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Abstract 

A scalable built-in self-test (BIST) equipment design 
method for combinational or full-scan circuits based on a 
design of a test pattern generator producing vectors 
detecting 100% of stuck-at faults is proposed in this 
paper. Basic principles of the proposed BIST design 
method are similar to well-known and commonly used 
methods like bit-fixing, bit-flipping, etc. We introduce 
a new TPG design algorithm, which offers a good 
scalability, in terms of the test time, BIST area overhead 
and the BIST design time. The basis of the test pattern 
generator is a combinational block - the Decoder, 
transforming pseudo-random code words into 
deterministic test patterns pre-computed by an ATPG 
tool. The Column-Matching algorithm to design the 
decoder is proposed. Maximum of output variables of the 
decoder is tried to be matched with the decoder inputs, 
yielding the outputs be implemented as mere wires, thus 
without any logic. No memory elements are needed 
to store the test patterns. 

1. Introduction 

With the ever-increasing complexity of present VLSI 
circuits, their testing is becoming more and more 
important. Using only external test equipment (ATE) 
to test the chips is becoming impossible, mainly due to a 
huge amount of test vectors, long test time and very 
expensive ATE. Incorporating the Built-in Self-Test 
Equipment (BISTE) becomes inevitable. It requires no 
external tester to test the circuit, since all the circuitry 
needed to conduct the test is included in the very circuit. 
This is paid by an area overhead, long test time and often 
low fault coverage. Up to now, many BIST design 
methods have been developed [1-3], all of them trying 
to find some trade-off between these four aspects that 
cannot be all satisfied in one time: the fault coverage, test 
time, BIST area overhead and the BIST design time. 

To reach high fault coverage, either a long test time or 
a high area overhead is involved. A pseudo-random 
testing established the simplest trade-off between all these 

criteria. With an extremely low area overhead the circuit 
can be tested usually up to more than 90% in a relatively 
small number of clock cycles. To improve the fault 
coverage and to reduce the test time, many enhancements 
of this pseudo-random principle have been developed. All 
of them are accompanied by some additional area 
overhead. 

Different ASIC designers integrating BIST logic into 
their circuits have different requirements. Sometimes 
there is a requirement to design the BIST logic as soon 
as possible, regardless the area overhead and the fault 
coverage (to some extent, of course). For low-power 
designs, the BIST logic area overhead should be kept as 
small as possible, whereas the BIST design time is not 
that important. Or, and this is the most common case 
in practice, high fault coverage is important, whereas the 
BIST design time plays a small role. 

We propose a flexible way how to design test pattern 
generators (TPGs) meeting any of the above-mentioned 
restrictions (or, better, quality measures). The designer is 
able to freely adjust the BIST logic design runtime, BIST 
logic area overhead and BIST run time, according his 
preferences. 100% fault coverage (of the non-redundant 
faults) is considered in the following text. However, the 
method may be modified so that less fault coverage is 
reached, with a benefit of less area overhead. 

2. Proposed TPG Design Method 

The proposed test pattern generator (TPG) consists 
of two main parts: an LFSR producing pseudorandom 
patterns and the Decoder, which is a combinational block 
transforming these patterns into deterministic test vectors 
computed by an ATPG tool. Generating a fully 
deterministic test detecting 100% stuck-at faults would 
involve a huge combinational logic (of the Decoder). 
Hence, a mixed-mode BIST is used. The BIST run is 
divided into two phases: the pseudorandom and 
deterministic one. The difference between our 
mixed-mode BIST method and the others (like 
bit-flipping [1], bit-fixing [2]) is that the two phases are 



disjoint. First, the easy-to-detect faults are covered in the 
pseudo-random phase. Then, a set of deterministic test 
vectors covering the undetected faults is computed and 
these tests are then generated by a transformation of the 
subsequent LFSR patterns. This significantly reduces both 
the decoder and BIST control logic. No memory elements 
are needed to recognize patterns that are to be modified 
(like in [2]); switching between the two phases is handled 
by the BIST controller counter. 
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Figure 1. Proposed BIST scheme 

3. The Decoder Design 

The Decoder is designed by the column-matching 
algorithm proposed here. 

