
Scalable Test Pattern Generator Design Method for BIST

Petr Fišer, Hana Kubátová
Department of Computer Science and Engineering

Czech Technical University
Karlovo nam. 13, 121 35 Prague 2

e-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

Abstract

A scalable built-in self-test (BIST) equipment design
method for combinational or full-scan circuits based on a
design of a test pattern generator producing vectors
detecting 100% of stuck-at faults is proposed in this
paper. Basic principles of the proposed BIST design
method are similar to well-known and commonly used
methods like bit-fixing, bit-flipping, etc. We introduce
a new TPG design algorithm, which offers a good
scalability, in terms of the test time, BIST area overhead
and the BIST design time. The basis of the test pattern
generator is a combinational block - the Decoder,
transforming pseudo-random code words into
deterministic test patterns pre-computed by an ATPG
tool. The Column-Matching algorithm to design the
decoder is proposed. Maximum of output variables of the
decoder is tried to be matched with the decoder inputs,
yielding the outputs be implemented as mere wires, thus
without any logic. No memory elements are needed
to store the test patterns.

1. Introduction

With the ever-increasing complexity of present VLSI
circuits, their testing is becoming more and more
important. Using only external test equipment (ATE)
to test the chips is becoming impossible, mainly due to a
huge amount of test vectors, long test time and very
expensive ATE. Incorporating the Built-in Self-Test
Equipment (BISTE) becomes inevitable. It requires no
external tester to test the circuit, since all the circuitry
needed to conduct the test is included in the very circuit.
This is paid by an area overhead, long test time and often
low fault coverage. Up to now, many BIST design
methods have been developed [1-3], all of them trying
to find some trade-off between these four aspects that
cannot be all satisfied in one time: the fault coverage, test
time, BIST area overhead and the BIST design time.

To reach high fault coverage, either a long test time or
a high area overhead is involved. A pseudo-random
testing established the simplest trade-off between all these

criteria. With an extremely low area overhead the circuit
can be tested usually up to more than 90% in a relatively
small number of clock cycles. To improve the fault
coverage and to reduce the test time, many enhancements
of this pseudo-random principle have been developed. All
of them are accompanied by some additional area
overhead.

Different ASIC designers integrating BIST logic into
their circuits have different requirements. Sometimes
there is a requirement to design the BIST logic as soon
as possible, regardless the area overhead and the fault
coverage (to some extent, of course). For low-power
designs, the BIST logic area overhead should be kept as
small as possible, whereas the BIST design time is not
that important. Or, and this is the most common case
in practice, high fault coverage is important, whereas the
BIST design time plays a small role.

We propose a flexible way how to design test pattern
generators (TPGs) meeting any of the above-mentioned
restrictions (or, better, quality measures). The designer is
able to freely adjust the BIST logic design runtime, BIST
logic area overhead and BIST run time, according his
preferences. 100% fault coverage (of the non-redundant
faults) is considered in the following text. However, the
method may be modified so that less fault coverage is
reached, with a benefit of less area overhead.

2. Proposed TPG Design Method

The proposed test pattern generator (TPG) consists
of two main parts: an LFSR producing pseudorandom
patterns and the Decoder, which is a combinational block
transforming these patterns into deterministic test vectors
computed by an ATPG tool. Generating a fully
deterministic test detecting 100% stuck-at faults would
involve a huge combinational logic (of the Decoder).
Hence, a mixed-mode BIST is used. The BIST run is
divided into two phases: the pseudorandom and
deterministic one. The difference between our
mixed-mode BIST method and the others (like
bit-flipping [1], bit-fixing [2]) is that the two phases are

disjoint. First, the easy-to-detect faults are covered in the
pseudo-random phase. Then, a set of deterministic test
vectors covering the undetected faults is computed and
these tests are then generated by a transformation of the
subsequent LFSR patterns. This significantly reduces both
the decoder and BIST control logic. No memory elements
are needed to recognize patterns that are to be modified
(like in [2]); switching between the two phases is handled
by the BIST controller counter.

LFSR

Decoder

Switch

CUT

MISR

TPG

mode

m

m

m

Figure 1. Proposed BIST scheme

3. The Decoder Design

The Decoder is designed by the column-matching
algorithm proposed here.

