focused on testing of these circuits. It could seem that testing of digital circuits is a 

completely mastered part of the design flow. In fact, there are still some areas of digital circuit testing waiting to 

be resolved. There is a need to generate constrained test sets, e.g., to decrease heat dissipation and power 

consumption during the test [1] or the test application time [2]. 

The basic idea of general Constrained Test Patterns Generation (CTPG) [3] is shown in Figure 1. For each fault 

there is a set of test patterns by which it is detected. A test pattern or a set of patterns suitable for compression or 

other processes is selected from the complete set of test patterns by application of specific additional constraints.  

 
Figure 1.  Basic concept of the constrained test generation 



Conventional ATPGs (Automatic Test Pattern Generators) are based on PODEM [4] or FAN [5] algorithms.  

Here the test patterns are generated by traversing the circuit structure, with backtracking employed. In contrast to 

this approach, SAT-based ATPGs [11], [6] search for the test patterns by SAT (satisfiability) solving. An 

instance of the Boolean satisfiability problem in CNF (Conjunctive Normal Form) is generated for each fault. 

This CNF implicitly represents the whole set of test patterns detecting a given fault. A test pattern for a fault is 

obtained as a satisfiable solution of the CNF formula. A fault is classified as untestable if there is no satisfiable 

solution.   

Our research is focused on a class of algorithms where a set of SAT instances is repeatedly processed with 

different constraints. This processing of CNFs can cause a significant time overhead [7]. It has been observed, 

that the majority of SAT instances are classified as UNSAT (unsatisfiable) with given constraints [7, 8] imposed.  

Our experiments on CNF processing show the differences in time and memory consumption between 

 their repeated generation,  

 storing,  

 and storing of reduced CNFs 

during computations, where a large number of related instances is solved. 

Stored CNFs are reduced using solution set preserving SAT transformations [8], based e.g., on resolution or 

propagation of unit (1-literal) clauses [9, 10]. Such transformations do not alter the CNFs, so that any possible 

SAT solution is lost. 

Advantages and disadvantages of the above approaches are discussed over the results and recommendations for 

further design of SAT-based CTPG algorithms are proposed.  

Next, ways of an early detection of unsatisfiable constrained CNFs were explored. UNSAT instances are 

detected by the inability to resolve conflicts between the required fixed values of variables given by constraints 

and their values obtained by CNF implications. The CNF generation and SAT solver runs on these unsatisfiable 

instances can be skipped, which can significantly speed up the algorithm. Such a process is in the paper referred 

to as static or dynamic fault filters, based on the employed type of implications. 

The proposed techniques of CNF processing and UNSAT filtering are evaluated in the framework of our test 

patterns compression algorithm SAT-Compress [7] which is a dedicated SAT-ATPG [6, 7] algorithm. Therefore, 

a more detailed description of the SAT-based ATPG and SAT-Compress algorithm is given in Sections 3 and 4. 

2 Related Work 

Generation of test patterns with some constraints imposed is a common process in digital circuits testing. Test 

patterns can be constrained for various purposes: 

 to be better compressed [2, 7], 

 to limit the SAT solver search space, 

 to exclude invalid input combinations, etc [1, 11, 12, 13, 14]. 

One example application of a constrained ATPG is a broadside transition testing [12]. A conventional ATPG 

based on PODEM [4] algorithm produces a set of test patterns with a significant number of patterns covering 

functionally untestable transition faults. These functionally untestable transition faults do not need to be tested 

because they do not affect the normal functionality of the chip (errors caused by these faults cannot occur). 

Nevertheless, testing the chip for these faults may cause the test fail, and thus decrease the yield. Thus, an ATPG 

is constrained by a set of forbidden variable assignments that enable detection of the functionally untestable 

transition faults. These constraints are described by a Boolean formula in CNF. The constrained ATPG fixes 

variables in the generated test pattern and at the same time it fixes the corresponding variables in the CNF of 

constraints and checks the CNF for conflicts in the variable assignment. When a conflict occurs, the ATPG 

backtracks and searches for a different variable assignment in the test pattern. The test set generated this way 

does not activate functionally untestable transitions, which increases the quality of the test and reduces the yield 

loss caused by testing of the functionally untestable faults.    

In [13], constraining of test patterns to generate them by cellular automata is presented. All test sequences for a 

fault are checked for conflicts with rule matrices of cellular automata. The entire set of the test sequences for the 

circuit under test is implicitly represented by a BDD (Binary Decision Diagram) [15]. The BDD is used to select 

only those sequences which can be reproduced by cellular automata.     

An ATPG for industrial circuits with restrictors [14] represents another application of constrained test patterns 

generation. Industrial circuits contain a great number of buses, tri-state elements and other parts, where the set of 



permitted signal values is restricted. This structural information is stored as a set of restrictions, which are used 

by an ATPG to prune the search space and speed up the test patterns generation.  This method was implemented 

as a conventional FAN algorithm [5] extended by a concept of restrictors (constraints).  

Low power tests are mostly built from pre-generated test patterns [1] by their reordering, to decrease the 

dynamic power consumption (i.e., the switching activity) during the test. However, constraints can also be 

formed to guide the test patterns generation process, in order to generate low power tests directly [1]. 

The constrained test patterns generation principle may be efficiently employed to compress test patterns. In [2], 

test patterns are customized for testing the circuit using the RESPIN (REusing Scan chains for test Pattern 

decompression) architecture [16]. This architecture is targeted to systems on chip (SoCs). To update values 

stored in the scan chain of the core under test, scan chains belonging to other cores are used. Test patterns are 

compressed by overlapping [18]. Suitable test patterns are produced by a conventional ATPG tool performing 

dynamic compaction [19]. Constraints to the circuit’s primary inputs are applied, in order to reach a locally 

optimum overlap with the vector already present in the scan chain from the previous test cycle. 

A similar approach to compression of test patterns for RESPIN is used in the SAT-Compress algorithm [7]. A set 

of test patterns for each fault is implicitly represented by a SAT instance in the CNF. A test pattern for each fault 

is obtained by SAT-problem solving of CNF instances with constraints applied (i.e., fixed variables values), 

which again represent the patterns already present in the scan chain. The main difference from the previously 

mentioned approach [2] is the implicit representation of the test patterns set. SAT-based ATPGs are known to be 

much faster in test patterns generation for hard to be tested faults than structural ATPG tools, however easily 

testable faults can cause an unnecessary time overhead [6]. Similar behavior can be observed in the CTPG 

process, but Boolean constraints propagation (BCP) [9, 10] in the SAT-based approach can quickly recognize 

that a test pattern with given constraints does not exist, thus accelerate the algorithm.  

The latest approach to transition delay faults (TDF) [20] test compression is based on a constrained SAT solving, 

too [21]. TDF can be detected by a pair of test patterns applied in two subsequent clock cycles. Test compression 

is performed by test patterns overlapping as in the SAT-Compress algorithm, but pairs of test patterns are 

overlapped instead.  

The SAT-based CTPG algorithm can also be enhanced by techniques used in common SAT-based ATPGs. 