Let us have an n-bit LFSR running for p clock cycles. 
The code words generated by this LFSR are described 
by a C matrix (code matrix) of dimensions (p, n). These 
code words are to be transformed into deterministic test 
patterns computed by an ATPG tool. The patterns are 
described by a T matrix (test matrix). For an r-input CUT 
and the test consisting of s vectors the T matrix has 
dimensions (s, r). The rows of the matrices will be 
denoted as vectors. The Decoder logic modifies the 
C matrix vectors to obtain all the T matrix vectors. As the 
proposed method is restricted to combinational circuits, 
the order of the test patterns is insignificant. Finding a 
transformation from the C matrix to the T matrix means 
coupling each of the s rows of the T matrix with distinct 
rows of the C matrix – finding a row assignment (Fig. 2). 

The Output decoder is a combinational block 
transforming s n-dimensional vectors of the C matrix into 
s r-dimensional vectors of the T matrix. The decoder is 
represented by a Boolean function having n inputs and 
r outputs, where only values of s terms are defined; the 
rest are don’t cares implicitly. This Boolean function can 
be described by a truth table, where the output part 
corresponds to the T matrix, while the input part consists 
of s C matrix vectors assigned to the T matrix rows. The 
set of such vectors will be denoted as a pruned C matrix. 
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Figure 2: Assignment of the rows 

3.1. The Column-Matching Algorithm 

Now there is the task to assign the rows to each other, 
so that the Decoder logic will be as small as possible. The 
column-matching algorithm has been developed for this 
purpose. The principle of the algorithm is to assign all the 
T matrix rows to some of the C matrix rows so that some 
columns of the T matrix will be equal to some of the 
pruned C matrix columns in the result. This involves 
no logic needed to implement these T matrix columns 
(outputs of the decoder); they are implemented as simple 
wired connections. This idea can be extended to a 
negative matching, by allowing negated columns to be 
matched. An illustrative example is shown in Fig. 3. The 
matched columns of the pruned C matrix and T matrix 
from Fig. 2 are shown here. The T matrix column y1 is 
matched with the C matrix column x3 (negatively), then y3 

with x0 (negatively) and y4 with x4 (positively). Thus, the 
outputs y1, y3 and y4 are implemented without any 
combinational logic, while the remaining outputs have 
to be synthesized using some standard two-level Boolean 
minimization tools, like ESPRESSO [4] or BOOM [5, 6], 
which has been developed especially for this purpose. 

For more detailed description of the column-matching 
algorithm see [7, 8]. 
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Figure 3: Column-matching example 

3.2. Mixed-Mode Column-Matching BIST 
Example 

As it was stated before, the test is divided into two 
phases – the pseudorandom and deterministic one. An 
artificial illustrative example is shown in Fig. 4. 
The BIST logic for a 5-input circuit is to be synthesized 
here. A 5-bit LFSR is run for 5 cycles first, by which the 
easily testable faults are detected. Then we run the fault 



simulation to find the undetected faults, for which the test 
vectors are generated by an ATPG. At the end the decoder 
logic is synthesized for these tests and the subsequent 
LFSR patterns. The resulting circuitry is shown in Fig. 5. 
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Figure 4: Test sequence generation 
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Figure 5: Resulting BIST circuitry 

4. The Scaling 

The BIST equipment design methodology should cope 
with the designer’s needs, thus be as scalable as possible. 
The above mentioned four aspects (area overhead, fault 
coverage, test time, design time) play a big role in the 
overall design and cannot be optimally satisfied all. 

The column-matching based TPG design method is 
very well scalable in all these aspects. The ways 
of scaling are described in this section. The fault coverage 
aspect will not be discussed here, since 100% of detected 
faults is assumed, see the Introduction. 

4.1. Lengths of the Phases 

Parameters that most essentially influence the TPG 
area overhead and BIST design time are the lengths of the 
two BIST phases. Of course, the BIST execution time is 
given by the lengths of the phases directly. 

The aim of the pseudo-random phase is to detect as 
many faults as possible, while keeping the test time 
acceptable. Two aspects play role here: the LFSR 
polynomial and seed and the test length. Several methods 
computing the LFSR seed to achieve a good fault 
coverage have been proposed [9, 10]. However, for 
simplicity, we just repeatedly select the seed randomly, 
evaluate the fault coverage reached by using it, and select 
the best one. This approach allows us to reach a good 
fault coverage as well, whereas the fault coverage may be 
almost arbitrarily improved, for a cost of the runtime 

(by increasing the number of repetitions). Moreover, since 
the method is not based on any algebraic computations, it 
is applicable to any type of pseudo-random pattern 
generators, e.g., cellular automata. 

