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Czech Technical University in Prague
{schmidt,fiserp}@fit.cvut.cz

ddd.fit.cvut.cz

Abstract. The problem is to design a nonlinear code for test vectors
expander, with the requirement of all r-tuples possible in the output.
We formulated the problem as a clique cover problem. The instances of
the problem have a high degree of symmetry, which offers the possibility
of analytical solution or better heuristic construction. To benefit from
the degrees of freedom in the problem, assigning expander inputs to the
produced vectors has been identified as an multi-valued (MV) variable
encoding problem.
Experimental evaluation shows that good MV encoding is important
for small r. Instances up to n = 32 and r = 6 were solved, with the
resulting expander widths i mostly equal to or better than existing solu-
tions. For the synthesis of the expanders, both the classical minimization-
decomposition and resynthesis approaches can be used. The produced
circuits were larger than corresponding linear expanders.

Keywords: Test compression · Nonlinear code.

1 Introduction

When a digital device is tested, one of the problems is to deliver test stimuli
economically. Suppose the device is equipped with n scan chains. Then, the n-
bit test vectors must be delivered from outside (from a tester), or generated
internally.

A substantial help comes from the fact that test stimuli have large redun-
dancy [1], and can be efficiently compressed. Two major test delivery architec-
tures employ this fact.

The first approach uses a vector stream with the same number of vectors but
with minimum redundancy (and therefore with minimum width). The stream is
then processed by a combinational circuit often called combinational expander
or combinational decompressor. Generally, there are no additional requirements
on the Boolean functions the expander performs, except to deliver the required
vectors.

Another approach is to let an FSM generate the required vectors, or their
superset. For this to work, the set of vectors must have certain properties, e.g.,
to be a subset of a linear space. Many FSM classes have been used for this
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purpose, mostly an LSFR, but also Cellular Automata (CA) [10], or Registers
with Non-Linear Update (RNLUs) [6]. Such methods are characteristic for Built-
In Self-Test (BIST) applications. In all these cases, the properties of the FSM
transition function are of concern.

These two approaches are just extremes of a broad spectrum; combined meth-
ods such as reseeding [5], bit-flipping [16], bit-fixing [15, 14], Embedded Deter-
ministic Test [12], etc., are numerous. As they have state, they are commonly
called sequential decoders.

The compression scheme can be either application-dependent, or universal
for a class of applications with the same number of scan chains and (approxi-
mately) the same redundancy in their test sets. The former is undesirable, as
the construction of a good compression scheme can be demanding. A class of
applications can be specified by

– the number n of scan chains, and
– the requirement that r bits can be set to arbitrary values in each expanded

vector.

In the contribution, we will limit ourselves to combinational expanders specified
by the above requirements. An example test scenario is shown in Figure 1. Here
compressed test patterns are stored in the tester device (ATE) with i channels.
These patterns are then decompressed on-chip to be fed to n (n > i) scan chains
of the Circuit under Test (CUT). Responses to these patterns are then evaluated
(typically also on-chip).

Kim and Mitra [8] brought the idea that introducing redundancy corresponds
to encoding a symbol in an error-correcting code. They showed that linear codes,
such as BCH codes, are effective for this purpose, and that the r-bit requirement
can be translated to a Hamming distance requirement for the dual code. This
way, expanders can be easily constructed using existing code tables. They list
compressed vector lengths i that can satisfy the r-bit requirement in n scan
chains, using an undisclosed linear code for r = 3 or BCH codes for 4 ≤ r ≤ 8,
or Reed-Solomon codes for large n in the case of identified clusters in the test
vectors.

An extension to codes other than linear is obvious. It gives much more free-
dom to choose the expander function, but such freedom also translates to much
bigger search space. Moreover, there is not such a wealth of existing knowledge
as in the case of linear codes. And, last but not least, nonlinear codes that are
efficient for error corrections are not guaranteed to be efficient for test vector
expansion.