These techniques can be divided into two groups. The first group of techniques deals with SAT solver 

acceleration by, e.g., variable ordering for the SAT solver heuristic [22], circuit-based dynamic learning [23] or 

different clause learning techniques [24]. The second group of techniques deals with the reduction of the time 

overhead caused by the CNF generation e.g. dynamic clause activation [23].  

3 SAT-Based Test Patterns Generation 

Recent research on test patterns generation for digital circuits proved SAT-based techniques to be very efficient 

even for large industrial circuits [6], [22], [23].  

3.1 Circuit-to-CNF Transformation 

In SAT-based ATPGs, the ATPG problem is reduced to the SAT problem. Here the fault-free and faulty circuits 

are combined and transformed into one CNF [6, 11], to obtain a SAT problem instance. Satisfiable assignments 

of variables of this CNF are test vectors detecting the respective fault.  

A CNF  with m Boolean variables is a conjunction of n clauses, where each clause is a disjunction of literals. 

Each literal is a Boolean variable or its complement. The CNF  is satisfiable, if there exists an assignment of 

variables, for which all clauses are satisfied. 

 
Figure 2. SAT instance generation for an ATPG 



A Boolean variable is assigned to each signal in the circuit. Each gate in the subcircuit S1, which corresponds to 

the output cone of the fault to primary outputs (POs) of the circuit is copied and forms the set of gates H (faulty 

part of the circuit). All gates in the cone from the primary inputs (PIs) to POs where the fault is observable are 

included in the set SC (S=S1S2), see Figure 2. 

For each gate, the CNF g is derived from its characteristic function. The CNF c representing the fault free part 

of the circuit is constructed as a conjunction of all CNFs of gates gs1,…,gsn  S:  

c = gsi      1 i S 

To generate a test for a fault F, the characteristic function f of the faulty circuit is generated as a conjunction of 

all CNFs of gates gh1,…,ghn  H:   

f = ghi      1 i H 

Outputs of the fault-free and faulty circuit are coupled by XOR gates whose outputs are further connected to an 

OR gate. The function xor is generated as a conjunction of characteristic functions of these gates. The SAT 

instance for a fault F is obtained as a product of c, f and xor: 

test_F  = c  f  xor 

Finally, unit clauses are added to inject the faulty value in f, to set its image in c as a complement of the faulty 

value, and to set the output of the OR gate in xor to 1 (the Boolean difference must result in 1, to be the fault F 

detectable). 

The satisfying solutions of test_F represent the whole set of test patterns detecting the fault F. If test_F is 

unsatisfiable, the fault F is undetectable. More information can be found in [6, 11].  

3.2 SAT-based ATPG Algorithm 

A conventional SAT-based ATPG algorithm [11] can be described in four steps: 

1. Generate a fault list for the given circuit. 

2. Pick one fault from the fault list and generate its corresponding CNF. 

3. Solve the SAT problem for this CNF. The solution represents a test pattern detecting the respective 

fault. If the CNF is unsatisfiable, remove the fault from the fault list and mark it as undetectable. 

4. Simulate the test pattern obtained in step 3 and remove all detected faults from the fault list.  

5. Repeat steps 2-4 until the fault list is empty. 

For details on the SAT-based ATPGs, see [6, 11]. 

4 The SAT-Compress Algorithm Principles 

We demonstrate the proposed CNF processing and UNSAT filtering techniques on our SAT-Compress algorithm 

[7]. Therefore, we describe it in following sections.  

The compression of the test patterns is performed by their overlapping [18]. State-of-the-art tools such as 

COMPAS [25] try to overlap test patterns pre-generated by a conventional ATPG. The compression efficiency 

strictly depends on properties of these patterns, particularly on the number of unspecified (don’t care) bits in the 

test. The SAT-Compress algorithm tries to eliminate this drawback. The main idea is to generate the most 

suitable test patterns on the fly, to reach a locally optimum overlap. Each fault has its set of test patterns it 

detects. If the algorithm is able to pick the right pattern for each fault in the right order, it will reach the best 

possible compression of the test patterns. 

It is obvious that explicit enumeration and storing of all test patterns for all faults in the circuit is inefficient (and 

mostly even infeasible), thus SAT-Compress takes advantage of principles of SAT-based ATPGs and efficiently 

represents all test patterns for one fault implicitly, by one SAT problem instance in a CNF.  

The decompression of compressed test patterns is performed by the RESPIN [16] architecture. RESPIN is based 

on the IEEE P1500 standard for testing of embedded cores [26]. Each core is provided with a wrapper which 

forms an interface between the embedded core (core terminals) and its system on chip environment (the rest 

of the integrated circuit and the test access mechanism). The core wrapper defines the normal (non-test) mode 

and core test modes. The hardware overhead of the RESPIN architecture is minimal, since the decompression is 



made by reusing of the scan chains (SCs) of non-tested cores and no additional decompression hardware is 

required. The SC of the non-tested core preserves useful bits of the test patterns by looping through the feedback, 

while the SC of the core under test (CUT) obtains responses of previous test patterns and shifts them to the 

signature analyzer, to be evaluated. The compressed bitstream is serially shifted into the SC of the non-tested 

core in each loop. At the same time a new test pattern is shifted from the non-tested SC into the SC of the CUT.  

4.1 The SAT-Compress Algorithm  Description 

The SAT-Compress tries to find the best overlap of test patterns by gradually building the compressed test 

bitstream. Each generated test pattern imposes constraints on the subsequent test pattern to be generated. Only 

care bits generate the PI constraints. The basic algorithm is shown in Figure 4. 

 

1. Generate a complete fault list (FL) for the given circuit. 

2. For each fault in FL, generate and solve its CNF. If the fault is undetectable, remove it from FL. 

Therefore, there cannot be any aborted faults in the subsequent ATPG process. 

3. Choose a zero state (all-zero test pattern T0) or a test pattern covering any fault from FL is used as the 

initial test pattern. Set the selected initial test pattern as the current pattern. 

4. Simulate the current pattern and remove all detected faults from FL.  

5. Insert the leftmost bit of the test pattern into the resulting bitstream (Figure 3). 

6. Shift the current pattern one bit left and put a DC bit to its rightmost position. The resulting pattern is 

used as the set of constraints for the next pattern (Figure 3). 

7. Repeat the following until FL is empty (all faults are covered by test patterns): 

a. Find a fault that can be tested under current constraints as follows. For each fault in FL, 

generate the corresponding CNF, constrain it by the current pattern and solve it. If the CNF is 

solvable under the given constraints, stop the search. 

b. If the previous search has been successful, simulate the pattern resulting from the search, 

remove all detected faults from FL and use the pattern as the new current pattern. 

c. Insert the leftmost bit of the current test pattern into the resulting bitstream. 

d. Shift the current pattern one bit left and put a DC bit to its rightmost position. 