Let us have an n-bit LFSR running for p clock cycles.
The code words generated by this LFSR are described
by a C matrix (code matrix) of dimensions (p, n). These
code words are to be transformed into deterministic test
patterns computed by an ATPG tool. The patterns are
described by a T matrix (test matrix). For an r-input CUT
and the test consisting of s vectors the T matrix has
dimensions (s, r). The rows of the matrices will be
denoted as vectors. The Decoder logic modifies the
C matrix vectors to obtain all the T matrix vectors. As the
proposed method is restricted to combinational circuits,
the order of the test patterns is insignificant. Finding a
transformation from the C matrix to the T matrix means
coupling each of the s rows of the T matrix with distinct
rows of the C matrix – finding a row assignment (Fig. 2).

The Output decoder is a combinational block
transforming s n-dimensional vectors of the C matrix into
s r-dimensional vectors of the T matrix. The decoder is
represented by a Boolean function having n inputs and
r outputs, where only values of s terms are defined; the
rest are don’t cares implicitly. This Boolean function can
be described by a truth table, where the output part
corresponds to the T matrix, while the input part consists
of s C matrix vectors assigned to the T matrix rows. The
set of such vectors will be denoted as a pruned C matrix.

10001
00110
10111
00101
11111
10000
10011
11011
11001
10010

01001
10010
01111
11100
11001

10001
00110
00101
10000
11001

01001
10010
01111
11100
11001

⇒

C-Matrix

T-Matrix Pruned C-Matrix

PRPG Patterns

Test Patterns Output Decoder PLA

s

n

r

p

↓

Figure 2: Assignment of the rows

3.1. The Column-Matching Algorithm

Now there is the task to assign the rows to each other,
so that the Decoder logic will be as small as possible. The
column-matching algorithm has been developed for this
purpose. The principle of the algorithm is to assign all the
T matrix rows to some of the C matrix rows so that some
columns of the T matrix will be equal to some of the
pruned C matrix columns in the result. This involves
no logic needed to implement these T matrix columns
(outputs of the decoder); they are implemented as simple
wired connections. This idea can be extended to a
negative matching, by allowing negated columns to be
matched. An illustrative example is shown in Fig. 3. The
matched columns of the pruned C matrix and T matrix
from Fig. 2 are shown here. The T matrix column y1 is
matched with the C matrix column x3 (negatively), then y3

with x0 (negatively) and y4 with x4 (positively). Thus, the
outputs y1, y3 and y4 are implemented without any
combinational logic, while the remaining outputs have
to be synthesized using some standard two-level Boolean
minimization tools, like ESPRESSO [4] or BOOM [5, 6],
which has been developed especially for this purpose.

For more detailed description of the column-matching
algorithm see [7, 8].

1 0 0 0 1
0 0 1 1 0
0 0 1 0 1
1 0 0 0 0
1 1 0 0 1

0 1 0 0 1
1 0 0 1 0
0 1 1 1 1
1 1 1 0 0
1 1 0 0 1

Output Decoder PLA

x - x y - y
40 0 4

y0 = x4’ + x1

y1 = x3’
y2 = x2 x3’ + x2’ x4’
y3 = x0’
y4 = x4

Figure 3: Column-matching example

3.2. Mixed-Mode Column-Matching BIST
Example

As it was stated before, the test is divided into two
phases – the pseudorandom and deterministic one. An
artificial illustrative example is shown in Fig. 4.
The BIST logic for a 5-input circuit is to be synthesized
here. A 5-bit LFSR is run for 5 cycles first, by which the
easily testable faults are detected. Then we run the fault

simulation to find the undetected faults, for which the test
vectors are generated by an ATPG. At the end the decoder
logic is synthesized for these tests and the subsequent
LFSR patterns. The resulting circuitry is shown in Fig. 5.

10100

01010

00101
10110

01011
10001

11100
01110

00111
10111

Pseudo-random
sequence } Simulate Non-covered

faul ts

ATPG Test

Vectors

1X000

1010X

11011
0001X

10100

11011

01011

00001

10000

(non-det)
Deterministic

sequence

} }

x -x0 4 y -y0 4

LFSR

10100
01010

00101
10110

01011
10100

11011
01011

00001

10000

Final test sequence

Figure 4: Test sequence generation

LFSR

CUT

1

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

Deterministic
mode

y = x0 0

y = x

y = x

y = x

y = x +x

1 1

2 2

3 1

4 0 1

’

’+

Figure 5: Resulting BIST circuitry

4. The Scaling

The BIST equipment design methodology should cope
with the designer’s needs, thus be as scalable as possible.
The above mentioned four aspects (area overhead, fault
coverage, test time, design time) play a big role in the
overall design and cannot be optimally satisfied all.