Many efforts come from the BIST domain. Dutta and Touba [3] limit the
search space by considering only a limited class of circuits. Novák [9] extends
linear codes by non-linear expander outputs. The stochastic search over the
complete search space in [11] brought functions that are remarkably efficient. The
authors generate a truth table randomly under certain stochastic requirements,
and then check the r-bit requirement. Functions for larger r are then composed.

These researches seem to state that “with i tester channels and the r-bit re-
quirement, my code can accommodate up to n scan chains”. We believe that the
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Fig. 1: An example test scenario for three ATE channels and six scan-chains

question in design time is rather “with n scan chains and the r-bit requirement,
what is the minimum number i of tester channels?”. While the optimization task
is the same, the difference must be regarded when comparing.

Definition 1 (Expander Function). Given integers i, n, r, where r < n and
i < n, an expander function is a function fi,n,r : {0, 1}i → {0, 1}n, such that, for
all ordered r-tuples P of positions from [0, n] and for all valuations V ∈ {0, 1}r
of these positions, there exist a vector x ∈ {0, 1}i such that the vector fi,n,r(x)
has the values V at positions P .

Definition 2 (Expander minimization). Given integers n, r, r < n, find an
integer i such that there exists an expander function fi,n,r.

In the proposed approach, we formulate all requirements to the expander func-
tion first. Any function that satisfies the requirements is therefore a correct
solution. Then, we use synthesis tools to get an optimized implementation of the
expander.

The paper is organized as follows. In Section 2 we formulate the problem as
a Clique Cover Problem, followed by multivalued variable encoding, and logic
synthesis. We analyze instance properties in Section 2.2 and outline a simple
heuristic in Section 2.3. The concrete methods used and their results are de-
scribed in Section 3. We outline results we hope for in Section 4.

2 Proposed approach

We specify all outputs the expander must produce as the output part of its
(incompletely specified) function. Then, we are free to construct any input part
to optimize the circuit, without affecting the correctness of function. Last, we
synthesize the circuit.
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2.1 Expander outputs as a clique cover problem

We construct requirements (or constraints) on the expander first. The r-bit re-
quirement tells us that, for every r-tuple of the n expander outputs, all 2r com-
binations of binary values must be present for at least one input value. Such
constraint can be expressed as 2r cubes of dimension n − r, called requirement
cubes. The collection of all such cubes completely specifies the output of the
expander as the set of output cubes of its expander function. Formally,

Definition 3 (Requirements Cube). Given integers n, r, where r < n, an
ordered r-tuple P of positions from [0, n], a valuations V ∈ {0, 1}r of these
positions, a requirement cube ρP,V for P and V is a subset ρP,V ⊂ {0, 1}n,
obtained from {0, 1}n by setting values from V in dimensions given by P . It is
therefore a cube of dimension n− r.

During the operation of the expander, we do not need to distinguish between
all requirement cubes. For every valuation of every r-tuple, there must be an
input to the expander that produces those values at the output. Therefore, cubes
that intersect can be replaced by their intersection. The reduced number of
distinguished outputs saves the resulting expander width.

Understanding the intersection as compatibility, we can construct a compat-
ibility graph and then treat it as a covering problem. All compatible cubes form
a clique. As the intersection of two cubes is a cube, each clique is also character-
ized by a cube. Any clique cover of the graph is a valid set of all output vectors
of the expander function. The input width i is the logarithm of the number of
output vectors, and does not depend on further optimizations. Therefore, we
seek a minimum cover. Figure 2 shows a rather small example.

To obtain the Boolean function of the expander, it is sufficient to number
the cubes, and encode the numbers in any way. Then, the encoded numbers
will form the input part of incomplete function specification, and the cubes the
output part. Technically, this is a PLA-format specification, as defined by two-
level minimizers [13].

2.2 Compatibility graph properties

By construction, the compatibility graph has

NR =

(
n

r

)
.2r (1)

nodes.
Let c be any cube of dimension 0, that is, completely specified. It is a clique,

because we can find requirement cubes whose intersection is exactly c. Therefore,
we have NC = 2n such cliques. The number of cubes that have the specified
variables the same as the clique c, and hence the clique size, is SC =

(
n
r

)
.