The number of the covered faults as a function of the 
number of LFSR cycles applied to the CUT follows the 
saturation curve. First few vectors detect the majority 
of faults, and then the fault coverage increases only 
slightly. Thus, the pseudo-random phase should be 
stopped when the fault coverage does not improve for a 
given number of clock cycles. This number can be freely 
adjusted, according to the application specific 
requirements (the trade-off between the test time and area 
overhead). 

To illustrate the scalability of the method in terms 
of the length of the pseudo-random phase, the BIST 
structure was designed for several ISCAS benchmarks 
[11, 12]. The results are shown in Table 1. The 
benchmark name is shown in the first column. The “PR”  
column indicates the length of the pseudo-random phase, 
the “UD”  column shows the number of faults that were 
left undetected in this phase. The length of the 
deterministic phase was set constantly to 1000 clock 
cycles. The “GEs” column shows the total complexity 
of the column-matching BIST design, in terms of the gate 
equivalents [13]. The time needed to complete the 
column-matching procedure is indicated in the last 
column. The experiment was run on a PC with 1 GHz 
Athlon CPU, Windows XP. 

 
Table 1: The pseudo-random phase length 

bench PR UD GEs Time [s] 
s5378 5 K 89 65.5 2259 
 10 K 63 31.5 767 
 20 K 48 16.5 104 
s9234.1 1 K 1674 883 52 300 
 50 K 773 333.5 4 400 
 200 K 599 212.5 1 600 
s13207.1 1 K 1793 699 208 K 
 10 K 617 280 3 480 
 50 K 182 36 128 

 
A big trade-off between the test length and the area 

overhead can be seen here. The longer the pseudo-random 
phase runs, the less area overhead is reached. 
Consequently, the BIST synthesis time reduces as well. 

 
In the deterministic phase we synthesize deterministic 

vectors from some of the LFSR patterns that follow the 
pseudo-random phase. With increasing number of LFSR 
patterns the chance for finding more column matches 
increases as well. This is due to having more freedom for 
selecting the LFSR vectors to be assigned to the 
deterministic vectors. However, the design runtime 



rapidly increases with the number of vectors. This is 
illustrated by Table 2. Its format is retained from Table 1, 
the “Det.” column indicates the length of the 
deterministic phase. It may be observed that a trade-off 
between the test time and area overhead can be freely 
adjusted here too, according to the demands of the BIST 
designer. The lengths of both the phases significantly 
influence the BIST design time as well. The design 
process is being sped up when increasing the length of the 
pseudo-random phase, since the number of deterministic 
vectors is being reduced this way. On the other hand, an 
increasing length of the deterministic phase slows down 
the Decoder design process. 

Table 2: Influence of the the length of the 
deterministic phase 

bench inps PR Det. GEs Time 
[s] 

c3540 50 1000 200 34 0.32 
   500 29.5 0.52 
   2000 16.5 1.47 
   5000 77.5 2.93 
s1196 32 5000 200 25.5 0.17 
   500 25 0.32 
   5000 9 2.16 
   10000 4.5 5.83 

4.2. Scaling the LFSR Width 

As it was said before, the column-matching algorithm 
is primarily designed for a test-per-clock BIST. The 
number of the LFSR bits has either be equal to the 
number of CUT inputs (which involves a large LFSR 
overhead), or it may be scaled down by using a weighting 
logic. The effect of such a scaling will be shown here.  