The column-matching based TPG design method is
very well scalable in all these aspects. The ways
of scaling are described in this section. The fault coverage
aspect will not be discussed here, since 100% of detected
faults is assumed, see the Introduction.

4.1. Lengths of the Phases

Parameters that most essentially influence the TPG
area overhead and BIST design time are the lengths of the
two BIST phases. Of course, the BIST execution time is
given by the lengths of the phases directly.

The aim of the pseudo-random phase is to detect as
many faults as possible, while keeping the test time
acceptable. Two aspects play role here: the LFSR
polynomial and seed and the test length. Several methods
computing the LFSR seed to achieve a good fault
coverage have been proposed [9, 10]. However, for
simplicity, we just repeatedly select the seed randomly,
evaluate the fault coverage reached by using it, and select
the best one. This approach allows us to reach a good
fault coverage as well, whereas the fault coverage may be
almost arbitrarily improved, for a cost of the runtime

(by increasing the number of repetitions). Moreover, since
the method is not based on any algebraic computations, it
is applicable to any type of pseudo-random pattern
generators, e.g., cellular automata.

The number of the covered faults as a function of the
number of LFSR cycles applied to the CUT follows the
saturation curve. First few vectors detect the majority
of faults, and then the fault coverage increases only
slightly. Thus, the pseudo-random phase should be
stopped when the fault coverage does not improve for a
given number of clock cycles. This number can be freely
adjusted, according to the application specific
requirements (the trade-off between the test time and area
overhead).

To illustrate the scalability of the method in terms
of the length of the pseudo-random phase, the BIST
structure was designed for several ISCAS benchmarks
[11, 12]. The results are shown in Table 1. The
benchmark name is shown in the first column. The “PR”
column indicates the length of the pseudo-random phase,
the “UD” column shows the number of faults that were
left undetected in this phase. The length of the
deterministic phase was set constantly to 1000 clock
cycles. The “GEs” column shows the total complexity
of the column-matching BIST design, in terms of the gate
equivalents [13]. The time needed to complete the
column-matching procedure is indicated in the last
column. The experiment was run on a PC with 1 GHz
Athlon CPU, Windows XP.

Table 1: The pseudo-random phase length

bench PR UD GEs Time [s]
s5378 5 K 89 65.5 2259
 10 K 63 31.5 767
 20 K 48 16.5 104
s9234.1 1 K 1674 883 52 300
 50 K 773 333.5 4 400
 200 K 599 212.5 1 600
s13207.1 1 K 1793 699 208 K
 10 K 617 280 3 480
 50 K 182 36 128

A big trade-off between the test length and the area

overhead can be seen here. The longer the pseudo-random
phase runs, the less area overhead is reached.
Consequently, the BIST synthesis time reduces as well.

In the deterministic phase we synthesize deterministic

vectors from some of the LFSR patterns that follow the
pseudo-random phase. With increasing number of LFSR
patterns the chance for finding more column matches
increases as well. This is due to having more freedom for
selecting the LFSR vectors to be assigned to the
deterministic vectors. However, the design runtime

rapidly increases with the number of vectors. This is
illustrated by Table 2. Its format is retained from Table 1,
the “Det.” column indicates the length of the
deterministic phase. It may be observed that a trade-off
between the test time and area overhead can be freely
adjusted here too, according to the demands of the BIST
designer. The lengths of both the phases significantly
influence the BIST design time as well. The design
process is being sped up when increasing the length of the
pseudo-random phase, since the number of deterministic
vectors is being reduced this way. On the other hand, an
increasing length of the deterministic phase slows down
the Decoder design process.

Table 2: Influence of the the length of the
deterministic phase

bench inps PR Det. GEs Time
[s]

c3540 50 1000 200 34 0.32
 500 29.5 0.52
 2000 16.5 1.47
 5000 77.5 2.93
s1196 32 5000 200 25.5 0.17
 500 25 0.32
 5000 9 2.16
 10000 4.5 5.83

4.2. Scaling the LFSR Width

As it was said before, the column-matching algorithm
is primarily designed for a test-per-clock BIST. The
number of the LFSR bits has either be equal to the
number of CUT inputs (which involves a large LFSR
overhead), or it may be scaled down by using a weighting
logic. The effect of such a scaling will be shown here.