Let R be the set of all requirement cubes and let ρ ∈ R be a requirement cube.
Now let us count other compatible request cubes. By construction, ρ contains r
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Fig. 2: The compatibility graph for n = 4 and r = 2

care bits. To be compatible, a cube must contain either the same values or don’t
cares at those places. Let us choose j places of ρ. We have

(
n
r

)
possibilities. As

the compatible cube must have r care places, there are
(
n−r
r−j

)
possibilities for

the positions of the remaining r − j care bits. As each of them may be 0 or 1,
we finally get the number of cubes compatible with any given cube as

NCOMPAT =

r−1∑
j=0

(
r

j

)(
n− r
r − j

)
2r−j (2)

Given an r-tuple of positions in the cube and their values, by construction there
is another cube with the same positions but inverted values. This leads to the
following:

Definition 4. Let c be a cube. Then inv(c) is a cube obtained from c by inverting
all care values.
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Definition 5. Let c be a cube in Bn and let P be a permutation of the sequence
1 . . .n. Then perm(c, P ) is a cube obtained from c by permuting all positions of
c according to P .

Definition 6. Let C be a set of cubes. Then inv(C) is a set of cubes {∀c ∈ C :
inv(c)}.

Definition 7. Let C be a set of cubes in {0, 1}n and let P be a permutation of
the sequence 1 . . .n. Then Cperm(C,P ) is a set of cubes {∀c ∈ C : perm(c, P )}.

Theorem 1. Let R be a set of all requirement cubes for given n and r. If a set
of cubes C covers (resp. does not cover) R, then so does inv(C) and perm(C,P ),
∀P .

The proof follows from the facts that 0 and 1 are treated the same (their or-
dering is immaterial) and also, that the numbering of positions is immaterial.
Furthermore,

Theorem 2. ∀C,P : inv(perm(C,P )) = perm(inv(C), P ).

Therefore,

Theorem 3. Let R be a set of all requirement cubes for given n and r. Then,
for any set of cubes C, {C, inv(C),∀P : perm(C,P ),∀P : perm(inv(C), P )} is
an equivalence class with respect to covering R.

Equation 2 and Theorem 3 state that the problem is highly regular and symmet-
ric, which gives some hope to find either the minimum clique cover size NOPT

analytically in the future, or to use Theorem 3 to prune a search efficiently.
In Figure 2, there are NR = 24 requirement cubes. Each of the cubes is

compatible with NCOMPAT = 12 other cubes. There are 16 distinct minimum
covers with NOPT = 5 and hence i = 3. These solutions form 3 classes of
equivalence.

2.3 Techniques for Minimum Clique Cover

Very small instances can be solved by brute force, which can give some insight
into the problem. Because we know that the covers are not large for small in-
stances, we constructed Algorithm 1 which tries to construct a cover of a given
size s. Furthermore, it uses only cubes of size n (that is, completely defined) for
the cover.

As Eq. 1 shows, compatibility graphs tend to be large even for small n and
r. Therefore, we sought a way to get the clique cover without storing require-
ment cubes explicitly, in an on-line fashion. This of course does not guarantee
optimality, as it is a sort of greedy technique. The procedure can be outlined
as Algorithm 2. Notice that this is still a kind of meta-algorithm: the order of
tuple selection in Line 2 and values selection in Line 3 is not defined. Also, the
algorithm is satisfied with the first candidate clique that covers a given cube
(Line 7).
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Algorithm 1 Cube generation and exact clique cover

Input: n, r, s . s is the tried cover size
Output: A set {C} of all clique covers C
1: Let R be an empty set of requirement cubes.
2: for all ordered r-tuples PR from 1 . . . n do
3: for all V ∈ Bn do
4: construct a cube q having values from V at places PR and dont’cares

otherwise.
5: insert q into R.
6: end for
7: end for
8: Let {C} be an empty set of covers.
9: for all ordered s-tuples PC from 1 . . . 2n do