8. Output the entire current pattern into the bitstream.   

 

 

Figure 3. Next pattern generation example 

 
FL.generate(circuit);    // FL … fault list 
FL.remove_untestable_faults(); 

TP = T0;      // TP … current test pattern 

       // pick an initial pattern 

FL = FL - circuit.fault_simulate(TP);  // remove faults detected by TP 

output(TP[0]);     // put the leftmost bit to output 

TP.DC_shift_left();     // the rightmost TP bit becomes DC 

while (!FL.empty()) {    // loop until all faults detected 

 for each F in FL {    // find a fault which is detectable 

        // under current constraints 



 CNF.generate(circuit, F); 

 CNF.constraint(TP);   // use shifted pattern as constraints 

 Y = CNF.solve(); 

 if (Y.exists()) break;   // find the first testable fault 

 } 

 if (Y.exists()) {    // successful search 

 TP = Y;     // new test pattern 

 FL = FL - circuit.fault_simulate(TP);  // remove faults detected by TP 

 } 

 output (TP[0]);     // put the leftmost bit to output 

 TP.DC_shift_left(); 

} 

output (TP);      // output all remaining bits 

 

Figure 4. The SAT-Compress algorithm  

The DC_shift_left() method shifts a bit vector one place to the left and fills the rightmost bit with the 

don’t care value. Output() appends one or more bits to the output bitstream. 

4.2 Experimental Evaluation of the SAT-Compress Algorithm  

A comparison of SAT-Compress with other state-of-the-art test compression techniques is presented in Table 1. 

The first column “Circ.” represents the name of the benchmark circuit. A comparison for only the seven biggest 

ISCAS’89 circuits [36] is shown, since no more relevant data on the other methods were available to us. The 

compressed test lengths in bits, for nine different competitive methods, are shown next. The last column shows 

the compressed test data size in bits for the SAT-Compress compression tool. An all-zero initial test pattern for 

both COMPAS and SAT-Compress is used, thus the results are not influenced by different initial states.   

It can be concluded from Table 1, that the SAT-Compress algorithm can reach similar and often even better 

compression of test patterns than most of the presented state-of-the-art compression methods. The COMPAS 

algorithm reaches similar compression ratio as SAT-Compress, but its efficiency is influenced by the number of 

DCs in pre-generated test patterns, which is not the case of SAT-Compress. Thus, SAT-Compress can 

theoretically reach better results, if a more efficient fault-processing heuristic was used. Currently, the faults are 

processed in a greedy, first-only way. This will be the topic of our further research. 

The time consumed by the presented tools could not be compared because neither their source codes, nor 

executables were available. Nevertheless, the time-consumption of the SAT-Compress algorithm is shown in the 

following sections which discuss techniques of its acceleration. 

 

Circ. 
MinTest 

[27] 

Stat. Coding 

[28] 

LFSR Reseeding 

[29] 

Illinois Scan 

[ 30] 
FDR Codes 

[31, 32] 

EDT 

[33] 
RESPIN++ 

[17] 
COMPAS  

[25,41] SAT-Compress 

s5378 20,758 15,417 6,180 14,572 12,346 - 17,332 2,148 2,407 

s9234 25,935 19,912 12,112 27,111 22,152 - 17,198 11,594 9,928 

s13207 163,100 52,741 11,285 109,772 30,880 10,585 26,004 3,819 10,457 

s15850 58,656 49,163 12,438 32,758 26,000 9,805 32,226 6,930 12,987 

s35932 21,156 - - - 22,744 - - 1,860 5,096 

s38417 113,152 172,216 34,767 96,269 93,466 31,458 89,132 19,597 19,291 

s38584 161,040 128,046 29,397 96,056 77,812 18,568 63,232 5,778 14,271 

Table 1. Comparison of the test data amount for different compression techniques 

Further experiments performed on ISCAS’85 [35] and ‘89 [36] benchmark circuits showed that the SAT-

Compress algorithm can reach the compression ratio 86% on average (compared with a compacted test generated 

by a conventional ATPG [37]) [7]. 

Figure 5 shows an example of distribution of bitstream lengths obtained using different starting initial test 

patterns and permutations of PIs. Every starting pattern has been chosen as a test pattern covering one particular 

fault. Thus, the number of runs is equal to the number of faults. The permutations of the PIs in the test pattern 

(corresponding cells in the scan-chain) have been evaluated for 1,000 random permutations of PIs. An all-zero 

seed has been used as the starting test pattern for all PIs permutations.  

As can be seen, the compressed bitstream length depends both on the starting test pattern (initial seed) and the 

permutation of PIs. Similar behavior of the SAT-Compress algorithm can be observed for all tested benchmarks. 

It indicates that the selection of the initial test pattern and the order of PIs have a crucial impact on the resulting 

compressed test length. 



 
Figure 5. Frequency of bitstream length distribution (c1355) 

5 Techniques of CTPG Acceleration 

The SAT-Compress has been chosen to show properties of proposed acceleration techniques as a representative 

of SAT-based algorithms for CTPG. This algorithm and similar algorithms [21] deal with repeated processing of 

the same SAT instances in CNF with different constraints. The processed CNFs are often unsatisfiable with 

given constraints. As they are repeatedly generated and solved with different constraints, the CTPG process 

becomes time-consuming [7, 21]. Thus, the CTPG process itself and possible techniques of its acceleration have 

been analyzed. We discuss the CNFs manipulation and their filtering based on satisfiability, analyze the 

efficiency of the proposed techniques and evaluate their usability in SAT-based CTPG algorithms.  

All measurements were performed on a CPU Intel Core 2 Duo – 1,8GHz with 1GB RAM. MiniSat v1.14 [34] 

has been used as the SAT solver. Experiments have been performed on a subset of smaller ISCAS’85 [35], ’89 

[36] and ITC’99 [41] benchmark circuits, because the memory requirements for CNFs storing were unfeasible 

for bigger circuits. 

5.1 On-the-fly vs. Storing 

Generating SAT instances in CNF takes on average 80% of test generation time in SAT-based ATPGs [6, 11, 38, 

39] and can also cause a significant time overhead in the CTPG process. When used repeatedly, the SAT 

instances can be generated on-the-fly, or they can be pre-generated and stored in memory. Either original CNFs 

are stored, or the CNFs are simplified by solution set preserving reductions [8], to reduce memory requirements. 

Under common fault models, a fault causes the value of a signal to differ between the faulty and fault-free copy 

of the circuit in the SAT ATPG process. The values are determined by the fault model. It suffices to inject them 

into the corresponding CNFs using unit clauses, however, this opens up a way to simplify the CNFs.  

Specifically, values of other variables common to all solutions can be discovered. 

Repeated application of unit clause elimination identifies most of constant variables. The rest of them are 

detected by fixing the variable to a constant value and solving the SAT problem, see [40]. The number of clauses 

can be reduced by removing duplicities, clause absorption, and by creating resolution terms [8]. All these 

reductions preserve all SAT solutions. 

Our experimental results show that on the average 60% of variables and 65% of clauses can be removed by 

solution-set-preserving reductions [8]. Thus it can be possible to store all CNF instances or their subset in 

memory, decrease the number of repeatedly generated CNF instances, and accelerate the CTPG process.  