When the weighted pattern testing is used [14, 15], a
new block has to be introduced into the BIST design – the
weighting logic block, see Fig. 6. The LFSR width (r)
may be then less than the number of CUT inputs (m), the
number of TPG outputs is increased by applying the
weighting logic block.

Decoder

Switch

CUT

MISR

TPG

mode

m

m

m

LFSR
r<m

Weighting logic

Figure 6. Weighted column-matching BIST
scheme

The effects of the LFSR scaling are shown in Table 3
for the ISCAS s13207.1 benchmark having 700 inputs
and compared with a standard approach (when no weights
are used). The “LFSR” column indicates the width of the
LFSR used (r). In a case of weighted pattern testing the
number of gates needed for the weighting logic is shown
in the next column. The total TPG area overhead
(including the LFSR) is computed in terms of gate
equivalents [13]. An n-input NAND gate counts for 0.5n
GEs, the two-input XOR gate (used in LFSR) is 2.5 GEs.
The size of a D flip-flop is considered to be 4 GEs. We
have tried to scale down the originally 700-bit LFSR
to 30 bits. It can be seen that optimum results are obtained
for the 50-bit LFSR, the TPG area reduction is more than
70% with respect to the original (700-bit unweighted)
case. When the LFSR width is scaled down more, the
TPG area overhead rapidly increases, since the weighted
LFSR is not able to cover enough faults, due to reduced
randomness of the patterns. The column-matching results
for the 30-bit LFSR are not present, due to very high
column-matching algorithm runtimes.

Table 3: LFSR scaling
LFSR (r) w. gates time [s] GEs

700 (no weights) - 4720 2975
700 (3 weights) 518 245 3361
200 (3 weights) 365 653 1231
50 (3 weights) 365 2835 671
45 (3 weights) 365 3423 693
40 (3 weights) 365 29434 1288
30 (3 weights) 365 - -

4.3. Multiple-Vector Column-Matching

The more “freedom” has the column-matching
algorithm in selection of the matches, the better it
performs. Some ATPG tools [16] are able to produce
more than one test pattern per one fault. This can be
efficiently exploited by the column-matching algorithm.
The test set is then much larger, yielding the column-
matching process be slower. However, due to more
freedom for a column match selection, the area of the
Decoder is less. This is documented by Table 4. The
“vct/flt” column indicates the number of test vectors per
one fault. The total number of generated test vectors is
shown in the next column. The TPG design time and its
area overhear (wrt. the original circuit) is shown next. The
improvement with respect to the original, one-vector,
method is indicated in the last column.

Table 4: Multiple-vector column-matching
bench vct/flt vcts. time [s] overhead impr.

c1908 1 36 6.7 5.7 %
 10 340 55.9 3.0 % 48 %
c3540 1 31 3.9 2.2 %

bench vct/flt vcts. time [s] overhead impr.
c3540 10 101 19.1 1.6 % 27 %
 100 555 90.0 1.3 % 42 %
c7552 1 106 1104.8 17.0 %
 10 1206 16124.7 14.8 % 13 %
s1196 1 55 5.5 11.1 %
 10 259 109.0 7.8 % 30 %
s1238 1 33 2.9 6.7 %
 100 95 16.7 4.6 % 31 %
s5378 1 19 7.7 1.5 %
 100 258 181.5 0.9 % 40 %
s9241.1 1 52 160.7 5.3 %
 10 564 3508.6 4.9 % 10 %

5. Experimental Results

5.1. Comparison with Other State-of-the-Art
Methods

The proposed column-catching method is compared
with the bit-fixing accompanied by a “bit-correlating”
ATPG [2], the “3-Weight Weighted Random BIST”
proposed in [15] and the row matching method [3]. The
comparison is shown in Table 5. The “TL” columns
indicate the total length of the test, the “GEs” columns
give the number of gate equivalents of the BIST
combinational circuits and the “lit.” columns indicate the
number of literals in the sum-of-product (SOP) form
of the decoding logic. Test lengths have been set
approximately equal. The empty cells indicate that the
data for the respective circuit was not available.