When the weighted pattern testing is used [14, 15], a 
new block has to be introduced into the BIST design – the 
weighting logic block, see Fig. 6. The LFSR width (r) 
may be then less than the number of CUT inputs (m), the 
number of TPG outputs is increased by applying the 
weighting logic block. 
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Figure 6. Weighted column-matching BIST 
scheme 

The effects of the LFSR scaling are shown in Table 3 
for the ISCAS s13207.1 benchmark having 700 inputs 
and compared with a standard approach (when no weights 
are used). The “LFSR” column indicates the width of the 
LFSR used (r). In a case of weighted pattern testing the 
number of gates needed for the weighting logic is shown 
in the next column. The total TPG area overhead 
(including the LFSR) is computed in terms of gate 
equivalents [13]. An n-input NAND gate counts for 0.5n 
GEs, the two-input XOR gate (used in LFSR) is 2.5 GEs. 
The size of a D flip-flop is considered to be 4 GEs. We 
have tried to scale down the originally 700-bit LFSR 
to 30 bits. It can be seen that optimum results are obtained 
for the 50-bit LFSR, the TPG area reduction is more than 
70% with respect to the original (700-bit unweighted) 
case. When the LFSR width is scaled down more, the 
TPG area overhead rapidly increases, since the weighted 
LFSR is not able to cover enough faults, due to reduced 
randomness of the patterns. The column-matching results 
for the 30-bit LFSR are not present, due to very high 
column-matching algorithm runtimes. 

Table 3: LFSR scaling 
LFSR (r) w. gates time [s] GEs 

700 (no weights) - 4720 2975 
700 (3 weights) 518 245 3361 
200 (3 weights) 365 653 1231 
50 (3 weights) 365 2835 671 
45 (3 weights) 365 3423 693 
40 (3 weights) 365 29434 1288 
30 (3 weights) 365 - - 

4.3. Multiple-Vector Column-Matching 

The more “freedom” has the column-matching 
algorithm in selection of the matches, the better it 
performs. Some ATPG tools [16] are able to produce 
more than one test pattern per one fault. This can be 
efficiently exploited by the column-matching algorithm. 
The test set is then much larger, yielding the column-
matching process be slower. However, due to more 
freedom for a column match selection, the area of the 
Decoder is less. This is documented by Table 4. The 
“vct/flt” column indicates the number of test vectors per 
one fault. The total number of generated test vectors is 
shown in the next column. The TPG design time and its 
area overhear (wrt. the original circuit) is shown next. The 
improvement with respect to the original, one-vector, 
method is indicated in the last column. 

Table 4: Multiple-vector column-matching 
bench vct/flt vcts. time [s] overhead impr. 

c1908 1 36 6.7 5.7 %  
 10 340 55.9 3.0 % 48 % 
c3540 1 31 3.9 2.2 %  



bench vct/flt vcts. time [s] overhead impr. 
c3540 10 101 19.1 1.6 % 27 % 
 100 555 90.0 1.3 % 42 % 
c7552 1 106 1104.8 17.0 %  
 10 1206 16124.7 14.8 % 13 % 
s1196 1 55 5.5 11.1 %  
 10 259 109.0 7.8 % 30 % 
s1238 1 33 2.9 6.7 %  
 100 95 16.7 4.6 % 31 % 
s5378 1 19 7.7 1.5 %  
 100 258 181.5 0.9 % 40 % 
s9241.1 1 52 160.7 5.3 %  
 10 564 3508.6 4.9 % 10 % 

5. Experimental Results 

5.1. Comparison with Other State-of-the-Art 
Methods 

The proposed column-catching method is compared 
with the bit-fixing accompanied by a “bit-correlating” 
ATPG [2], the “3-Weight Weighted Random BIST” 
proposed in [15] and the row matching method [3]. The 
comparison is shown in Table 5. The “TL”  columns 
indicate the total length of the test, the “GEs”  columns 
give the number of gate equivalents of the BIST 
combinational circuits and the “lit.” columns indicate the 
number of literals in the sum-of-product (SOP) form 
of the decoding logic. Test lengths have been set 
approximately equal. The empty cells indicate that the 
data for the respective circuit was not available. 

 
Table 5: Comparison results 

 Bit-fixing [2] Weighted BIST 
[15] 

Row 
matching [3] 

Column 
Matching 

Bench TL lit. TL lit. TL GEs TL GEs 
c880 - - - - 640 21 1 K 15 
c1355 - - - - 1.8 K 0 1.5 K 15 
c1908 - - - - 4.7 K 8 3 K 10.5 
c2670 10 K 385 8 K 269 6 K 119 5 K 113 
c3540 - - - - 4.8 K 4 5.5 K 1.5 
s420 10 K 59 1.4 K 67 - - 1 K 24.5 
s641 10 K 98 768 45 7.7 K 6 4 K 15 
s713 - - - - 4.8 K 4 5 K 16.5 
s838 10 K 183 3.1 K 108 - - 6 K 130 
s1196 10 K 97 16.8 K 67 10 K 36 10 K 6 
s1238 - - 17 K 33 - - 4 K 26.5 
s5378 10 K 332 18.4 K 68 - - 11 K 19.0 