In the on-the-fly approach, the CNFs are repeatedly generated while they are differently constrained in the test 

generation process. It is obvious that memory requirements are negligible. On the other hand, such a repeated 

generation of CNFs can increase the test generation time significantly [7].  

In the first approach, CNFs for each fault are generated only once in the initial part of the algorithm and stored in 

memory. The time overhead incurred by repeated CNF generation is reduced. However, constraints change in 

the test generation process, thus original (unconstrained) CNFs must be repeatedly loaded into the SAT solver. 



Loading of the CNFs into the SAT solver should create much less time overhead, but the number of literals 

stored in memory can be unfeasible for larger circuits. The number of stored literals can be further reduced by 

the described solution set preserving SAT reductions [8, 9].  

5.1.1 Experimental Evaluation of CNFs Processing Techniques 

A comparison of the three techniques of CNFs processing is presented in Table 2. The first column of the table 

“Circ. name” represents the name of the benchmark circuit from ISCAS’85 [35] or ’89 [36]. Differences 

between processing of the CNFs on-the-fly and storing of non-reduced/reduced CNFs are shown in the three 

columns.  The “CNF” columns indicate the time spent by a CNF generation or loading of stored CNFs from the 

memory. The “SAT” columns represent the time spent by a SAT solving of the processed CNFs. Columns “SIM” 

show the time spent by simulation and columns “SUM” indicate the total time consumptions of the algorithm. 

For methods, where storing of CNFs was employed, the stored CNF literals count (“Lit. count”) and the time 

spent for the CNFs generation eventual reduction and storing is shown (“Store”). The last row of the table 

(“Avg.”) represents average values of all columns.  

Circ. 

name 

CNFs on-the-fly Stored CNFs Stored reduced CNFs 

CNF SAT SIM SUM Lit. count CNF SAT SIM Store SUM Lit. count CNF SAT SIM Store SUM 

[s] [s] [s] [s] [-] [s] [s] [s] [s] [s] [-] [s] [s] [s] [s] [s] 

c432 1.766 1.7969 0.06 3.625 896428 1.031 1.172 0.063 0.484 2.75 835842 0.5 1.15625 0.063 1.172 2.891 

c499 1.047 1.8281 0.03 2.906 1657890 0.641 1.922 0.063 0.813 3.438 1608764 0.391 1.1875 0.078 1.594 3.25 

c880 37.2 87.797 12.5 137.5 1121334 27.78 93.88 13.77 0.688 136.1 1053408 10.95 75.4063 9.547 1.734 97.64 

c1355 9.656 20.5 0.38 30.53 6787138 7.516 25.17 0.469 4.734 37.89 6593756 4.109 23.9531 0.563 14.59 43.22 

c1908 39.72 72.938 13.4 126 9743432 25.58 64.23 11.42 8.75 110 9384959 18.61 60.1719 11.34 46.67 136.8 

c2670 212 972.55 3.98 1189 11631239 154.8 1047 4.922 8.703 1215 11151282 107.1 1213.89 6.422 59.88 1387 

c3540 2205 3176.1 403 5784 33194406 1112 2201 260.7 42.53 3615 31439618 430.8 1730.28 220.8 1322 3704 

c5315 27.19 153.59 17.7 198.5 22987852 16.31 169.6 16.67 15.52 218.1 22437695 16.77 162.172 20.69 50.47 250.1 

s420 3.875 8.8438 0.08 12.8 208359 2.031 9.563 0.063 0.125 11.78 146410 1.063 8.51563 0.063 0.703 10.34 

s510 0.453 1.25 0.38 2.078 346745 0.156 1.594 0.156 0.219 2.125 266822 0.063 1.26563 0.359 1.531 3.219 

s526 1.172 7.25 0.14 8.563 173319 0.516 7.219 0.203 0.109 8.047 130328 0.313 7.0625 0.266 0.375 8.016 

s526n 1.094 6.4531 0.17 7.719 173156 0.531 6.141 0.281 0.125 7.078 130075 0.313 6.17188 0.188 0.375 7.047 

s641 6.953 21.203 1.17 29.33 539954 5.109 20.72 1.063 0.297 27.19 480537 2.719 19.8438 1.25 1.766 25.58 

s713 6.625 18.969 1.27 26.86 674441 4.375 19.22 1.219 0.375 25.19 605613 2.703 18.2031 1.297 2.328 24.53 

s820 8.078 34.234 1.97 44.28 451536 5.266 34.92 1.719 0.266 42.17 362319 2.594 33.4531 1.688 3.672 41.41 

s832 9.609 37.609 2.81 50.03 462205 4.656 31.94 1.156 0.281 38.03 369538 2.875 30.3438 1.141 3.781 38.14 

s838 46.52 126.58 0.2 173.3 705499 27.08 127.5 0.219 0.422 155.3 503436 12.98 109.047 0.391 6.203 128.6 

s953 14.95 62.781 3.95 81.69 1037128 9.625 61.14 3.688 0.625 75.08 820193 3.781 58.8125 3.938 11.78 78.31 

s1196 93.02 230.5 15.9 339.4 2134625 60.91 248.5 13.09 1.234 323.7 1884138 25.31 199.391 14.2 16.11 255 

s1238 110.5 270.66 16.4 397.5 2350333 59.8 236.5 15.42 1.375 313 2049258 31.23 223.578 15.28 21.02 291.1 

s1423 28.03 79.781 5.25 113.1 2635526 16.14 108.8 6.406 1.609 133 2538529 7.828 68.0781 5.125 5.703 86.73 

s1488 3.344 27.234 2.06 32.64 1209448 2.234 27.73 1.656 0.734 32.36 1002073 1.016 27.75 1.984 25.58 56.33 

s1494 3.906 33.141 2.02 39.06 1217152 2.609 34.84 2.094 0.75 40.3 1007773 1.453 35.5469 2.016 26.14 65.16 

Avg. 124.84 237.11 21.94 383.9 4449528 67.22 199.11 15.5 3.94 285.78 4208798.5 29.8 178.92 13.85 70.65 293.24 

Table 2. Experimental results for the processing of CNFs 

First, let us focus on the time spent by CNFs generation. Experimental measurements show that loading of the 

stored CNF instances is in all cases faster than their generation on-the-fly. In the case of the benchmark circuit 

c3540, the time of CNFs generation is 2205 seconds, whereas loading of the previously generated CNFs stored 

in the memory is made in 1112 seconds and for reduced CNFs it takes only 436.8 seconds.  

The time consumption of CNFs storing seems to be negligible in comparison with CNFs generation and SAT 

solving. Similar behavior is observed for storing of the reduced CNFs on majority of processed benchmark 

circuits. However, in some cases, the CNFs reduction increases the time consumption of CNFs storing, thus it 

takes comparable time with the SAT solving. For example, the time of the reductions and storing of the CNFs for 

the benchmark circuit s1494 is 26.14 seconds, while solving of these CNFs takes 35.54 seconds. 