Table 5: Comparison results

 Bit-fixing [2] Weighted BIST
[15]

Row
matching [3]

Column
Matching

Bench TL lit. TL lit. TL GEs TL GEs
c880 - - - - 640 21 1 K 15
c1355 - - - - 1.8 K 0 1.5 K 15
c1908 - - - - 4.7 K 8 3 K 10.5
c2670 10 K 385 8 K 269 6 K 119 5 K 113
c3540 - - - - 4.8 K 4 5.5 K 1.5
s420 10 K 59 1.4 K 67 - - 1 K 24.5
s641 10 K 98 768 45 7.7 K 6 4 K 15
s713 - - - - 4.8 K 4 5 K 16.5
s838 10 K 183 3.1 K 108 - - 6 K 130
s1196 10 K 97 16.8 K 67 10 K 36 10 K 6
s1238 - - 17 K 33 - - 4 K 26.5
s5378 10 K 332 18.4 K 68 - - 11 K 19.0

5.2. Results for Standard Benchmarks

Since the comparison shown in Table 5 describes
results for a few small benchmark circuits only, we will
present a more exhaustive result table (Table 6), for some
of the “bigger” and hard to test ISCAS [11, 12] and
ITC’99 [17] benchmarks. The BIST circuitry was
synthesized in two modes for each benchmark – first, the

test length was set to be relatively small (the white rows).
In the second mode a big effort has been put to obtain low
area overhead in a reasonable time. The test is prolonged
and some improvement techniques are sometimes used.
This is indicated in the “method” column. The legend
to the values is below the table. The “inps” column
indicates the number of the benchmark inputs, the “TL”
column gives the lengths of the two phases. The next
column shows the total number of column matches (M)
reached. The complexity of the switching logic is shown
in the “SW GEs” column, the complexity of the output
decoder in “OD GEs” . These numbers are summed
together in the “Total GEs” column and the percentage of
the area overhead of the Output Decoder and Switch, with
respect to the CUT GEs is shown in the “BIST Overhead”
column. The runtime needed to complete the column
matching process is indicated in the last column.

6. Conclusions

A scalable mixed-mode BIST equipment design
method based on a column-matching principle has been
proposed. Pseudorandom LFSR code words are being
transformed into deterministic test patterns. The
transformation is being done by a purely combinational
block; no additional registers are required.

The pseudo-random and deterministic phases are
separated, which enables to reach less area overhead
of the control logic. The lengths of both phases may be
freely adjusted to find a trade-off between the test time
and area overhead. It has been shown that the length
of the pseudo-random phase has a crucial impact on the
result. The length of the deterministic phase influences
the result as well, though not that significantly.

A big scalability of the method, in terms of the area
overhead, test time and design time is shown. A weighted
pattern testing principle is used to reduce the LFSR width.
Next, multiple-vector column-matching method reducing
the area overhead is proposed.

The algorithm should serve as a basic guideline how
to design more complex BIST designs, i.e., the multiple-
scan chain based BIST, the STUMPS architecture, etc.
The method should be as general, as the other state-of-
the-art methods are (e.g., bit-flipping, bit-fixing). The
obtained results, in terms of the area overhead, are
comparable to the other methods, sometimes they are
significantly better. The method has been tested on
standard benchmarks and the results were compared with
other state-of-the-art methods.

Acknowledgement

This research has been supported by MSMT under
research program MSM6840770014.

References
[1] H.J. Wunderlich and G. Keifer. Bit-Flipping BIST, Proc.

International Conference on CAD-96 (ICCAD96), San Jose,
California, November 1996, pp. 337-343

[2] N.A. Touba and E.J. McCluskey. Bit-Fixing in
Pseudorandom Sequences for Scan BIST, IEEE
Transactions on CAD, Vol. 20, No. 4, 2001, pp. 545-555

[3] M. Chatterjee and D.K. Pradhan. A BIST Pattern Generator
Design for Near-Perfect Fault Coverage, IEEE Transactions
on Computers, vol. 52, no. 12, Dec. 2003, pp. 1543-1558

[4] R.K. Brayton, et al. Logic Minimization Algorithms for VLSI
Synthesis, Boston, MA, Kluwer Academic Publishers, 1984

[5] J. Hlavička and P. Fišer: BOOM - a Heuristic Boolean
Minimizer. Proc. International Conference on Computer-
Aided Design ICCAD 2001, San Jose, California (USA), 4.-
8.11.2001, pp. 439-442