10: let C be an empty cover.
11: for all members p of PC do
12: construct a cube c from the binary representation of p
13: insert c into C
14: end for
15: if C covers R then
16: insert C into {C}.
17: end if
18: end for

Algorithm 2 Cube generation and greedy clique cover

Input: n, r
Output: A clique cover C.
1: Let C be empty.
2: for all ordered r-tuples P from 1 . . . n do . in some order
3: for all V ∈ Bn do . in some order
4: construct a cube q having values from V at places P and dont’cares

otherwise
5: for all cubes c ∈ C do
6: if c is compatible with q then
7: replace c with c ∩ q
8: break
9: end if

10: end for
11: if q still uncovered then
12: insert q into C
13: end if
14: end for
15: end for
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2.4 Expander input as an MV-encoding problem

Once we have the output part of the two-level specification of the expander
function, we are free to choose a distinct input pattern for each of the output
cubes. From the possible 2i values, only NOPT are used. By the construction of
i, 2i−1 < NOPT ≤ 2i. It means that up to a half of the values are unused.

We can treat the expander inputs as a multi-valued (MV), symbolic variable.
Then the problem is how to encode it to produce minimum circuit. At a first
glance, this is similar to the opcode encoding or state encoding problem [13]. The
difference, especially from the state encoding problem, is that here the variable
is an external input variable. Available encoding algorithms cannot benefit from
the degree of freedom. Nevertheless, the constraints from such encoders can be
used in a specialized algorithm.

2.5 Method summary

Given the encoder specification, the expander can be synthesized. Starting the
synthesis by a two-level description, which does not suggest circuit structure,
is unusual in contemporary practice (cf. [4]). In this situation, the classical
minimization-decomposition approach, e.g, using BDS [17], seems worth con-
sideration. However, any contemporary logic optimization tool accepting such
description at its input can be used, e.g. ABC [2].

Our method can be outlined as Algorithm 3. An example description obtained
in Steps 10 and 11 is in Figure 3.

Algorithm 3 Method overview

1: For every value of every r-tuple in an n bit vector, construct a requirement cube
Ri stating that those values are output, and nothing else.

2: Construct a compatibility graph G(R,E), such that R is the set of all requirement
cubes and there is an edge between requirements cubes R1 and R2 iff they intersect.

3: Solve Minimum Clique Cover on G. Let the number of cliques be NOPT .
4: The necessary input width is i = dlog2NOPT e.
5: Collect all clique cubes as the output part of the two-level description.
6: if MV optimization is available: then

7:
Choose NOPT distinct symbolic values for the left-hand side, providing an MV
description.

8: Perform MV minimization and encoding on the MV description.
9: else

10:
Choose NOPT distinct binary combinations for the input part, providing a
two-level description.

11: Perform minimization on the two-level.
12: end if
13: Synthesize the resulting two-level description by any method, possibly technology-

dependent.
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0000 0000000000

0001 0000111110

0010 1111000001

0011 1111111111

0100 0110000111

0101 1001111000
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(a) as generated by Algorithm 2

1--0 0000001001

1--1 0100100000

00-1 0000111110

-100 0110000111
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-110 0101010011

-01- 1111000001

--11 1010101100

(b) after minimization

Fig. 3: two-level description of an n = 10, r = 2 expander

3 Results

With the techniques described above, we solved instances up to n = 32 and
r = 6. Besides the comparison of the resulting widths, we also investigated the
importance of good MV encoding, synthesis approaches and expander circuits
properties.

3.1 Implementation

Algorithms 2 and 1 have been implemented as a sequential C++ program and
run on an office machine (Intel i7, 8 cores at 3GHz, SUSE Linux). The ordering
in Line 2 of Algorithm 2 has been implemented as ordered random sampling
([7], p. 166). The ordering in Line 3 is systematic. A variant of the algorithm,
which found a cube c maximally intersecting p (Line 7) has been tested with no
improvement.