On the other hand, the number of stored literals grows linearly with the size of the circuit (number of gates). For 

example, the benchmark circuit c3540 consists of 1648 gates and its fault list has 3428 faults. It means that 3428 

CNFs must be stored, which is 31,439,618 literals (after reduction). It is obvious that storing the CNFs is 

unfeasible for large circuits, because of memory consumption. CNF reduction does not improve the situation, 

because the reduction of the CNFs size is not as significant as we hoped for [8].  



The average values confirm the previous observations. The time consumption of the CNFs processing can be 

dramatically decreased by storing the reduced CNFs in memory. The average total time for the CNFs processing 

indicates, that processing of the stored CNFs is on average 1.34-times faster than its processing on-the-fly. Thus 

it seems that storing of the CNFs is better than processing of the CNFs on-the-fly, but the memory consumption 

of the stored literals can be unfeasible. The storing of the reduced CNFs does not decrease the processing time of 

the CNFs, because the solution set preserving reductions are time consuming for bigger instances.  

It can be concluded that for small circuits it is better to store CNFs or reduced CNFs, but this is unfeasible for 

large circuits, because of high memory requirements. The SAT solving times indicate that generation of the 

CNFs on-the-fly can be the best way to choose, because it is not limited by the high memory consumption.  

5.2 Fault filtering 

Constrained test patterns generation algorithms must solve a great number of constrained SAT instances 

repeatedly. As mentioned above, it has been observed, that the majority of these instances are unsatisfiable with 

given constraints (do not produce a test pattern). In SAT-Compress, 98% of generated CNFs are unsatisfiable 

with given constraints on average [8]. Generation and solving of these CNFs can cause a significant time 

overhead. That is why we focused on filtering of faults which lead to such UNSAT instances, in order to 

accelerate the constrained test patterns generation. 

To detect a fault, a set of signals must be set to required values. For a stuck-at fault, it is a single value of a single 

signal. Given some constraints as a set of fixed values for the primary inputs of the circuit, we can propagate 

these constant values to other signals in the circuit. If the signal values required to detect a fault conflict with 

values implied by the input constants, that fault cannot be excited and hence tested. 

The advantage of such filtering technique is that constant propagation is done once for a set of constraints, and 

used repeatedly for all faults. In the circuit domain, it is equivalent to Boolean Constraint Propagation [10], [43] 

in the SAT domain.  

Two fault filtering algorithms are described and experimentally evaluated in following subsections. An 

implication filter using static implications to detect unsatisfiability is used in the first approach, which is then 

extended by dynamic implications in the second.  

5.2.1 Static Fault Filtering 

The static implication filter is based on the observation that ATPG CNFs consist of 70% of 2-literal clauses and 

24% of 3-literal clauses [8] on average. Each 2-literal clause can be substituted by two implication rules, e.g., the 

clause ce corresponds to implications ce and ec (see example in Figure 6). When a constraint is 

applied, a 2-literal clause may become unit clause, and then the implications serve as an efficient way for 

constraint propagation [9, 11, 43].  

The static fault filter uses a data structure called implication table to store implications. The key of the table is a 

signal identification and polarity; the value is a list of signals and their polarities to be set.  

The table is constructed once for a given circuit (hence the terms static filtering and static implication). For each 

gate in the circuit (Figure 6a), any pair of signals which would form a 2-literal clause in the description of the 

gate (Figure 6b) is selected and the corresponding two implications are entered into the table (Figure 6c). 

When any signal is fixed to a constant value, the implication table is used to fix implied values of other signals 

(Figure 6d). This is done repeatedly until there are no more signal values to fix. 

 

Figure 6. Example of the static implication filter  



Constants propagation cannot produce conflicting values for any signal, because initially only the values of 

primary inputs are fixed and the circuit is assumed to be correct (e.g. any signal driven by one gate). 

The implied fixed signal values are used in the way outlined above. In Figure 6, we have constant primary inputs 

A=0 and C=0. To detect a Stuck-At-0 on D, we need to set D=1. As can be observed in Figure 6d, this conflicts 

with the implied value D=0, and hence Stuck-At-0 on D cannot be detected under current constraints and shall be 

filtered out. On the other hand, Stuck-At-1 on D is compatible and can be processed further. 

The static implication filter is a simple method to check faults for excitability. Its efficiency depends on the 

number of fixed input signal values and the structure of implications. A high number of applicable implications 

rules gives us a solid ground for fixing internal signal values and increases our chances to discard a fault before 

its CNF is generated and proved unsatisfiable. Static fault filtering takes a negligible part of the overall running 

time, so it can cause a significant acceleration of the algorithm. 

5.2.2 Dynamic Fault Filtering 

Static filtering used only implications between pairs of signals, which would be modeled by 2-literal clauses in 

the corresponding CNF. Not only a 2-literal clause in a CNF may become a unit clause under given constraints, 

but, with a sufficient number of constraints, a clause with any number of literals may become so. 4-clauses are 

relatively rare, but clauses with 3 literals do occur during SAT ATPG [8, 21]. To catch faults whose 

unexcitability follows from 3-literal clauses is the task of the dynamic filter. 

Unlike static filter, dynamic filter cannot rely on a precomputed data structure (hence the term dynamic). Instead, 

it scans the circuit for each set of fixed signal values. Assuming that static filtering has been already done, it 

searches for triples of signals, which would form a 3-literal clause in the CNF description of a gate. If the values 

of two signals from the triple are already fixed, it propagates them and fixes the third. This is again done 

repeatedly until there are no more signal values to fix. 

Let us assume constants A=1, B=1 in the circuit in Figure 6, Static implications do not bring any new fixed value 

(Figure 7a). The AND gate at the inputs A and B, which would be described by the clause D¬A¬B, allows the 

dynamic filter to also set D=1 (Figure 7b), 

It is obvious that further signal values can be fixed. A higher number of fixed values increases the chances to 

find conflicts and to identify more unexcitable faults than the static filter. However, the time consumption of the 

dynamic filter is much higher than of the static filter, because the circuit must be searched for new implications 

for each constant value applied.  

 

Figure 7. Example of the dynamic implication filter  

The pseudocode of the SAT Compress algorithm equipped with a static and a dynamic filter is outlined in Figure 

8. The effort spent in constant propagation is not wasted even in the case of excitable faults; the constants are 

used as additional constraints to the CNF. Technically, the 2-literal clauses contained in the implication table are 

not even generated to the CNF. 