[6] J. Hlavička and P. Fišer: BOOM - A Heuristic Boolean
Minimizer, Computers and Informatics, Vol. 22, 2003, No.
1, pp. 19-51

[7] P. Fišer, H. Kubátová and J. Hlavička: Column-Matching
BIST Exploiting Test Don't-Cares“, Proc. 8th IEEE
European Test Workshop, Maastricht, 2003, pp. 215-216

[8] P. Fišer and H. Kubátová: An Efficient Mixed-Mode BIST
Technique, Proc. 7th IEEE Design and Diagnostics of
Electronic Circuits and Systems Workshop 2004, Tatranská
Lomnica, SK, 18.-21.4.2004, pp. 227-230

[9] C. Fagot, O. Gascuel, P. Girard, C. Landrault: On calculating
efficient LFSR seeds for built-in self test; Proc. IEEE

European Test Workshop 1999 (ETW'99), Constance,
Germany, 1999, pp. 7-14

[10] S. Hellebrand, H.-J. Wunderlich, A. Hertwig: Mixed-Mode
BIST Using Embedded Processors; Journal of Electronic
Testing Theory and Applications (JETTA), Vol. 12, Nos.
1/2, February/April 1998, pp. 127-138

[11] F. Brglez and H. Fujiwara, „A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target Translator
in Fortan“, Proc. of ISCAS 1985, pp. 663-698

[12] F. Brglez, D. Bryan and K. Kozminski, „Combinational
Profiles of Sequential Benchmark Circuits“, Proc. of ISCAS,
pp. 1929-1934, 1989

[13] G. De Micheli, “Synthesis and Optimization of Digital
Circuits”, McGraw-Hill, 1994

[14] H.J. Wunderlich, „Self Test Using Unequiprobable
Random Patterns“, International Symposium on Fault-
Tolerant Computing, 1987

[15] S. Wang. Low Hardware Overhead Scan Based 3-Weight
Weighted Random BIST. In Proceedings of the 2001 IEEE
international Test Conference (October 30 - November 01,
2001). ITC. IEEE Computer Society, Washington, DC, 868.

[16] H.K. Lee and D.S. Ha. Atalanta: an Efficient ATPG for
Combinational Circuits. Technical Report, 93-12, Dep't of
Electrical Eng., Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, 199

[17] F. Corno, M. Sonza Reorda and G. Squillero, “RT-Level
ITC 99 Benchmarks and First ATPG Results”. IEEE Design
& Test of Computers, July-August 2000, pp. 44-53

Table 6: Results for standard benchmarks
Bench inps TL (PR + Det.) method M SW

GEs
OD
GEs

Total
GEs

BIST
Overhead

Time [s]

c7552 207 7 K + 1 K 131 261 325 586 19 % 500
 10 K + 1 K 2) 155 100 168.5 456.5 15% 887
s713 54 500 + 500 52 24 3 27 8 % 0.56
 3 K + 1 K 54 18 0 18 5 % 0.32
s1196 32 2 K + 1 K 28 13.5 23.5 37 7 % 1.20
 9 K + 1 K 32 6 0 6 1 % 0.04
s9234 247 50 K + 1 K 208 163.5 156 319.5 8 % 350
 200 K + 1 K 1) 225 127.5 66 193.5 5 % 3500
s13207.1 700 1 K + 1 K 638 456 294 750 13 % 4000
 50 K + 1 K 700 36 0 36 < 1 % 13
s15850.1 611 10 K + 1 K 478 397.5 187 584.5 9 % 812
 100 K + 2 K 553 306 66.5 372.5 5 % 1244
s38417 1664 10 K + 1 K 1240 1365 1389.5 1389.5 17 % 24 K
 100 K + 2 K 2) 1503 1245 489 1734 11 % 17 K
s38584.1 1464 10 K + 1 K 1435 379.5 57.5 437 3 % 650
 100 K + 1 K 1464 165 0 165 1 % 34
b12 126 1 K + 1 K 117 37.5 45 82.5 9 % 40
 10 K + 1 K 1) 118 33 34 67 7 % 1080
b14 277 1 M / 2 K 84 318 8017 8335 141 % 170 K
 100 M / 1 K 90 328.5 2663.5 3319.5 56 % 100 K

1) 10 vectors per fault
2) 3-weights