To illustrate the influence of randomization, Algorithm 2 has been run 500
times for n = 20 and r = 4. The resulting histogram is in Figure 4. Random
selection does have an influence on the obtained suboptimum cover size NSUB ,
however, it is unlikely that the differences cause a difference in i.

3.2 Resulting codes

Table 1 comapres Algorithms 1 and 2. We can see that the heuristic operates
within 150% of the optimum cover size. The number of solutions and classes
differ wildly, indicating that the characters of the instances also differ. It seems
that the gap between greedy and exact solutions closes with larger instances.

Table 2 summarizes instances and results obtained from Algorithm 2. Al-
though instance parameters show that the element counts grow rapidly, clique
cover sizes remain relatively small.

Table 3 contains expander widths i reported by various authors in comparison
to results of Algorithm 2. The table is limited to comparable values of n and r,
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Fig. 4: NSUB frequencies in 500 runs of Algorithm 2 for n = 20 and r = 4

Table 1: Exact and heuristic solutions of small instances
Exact Heuristic

n r i NOPT number of number of i NSUB

solutions classes

4 2 3 5 16 3 3 6
4 3 3 8 2 2 4 12
5 2 3 6 2896 36 3 8
5 3 4 10 16 3 4 15
6 2 3 7 2080192 1958 3 8
7 2 3 8 2845462 – 3 8

Table 2: Instance properties, resulting widths i and achieved cover sizes NSUB

from Algorithm 2
n r NR SC i NSUB n r NR SC i NSUB

10 2 180 45 4 10 28 2 1512 378 4 14
10 3 960 120 5 21 28 3 26208 3276 6 35
10 4 3360 210 6 52 28 4 327600 20475 7 92
10 5 8064 252 7 118 28 5 3144960 98280 8 231
10 6 13440 210 8 215 28 6 24111360 376740 10 569
16 2 480 120 4 12 30 2 1740 435 4 14
16 3 4480 560 5 27 30 3 32480 4060 6 37
16 4 29120 1820 7 69 30 4 438480 27405 7 97
16 5 139776 4368 8 165 30 5 4560192 142506 8 244
16 6 512512 8008 9 365 30 6 38001600 593775 10 596
20 2 760 190 4 12 32 2 1984 496 4 14
20 3 9120 1140 5 30 32 3 39680 4960 6 37
20 4 77520 4845 7 74 32 4 575360 35960 7 98
20 5 496128 15504 8 194 32 5 6444032 201376 8 248
20 6 2480640 38760 9 443
24 2 1104 276 4 14
24 3 16192 2024 6 34
24 4 170016 10626 7 84
24 5 1360128 42504 8 211
24 6 8614144 134596 10 513
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so that results in the practical range of n in the hundreds are not included. The
presented algorithms, due to combinatorial explosion, will never be able to work
in that range.

The results in [11] seem to form two groups: one with n above 40, and the
other group below. The proposed algorithm is able to match the second group.
It also outperforms linear BCH codes, and optimum linear codes for larger n.

Table 3: Expander widths comparison
width for code width for code

n r linear BCH NBC1 NBC2 proposed n r linear BCH NBC1 NBC2 proposed
[11] [8] [8] [11] [11] [11] [8] [8] [11] [11]

8 3 4 5 12 5 8 8
12 3 4 5 13 5 7 8
16 3 5 5 18 5 8 8
32 3 6 6 24 5 10 8 8
8 4 6 5 11 6 9 8

10 4 7 6 13 6 9 9
13 4 8 6 16 6 9 9
14 4 6 6 6 17 6 10 9
18 4 6 6 7 32 4 12 7
9 5 7 7 32 5 18 8

10 5 7 7 32 6 18 15

3.3 Is optimum MV encoding important?

We have found no way to use MV optimizers to design compressed test encoding,
that is, the input part of the two-level description. For the optimizers, the sym-
bolic input part is an external, given information. To estimate how important
the encoding is, we arranged the following experiment.