FL.generate(circuit);    // FL … fault list 
FL.remove_untestable_faults(); 

TP = T0;      // TP … current test pattern 

       // pick an initial pattern 

FL = FL - circuit.fault_simulate (TP);  // remove faults detected by TP 

IMTAB.generate (circuit);    // create implication table 

output (TP[0]};     // put the leftmost bit to output 

TP.DC_shift_left();     // the rightmost TP bit becomes DC 

while (!FL.empty()) {    // loop until all faults detected 

 IM = TP;      // implied signal values 



 IM.static_implications (IMTAB);  // fast static constant propagation 

 IM.dynamic_implications (circuit);  // more thorough const propagation 

 for each F in FL {    // find a fault which is detectable 

        // under current constraints 

 if (F.conflict (IM)) {   // not excitable with current PIs 

   continue;    // skip (filter) unexcitable fault 

   } 

 CNF.generate (circuit, F); 

 CNF.constraint (IM);   // use propagate consts as constraints 

 Y = CNF.solve(); 

 if (Y.exists()) break;   // find first testable fault 

 } 

 if (Y.exists()) {    // successful search 

 TP = Y; 

 FL = FL - circuit.fault_simulate (TP); 

 } 

 output (TP[0]}; 

 TP.DC_shift_left(); 

} 

output (TP);      // output all remaining bits 

 

Figure 8. The SAT-Compress algorithm  

5.2.3 Experimental Evaluation of Fault Filters 

A comparison of filtering techniques is presented in Table 3. The first column of the table “Circ. name” 

represents the name of the benchmark circuit from ISCAS’85 [35], ’89 [36] or ITC’99 [41]. Differences between 

the basic algorithm (SAT-Compress [7]) and its modification with static and dynamic filtering are shown in the 

three columns. The “Gen.” column represents the total number of generated CNFs and “Used” shows the total 

number of satisfiable CNFs. For algorithms, where static and dynamic filter was employed, the percentage 

reduction (“Red.”) of the number of processed CNFs referred to the basic algorithm and the time spent by 

filtering (“Filter”) of the unexcitale faults is shown. The last column “SUM” has the same meaning as in Table 2. 

The last row of the table “Avg.” represents an average value of the column. 

Circ. name 

Basic algorithm 
Basic algorithm + static 

filter 

Basic algorithm + static + 

dynamic filter 

Gen. Used SUM Red Filter SUM Red Filter SUM 

[-] [-] [s] [%] [s] [s] [%] [s] [s] 

c432 3517 74 3.63 25 0 2.61 64.5 0.3 1.65 

c499 3210 73 2.91 9.1 0.02 2.47 49.6 0.94 2.26 

c880 70395 181 137.5 46 0.19 82.99 54.6 5.22 79.12 

c1355 13236 95 30.54 32 0.02 20.29 70.4 3.22 12.35 

c1908 35443 162 126 19 0.13 103.93 47.3 8.81 78.01 

c2670 277808 355 1188.98 33 1.45 772.36 52 58.2 624.5 

c3540 717888 347 5784 53 4.14 2793.14 62.9 254 2472 

c5315 26978 289 198.9 15 0.17 171.17 55.4 88.2 180.2 

s298 2782 93 0.93 47 0 0.53 47.8 0.03 0.62 

s382 1959 59 1 46 0 0.55 49 0.08 0.61 

s400 4088 69 2.06 54 0 0.96 54.9 0.14 1.11 

s420 17210 93 12.8 39 0.08 8.08 45 0.58 7.95 

s444 2359 59 1.24 58 0 0.53 62.8 0.09 0.6 

s510 2899 76 2.08 58 0.02 0.95 59.1 0.16 1.13 

s526 15563 134 8.56 49 0.02 4.41 49.8 0.42 5.15 

s526n 13901 134 7.71 48 0.06 4.06 49.6 0.38 4.27 

s641 20397 136 29.32 37 0.02 17.79 50.2 1.08 16.07 

s713 17928 130 26.9 35 0.02 17.29 46.2 1.59 16.31 

s820 51351 206 44.25 38 0.13 27.73 38.6 1.09 28.08 

s832 56590 203 50.02 39 0.13 30.65 39.5 0.86 30.98 

s838 114070 187 173.7 40 0.13 107.69 43.6 7.55 115.57 

s953 63076 198 81.75 59 0.06 33.82 67.7 3.73 30.9 

s1196 180005 249 339.9 48 0.41 178.41 59.5 18.3 156.3 



Circ. name 

Basic algorithm 
Basic algorithm + static 

filter 

Basic algorithm + static + 

dynamic filter 

Gen. Used SUM Red Filter SUM Red Filter SUM 

[-] [-] [s] [%] [s] [s] [%] [s] [s] 

s1238 213134 247 398.4 49 0.55 206.45 56.3 20.4 192.4 

s1423 44892 149 113.05 52 0.17 56.91 59.8 9.41 56.4 

s1488 19053 204 32.6 48 0.08 17.4 50.5 4.27 20.6 

s1494 22878 201 39.03 51 0.08 19.39 54 4.31 22.79 

s5378 378447 502 3216 50 4.25 1649.25 63.3 274 1495.9 

s9234 4654444 749 82176.1 42 134 48336 52.6 4014.7 44311.4 

s13207 10733919 1109 278511 60 228.4 110828.4 64.1 14130 115520.7 

s15850 11160862 980 371963 52 315.1 188644.1 59.5 25019 184213 

s35932 2000941 1419 137704 17 402.4 119823.4 20.7 10319 129133.5 

s38584 11131264 2256 516020 62 591.2 201443.2 68.3 138870 307178 

b03_C 604 48 0.27 42.2 0 0.2 42.5 0.063 0.234 

b04_C 265730 198 667 22.6 1.2 519 39.7 25.16 435.5 

b05_C 104484 171 319 24.5 0.64 253 41.7 24.39 214.7 

b06_C 63 28 0.02 19 0 0.02 22.2 0 0.016 

b07_C 36186 116 51.3 49.9 0.13 25.4 65.6 2.813 21.48 

b08_C 19145 77 12.4 41.1 0.03 7.5 64.1 0.531 5.172 

b09_C 3367 54 2.22 53.8 0.02 1.08 56 0.188 1.172 

b10_C 3410 90 1.83 48.6 0.03 1.02 48.9 0.266 1.156 

b11_C 56671 143 128 32.8 0.19 87.3 49.9 8.547 64.47 

b12_C 157888 337 448 53.1 0.64 222 61.9 34.77 222 

b13_C 3661 81 3.53 51.3 0 1.84 53.1 0.422 2.266 

Avg. 928778 278.15 30436.12 42 36.65 14707.1 52.4 4200.37 17108.2 

Table 3. Experimental results for the UNSAT filtering 

Experimental results show that fault filtering can accelerate the process of the constrained test patterns 

generation more than 2-times. For example, the total test patterns compression time of the basic algorithm for the 

benchmark circuit c3540 is 5,784 seconds, while with the static filer it takes 2,793 seconds and with the dynamic 

filter the total test patterns compression time decreased to 2,472 seconds. The static filter, as a simple fast 

technique of detecting of the unsatisfiable instances, is highly effective and saves 43% of all the processed 

unsatisfiable instances on average. Moreover, the dynamic filter is able to detect and save additional 10% of the 

unsatisfiable CNF instances on average, but it is much more time-consuming than the static filter. 