5.2. Results for Standard Benchmarks 

Since the comparison shown in Table 5 describes 
results for a few small benchmark circuits only, we will 
present a more exhaustive result table (Table 6), for some 
of the “bigger” and hard to test ISCAS [11, 12] and 
ITC’99 [17] benchmarks. The BIST circuitry was 
synthesized in two modes for each benchmark – first, the 

test length was set to be relatively small (the white rows). 
In the second mode a big effort has been put to obtain low 
area overhead in a reasonable time. The test is prolonged 
and some improvement techniques are sometimes used. 
This is indicated in the “method” column. The legend 
to the values is below the table. The “inps”  column 
indicates the number of the benchmark inputs, the “TL”  
column gives the lengths of the two phases. The next 
column shows the total number of column matches (M) 
reached. The complexity of the switching logic is shown 
in the “SW GEs” column, the complexity of the output 
decoder in “OD GEs” . These numbers are summed 
together in the “Total GEs” column and the percentage of 
the area overhead of the Output Decoder and Switch, with 
respect to the CUT GEs is shown in the “BIST Overhead” 
column. The runtime needed to complete the column 
matching process is indicated in the last column. 

6. Conclusions 

A scalable mixed-mode BIST equipment design 
method based on a column-matching principle has been 
proposed. Pseudorandom LFSR code words are being 
transformed into deterministic test patterns. The 
transformation is being done by a purely combinational 
block; no additional registers are required. 

The pseudo-random and deterministic phases are 
separated, which enables to reach less area overhead 
of the control logic. The lengths of both phases may be 
freely adjusted to find a trade-off between the test time 
and area overhead. It has been shown that the length 
of the pseudo-random phase has a crucial impact on the 
result. The length of the deterministic phase influences 
the result as well, though not that significantly. 

A big scalability of the method, in terms of the area 
overhead, test time and design time is shown. A weighted 
pattern testing principle is used to reduce the LFSR width. 
Next, multiple-vector column-matching method reducing 
the area overhead is proposed. 

The algorithm should serve as a basic guideline how 
to design more complex BIST designs, i.e., the multiple-
scan chain based BIST, the STUMPS architecture, etc. 
The method should be as general, as the other state-of-
the-art methods are (e.g., bit-flipping, bit-fixing). The 
obtained results, in terms of the area overhead, are 
comparable to the other methods, sometimes they are 
significantly better. The method has been tested on 
standard benchmarks and the results were compared with 
other state-of-the-art methods. 

Acknowledgement 

This research has been supported by MSMT under 
research program MSM6840770014. 



References 
[1] H.J. Wunderlich and G. Keifer. Bit-Flipping BIST, Proc. 

International Conference on CAD-96 (ICCAD96), San Jose, 
California, November 1996, pp. 337-343 

[2] N.A. Touba and E.J. McCluskey. Bit-Fixing in 
Pseudorandom Sequences for Scan BIST, IEEE 
Transactions on CAD, Vol. 20, No. 4, 2001, pp. 545-555 

[3] M. Chatterjee and D.K. Pradhan. A BIST Pattern Generator 
Design for Near-Perfect Fault Coverage, IEEE Transactions 
on Computers, vol. 52, no. 12, Dec. 2003, pp. 1543-1558 

[4] R.K. Brayton, et al. Logic Minimization Algorithms for VLSI 
Synthesis, Boston, MA, Kluwer Academic Publishers, 1984 

[5] J. Hlavička and P. Fišer: BOOM - a Heuristic Boolean 
Minimizer. Proc. International Conference on Computer-
Aided Design ICCAD 2001, San Jose, California (USA), 4.-
8.11.2001, pp. 439-442 

[6] J. Hlavička and P. Fišer: BOOM - A Heuristic Boolean 
Minimizer, Computers and Informatics, Vol. 22, 2003, No. 
1, pp. 19-51 

[7] P. Fišer,  H. Kubátová and J. Hlavička: Column-Matching 
BIST Exploiting Test Don't-Cares“, Proc. 8th IEEE 
European Test Workshop, Maastricht, 2003, pp. 215-216 