Circuit name c3540 s13207 s15850 s35932 s38584 

Basic algorithm 

Gen. [-] 717888 10733919 11160862 2000941 11131264 

Used. [-] 347 1109 980 1419 2256 

CNF [s] 2205 25209 36446 5529.6 19658 

SAT [s] 3176 228267 304751 131884 478943 

SIM [s] 403 25035 30766 290.4 17419 

SUM [s] 5784 278511 371963 137704 516020 

Basic algorithm 

+static 

Red. [%] 53 60 52 17 62 

Filter [s] 4.41 228.4 315.1 402.4 591.2 

CNF [s] 1041 9869 17406 5154 7392 

SAT [s] 1352 76220 140654 113974 175764 

SIM [s] 396 24511 30269 293 17696 

SUM [s] 2793.41 110828.4 188644.1 119823.4 201443.2 

Basic algorithm 

+ static + 

dynamic 

Red. [%] 62.9 64.1 59.5 20.7 68.3 

Filter [s] 254 14130 25019 10319 138870 

CNF [s] 829 9048.7 14212 4935 6265 

SAT [s] 993 67857 114844 113585 144431 

SIM [s] 396 24485 30138 294.5 17612 

SUM [s] 2472 115520.7 184213 129133.5 307178 

Table 4. Detailed results for the UNSAT filtering 

More detailed comparison of filtering techniques for five benchmark circuits is presented in Table 4. The rows in 

the Table 4 have the same meaning as the corresponding columns in Table 2 and Table 3. This table shows 



detailed distribution of the CTPG time over all steps of the SAT-Compress algorithm. The results for presented 

circuits except of the s35932 show that the filters can decrease the time of CNFs generation and their solving in 

half.  

Next, properties of our static and dynamic fault filters have been analyzed for the SAT-Compress algorithm. 

First, we have measured the number of constraints (fixed PI values) set during the CTPG process. Figure 9 

shows an example of constant PIs for the ISCAS’89 benchmark circuit s13207. This circuit has 700 PIs and our 

measurement shows that on average 497 of them are fixed during the compression. Figure 10 shows the number 

of implied signal values for the same benchmark circuit (s13207). Each constant PI produces on average 9.3 

implied signal values The dependence between the number of constant PIs and the number implied signal values 

appears to be linear. Similar behavior has been observed in all measured circuits.  

 
Figure 9. Frequency of fixed PI values during CTPG (s13207) 

 
Figure 10. The number of values fixed by constraints implications (s13207) 

Finally, we have compared the static and dynamic filters by the number of implied signal values. The example 

for ISCAS’89 benchmark circuit s13027 is shown in Figure 11. It seems that the distribution of the number of 

implied values is similar for both static and dynamic filter. The only difference is their offset. The results from 

Table 3 show that dynamic filter detects on average 10% more UNSAT CNF instances in comparison with static 

filter. These observations confirm the assumption that more fixed signal values can detect more conflicts and 

increase the efficiency of the filter. Similar behavior has been observed in all measured circuits.  



 
Figure 11. Frequency of values fixed by implications during CTPG (s13207) 

The implication filter seems to be a promising technique. The static filter can be used for any circuit and grants a 

significant speedup of the constrained test generation process by significantly decreasing the number of the 

unsatisfiable CNFs generated and solved. The dynamic filter is better for small circuits, because searching for 

dynamic implications is much more time-consuming. 

6 Conclusions 

The SAT-based constrained test patterns generation problem has been stated to target a class of algorithms which 

should benefit proposed techniques. Some of these algorithms have been discussed. 

The SAT-Compress algorithm has been chosen as a representative of CTPG algorithms. It is shown that implicit 

representation of the test set can be beneficial in CTPG and even a simple greedy algorithm as the SAT-

Compress can reach results competitive with the state-of-the-art tools. However, it also implies that the time-

consumption can grow significantly with the size of the circuit (number of gates). Thus some techniques of 

CTPG acceleration are proposed. 

First, the differences between the CNFs processing on-the-fly, processing of the stored CNFs or reduced CNFs 

have been discussed and shown on a set of ISCAS’85 and ’89 benchmark circuits. The CNF storing seems to be 

beneficial for large circuits, but the size of stored CNFs grows considerably with a size of the circuit even for 

reduced CNFs. This observation implies that storing of the CNFs brings no significant improvement. Thus, the 

CNFs processing on-the-fly is still the best technique in a general case. 

The second part of our research deals with the filtering of the unexcitable faults. Their CNFs would cause a 

significant time overhead in the CTPG process. We proposed two techniques of filtration based on the static and 

dynamic implications. Their properties have been shown on SAT-Compress algorithm. Our experimental 

evaluation proved that these simple techniques can save more than 50% of unsatisfiable instances and decrease 

the time consumption significantly.   

Acknowledgement 

This research has been supported by MSMT under research program MSM6840770014, by the grant of the 

Czech Grant Agency GA102/09/1668 and the grant of the Czech Technical University in Prague, 

SGS11/089/OHK3/1T/18. 

References 

[1] P. Girard, N. Nicolici, X. Wen, Power-Aware Testing and Test Strategies for Low Power Devices,  
Publisher Springer Netherlands,  ISBN: 1441909273, 2009, p. 353. 

[2] R. Dorsch, H. J. Wunderlich, Tailoring ATPG for embedded testing, in Proc. ITC, 2001, pp. 530–537. 

[3] J. Balcarek, Implicit Rrepresentations in Customized Testing of Digital Circuits, Proc. of Počítačové architektury&diagnostika, 
Češkovice (ČR), 2010, pp. 15-20.  



[4] P. Goel, An implicit enumeration algorithm to generate tests for combinational logic circuits , IEEE Trans. On Computers, 1981, pp. 
221-222.  

[5] H. Fujiwara, T. Shimono, On the acceleration of test generation algorithms, IEEE Trans. Comput., C-32(12) , 1983, pp. 1137-1144.   

[6] R. Drechsler, S. Eggersglüß, G. Fey, D. Tille, Test Pattern Generation using Boolean Proof Engines, Publisher Springer Netherlands, 
ISBN 978-90-481-2360-5, 2009, p. 192.  

[7] J. Balcarek, P. Fiser, J. Schmidt, Test Patterns Compression Technique Based on a Dedicated SAT-based ATPG, Proc. of 13th 
Euromicro Conference on Digital Systems Design (DSD'10), Lille (France), 2010, pp. 805-808.  

[8] J. Balcarek, P. Fiser, J. Schmidt, On Properties of SAT Instances Produced by SAT-Based Test Pattern Generators, Proc. of Doctoral 
Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS'09), Znojmo (ČR), 2009, pp. 3-10.  

[9] H. Zhang, M. Stickel, An efficient algorithm for unit propagation, in Proc. of the 4th International Symposium on Artificial Intelligence 
and Mathematics, 1996.  

[10] S. Malik et al.  et al. Efficient conflict driven learning in a boolean satisfiability solver.; In IEEE/ACM International Conference on 
Computer-Aided Design (San Jose, California), 2001, URL , ISBN 0-7803-7249-2, s. 279-285.  

[11] T. Larrabee, Test Pattern Generation Using Boolean Satisfiability,  IEEE Transactions on Computer-Aided Design, 1992, pp. 4-15.  