[8] P. Fišer and  H. Kubátová: An Efficient Mixed-Mode BIST 
Technique, Proc. 7th IEEE Design and Diagnostics of  
Electronic Circuits and Systems Workshop 2004, Tatranská 
Lomnica, SK, 18.-21.4.2004, pp. 227-230 

[9] C. Fagot, O. Gascuel, P. Girard, C. Landrault: On calculating 
efficient LFSR seeds for built-in self test; Proc. IEEE 

European Test Workshop 1999 (ETW'99), Constance, 
Germany, 1999, pp. 7-14 

[10] S. Hellebrand, H.-J. Wunderlich, A. Hertwig: Mixed-Mode 
BIST Using Embedded Processors; Journal of Electronic 
Testing Theory and Applications (JETTA), Vol. 12, Nos. 
1/2, February/April 1998, pp. 127-138 

[11] F. Brglez and H. Fujiwara, „A Neutral Netlist of 10 
Combinational Benchmark Circuits and a Target Translator 
in Fortan“, Proc. of ISCAS 1985, pp. 663-698 

[12] F. Brglez, D. Bryan and K. Kozminski, „Combinational 
Profiles of Sequential Benchmark Circuits“, Proc. of ISCAS, 
pp. 1929-1934, 1989 

[13] G. De Micheli, “Synthesis and Optimization of Digital 
Circuits”, McGraw-Hill, 1994 

[14] H.J. Wunderlich, „Self Test Using Unequiprobable 
Random Patterns“, International Symposium on Fault-
Tolerant Computing, 1987 

[15] S. Wang. Low Hardware Overhead Scan Based 3-Weight 
Weighted Random BIST. In Proceedings of the 2001 IEEE 
international Test Conference (October 30 - November 01, 
2001). ITC. IEEE Computer Society, Washington, DC, 868. 

[16] H.K. Lee and D.S. Ha. Atalanta: an Efficient ATPG for 
Combinational Circuits. Technical Report, 93-12, Dep't of 
Electrical Eng., Virginia Polytechnic Institute and State 
University, Blacksburg, Virginia, 199 

[17] F. Corno, M. Sonza Reorda and G. Squillero, “RT-Level 
ITC 99 Benchmarks and First ATPG Results”. IEEE Design 
& Test of Computers, July-August 2000, pp. 44-53 

 
 

Table 6: Results for standard benchmarks 
Bench inps TL (PR + Det.) method M SW 

GEs 
OD 
GEs 

Total 
GEs 

BIST 
Overhead 

Time [s] 

c7552 207 7 K + 1 K  131 261 325 586 19 % 500 
  10 K + 1 K 2) 155 100 168.5 456.5 15% 887 
s713 54 500 + 500  52 24 3 27 8 % 0.56 
  3 K + 1 K  54 18 0 18 5 % 0.32 
s1196 32 2 K + 1 K  28 13.5 23.5 37 7 % 1.20 
  9 K + 1 K  32 6 0 6 1 % 0.04 
s9234 247 50 K + 1 K  208 163.5 156 319.5 8 % 350 
  200 K + 1 K 1) 225 127.5 66 193.5 5 % 3500 
s13207.1 700 1 K + 1 K  638 456 294 750 13 % 4000 
  50 K + 1 K  700 36 0 36 < 1 % 13 
s15850.1 611 10 K + 1 K  478 397.5 187 584.5 9 % 812 
  100 K + 2 K  553 306 66.5 372.5 5 % 1244 
s38417 1664 10 K + 1 K  1240 1365 1389.5 1389.5 17 % 24 K 
  100 K + 2 K 2) 1503 1245 489 1734 11 % 17 K 
s38584.1 1464 10 K + 1 K  1435 379.5 57.5 437 3 % 650 
  100 K + 1 K  1464 165 0 165 1 % 34 
b12 126 1 K + 1 K  117 37.5 45 82.5 9 % 40 
  10 K + 1 K 1) 118 33 34 67 7 % 1080 
b14 277 1 M / 2 K  84 318 8017 8335 141 % 170 K 
  100 M / 1 K  90 328.5 2663.5 3319.5 56 % 100 K 

 
1) 10 vectors per fault 
2) 3-weights 