[12] X. Liu, M. S. Hsiao, Constrained ATPG for Broadside Transition Testing, in Proc. of the 18th IEEE International Symposium on 
Defect and Fault Tolerance in VLSI Systems (DFT'03), 2003, pp.175.  

[13] F. Fummi, D. Sciuto, Implicit test pattern generation constrained to cellular automata embedding, Proc. of the 15th IEEE VLSI Test 
Symposium (VTS'97), 1997, pp.54.  

[14] M. H. Konijnenburg, J. Th. van der Linden, A. J. van de Goor, Automatic test pattern generation for industrial circuits with 
restrictors, Microelectronics Journal, 26 (7), 1995, pp. 635-645.  

[15] S. B. Akers, Binary Decision Diagrams, IEEE Transactions on Computers, C-27(6), 1978, pp. 509–516.  

[16] R. Dorsch and H.-J. Wunderlich. Reusing scan chains for test pattern decompression. In Proceedings of the IEEE European Test 
Workshop (ETW), pages 124–132, Stockholm, Sweden, May 2001. IEEE Computer Society Press. 

[17] L. Schafer , R. Dorsch, H. J. Wunderlich, RESPIN++- Deterministic Embedded Test, Proc. of the European Test Workshop, 2002, 
pp.37-42.  

[18] W. Daehn, J. Mucha, Hardware Test Pattern Generation for Built-in Testing, Proc. of the IEEE Test Conference, 1981, pp. 110-113.  

[19] B. Ayari, B. Kaminska,  A new dynamic test vector compaction for automatic test pattern generation,  IEEE Trans. on CAD of 
Integrated Circuits and Systems, 1994, pp.353-358.  

[20] M. Balaz, R. Dobai, E. Gramatova, Delay faults testing, in Proc. of the Design and Test Technology for Dependable Systems-on-Chip, 
R. Ubar, J. Raik, and H. T. Vierhaus, Eds. Information Science Publishing, 2011, doi: 10.4018/978-1-60960-212-3.  

[21] R. Dobai, M. Balaz, SAT-Based Generation of Compressed Skewed-Load Tests for Transition Delay Faults, in Proc. of the 14th 
Euromicro Conference on the Digital System Design (DSD), Oulu (Finland), 2011, pp. 191-196.  

[22] D. Tille, S. Eggersglüß, H.M. Le, R. Drechsler; Structural heuristics for SAT-based ATPG; 17th IFIP International Conference on Very 
Large Scale Integration, VLSI-SoC 2009; Florianopolis; 12 October 2009 through 14 October 2009. 

[23] S. Eggersglüß, R. Drechsler; Robust algorithms for high quality Test Pattern Generation using Boolean Satisfiability; 41st International 
Test Conference, ITC 2010; Austin, TX; 31 October 2010 through 5 November 2010. 

[24] Xin Liu, Improving generation method for test pattern based on BDD learning; IEEE 2011 10th International Conference on Electronic 
Measurement and Instruments, ICEMI 2011; Chengdu; 16 August 2011 - 18 August 2011. 

[25] O. Novak, J. Zahradka, COMPAS – Compressed Test Pattern Sequencer for Scan Based Circuits, in Proc. of the EDCC, 2005, pp. 403-
414.  

[26] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, L. Whetsel, Towards a Standard for Embedded Core Test: An Example, in Proc. of 
the IEEE International Test Conference (ITC),  IEEE, 1999, pp. 616–627.  

[27] J. H. Patel, I. Hamzaoglu, Test Set Compaction Algorithms for Combinational Circuits, in Proc. of the International Conference on 
Computer-Aided Design (ICCAD '98), 1998, pp.283-289.  

[28] A. Jas, J. Ghosh-Dastidar, N. A. Touba, Scan vector compression/decompression using statistical coding, in Proc. of the VLSI Test 
Symp., 1999, pp. 114–120.  

[29] C.V. Krishna, N.A. Touba,  Reducing Test Data Volume Using LFSR Reseeding with Seed Compression, in Proc. of the International 
Test Conference, 2002, pp. 321-330.  

[30] I. Hamzaoglu, J. H. Patel, Reducing Test Application Time for Full Scan Embedded Cores, in Proc. of  the International. Symposium 
on Fault Tolerant Computing, 1999, pp. 260-267.  

[31] A. Chandra, K. Chakrabarty, Frequency-Directed Run-Length (FDR) Codes with Application to System-on-a-Chip Test Data 
compression,  in Proc. of  the VLSI Test Symposium, 2001, pp. 42–47.  

[32] A. Chandra, K. Chakrabarty, Test Data Compression and Test Resource Partitioning for System-on-a-Chip Using Frequency-Directed 
Run-Length (FDR) Codes, IEEE Transactions on Computers, vol. 52, No. 8, 2003, pp. 1076-1088.  

[33] J. Rajski, Embedded Deterministic Test, IEEE Trans. on CAD, vol. 23, No. 5, 2004, pp. 776-792.  

[34] N. Een, N. Sorensson, An Extensible SAT-solver, Lecture Notes in Computer Science, Theory and Applications of Satisfiability 
Testing, vol. 2919/2004, 2004, pp. 333-336.  

[35] F. Brglez, H. Fujiwara, A Neutral Netlist of 10 Combinational Benchmark Circuits and a Target Translator in Fortan, in Proc. of the 
International Symposium on Circuits and Systems, 1985,  pp. 663-698.  

[36] F. Brglez, D. Bryan, K. Kozminski, Combinational Profiles of Sequential Benchmark Circuits, in Proc. of the International Symposium 
of Circuits and Systems, 1989, pp. 1929-1934.  

[37] H.K. Lee and D.S. Ha, Atalanta: an Efficient ATPG for Combinational Circuits, Technical Report, 93-12, Dep't of Electrical Eng., 
Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1993. 

[38] P. R. Stephan, R. K. Brayton, A. L. Sangiovanni-Vincentelli, Combinational Test Generation Using Satisfiability, IEEE Transactions 
on Computer-Aided Design, vol. 15, No. 9, 1996, pp. 1167-1176.  

[39] J.P.M. Silva, K.A. Sakallah, Robust Search Algorithms for Test Pattern Generation, in Proc. of the Fault-Tolerant Computing 
Symposium, 1997, pp. 152–161.  



[40] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky,  2+p-SAT: relation of  typicalcase Complexity to the nature of the 
phase transition, In Random Structures & Algorithms, Vol. 15, Issue 3-4, 1999, pp. 414 – 435.  

[41] F. Corno, M. S. Reorda, G. Squillero, RT-Level ITC 99 Benchmarks and First ATPG Results, IEEE Design & Test of Computers, Vol. 
7, Issue 3, 2000, pp. 44-53.  

[42] J. Jenicek, O. Novak, COMPAS Advanced test compressor, Proceedings of IEEE East-West Design and Test Symposium, EWDTS'10 
2010, Pages 543-548.  

[43] S. Malik et al., Chaff: engineering an efficient SAT solver, in Proc. of 38th ACM/IEEE Design Automation Conference, Las Vegas, 
Nevada, USA, 2001, pp. 530-535. 

 
 