For every code obtained by Algorithm 2, 500 random input parts were gen-
erated randomly. Each two-level description was optimized by Espresso [13].
The resulting minimized descriptions were characterized by the total number of
literals. Statistical characterization of the result is in Table 4.

The expected result is that the size of the encoder depends on input encoding.
This happens, at least in some cases – in the case of n = 10 and r = 2, the
difference between the worst and the best result spans 66% of the median. The
surprising fact is that this influence rapidly diminishes with increasing r. There
is a strong correlation of −0.9. No other such correlation has been found. It is
true that the cover does not use all 2i values, and that the number of unused
values differs from instance to instance. Yet the spread does not correlate with
that at all (less than 0.1).
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Table 4: Number of literals after minimization, random encodings. m is the
median of the distribution, and ∆ is the difference between max and min
n r min m max σ/m ∆/m n r min m max σ/m ∆/m

10 2 35 57 73 0.07 0.667 28 2 134 182 216 0.047 0.451
10 3 114 153 178 0.052 0.418 28 3 508 564 606 0.013 0.174
10 4 339 412 501 0.041 0.393 28 4 1637 1738 1773 0.009 0.078
10 5 946 1063 1272 0.026 0.307 28 5 4747 4851 4892 0.003 0.03
10 6 1870 2040 2408 0.017 0.264 28 6 12169 12293 12390 0.002 0.018

16 2 68 100 119 0.05 0.51 30 2 132 193 228 0.028 0.497
16 3 247 298 325 0.023 0.262 30 3 579 662 697 0.021 0.178
16 4 723 845 889 0.017 0.196 30 4 1834 1951 2002 0.009 0.086
16 5 1987 2251 2323 0.009 0.149 30 5 5244 5398 5465 0.004 0.041
16 6 5333 5474 5594 0.005 0.048 30 6 13331 13474 13574 0.002 0.018

20 3 329 385 413 0.019 0.218 32 3 620 704 738 0.015 0.168
20 4 1018 1090 1112 0.008 0.086 32 4 1988 2090 2128 0.007 0.067
20 5 3043 3176 3242 0.006 0.063 32 5 5666 5787 5850 0.003 0.032
20 6 7748 7882 7970 0.003 0.028

24 3 428 497 529 0.025 0.203
24 4 1314 1412 1452 0.009 0.098
24 5 3852 3954 4002 0.004 0.038
24 6 9791 9929 10004 0.002 0.021

3.4 Expander synthesis

The starting point of the synthesis is a two-level description, which is unusual.
We therefore chose two alternative approaches to synthesis. The first one is
classical; minimization with Espresso [13] followed by decomposition with BDS
[17]. The other approach uses only ABC [2] with a rather high effort. The script
in Algorithm 4 is iterative as recommended by the authors of ABC. Nevertheless,
we tried to combine both approaches and use ABC with the same script as a
post-optimizer for Espresso/BDS.

Algorithm 4 Expander synthesis using ABC

Input: in.pla: a two-level description of the expander
Output: out.blif: Optimized BLIF description of the expander
1: read pla in.pla; &get -n . convert into the GIA structure
2: for 20 times do
3: &st; &synch2; &if -m -a -K 2; &mfs -W 10;
4: &st; &dch; &if -m -a -K 2; &mfs -W 10
5: end for
6: &put; write blif out.blif

The comparison of the two synthesis approaches shows that although the
decomposition approach performance is acceptable, iterated synthesis can pro-
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vide yet better results. It does not suffer from the absence of structure, which
means, that it is able to discover circuit structure independently. ABC as a post-
optimizer improves the results of the classical approach considerably, achieving
the best results from the three alternatives.
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Fig. 5: Gate counts frequencies with random encoding, normalized to median

The synthesis results obtained with random encoding corroborate Section 3.3
in the sense that, the influence of encoding decreases with growing r. As Figure 5
illustrates, this holds also for increasing n to some degree.

The resulting gate counts in Table 5 indicate that, with current methods,
the improved expander width is paid for by expander size. To illustrate, a small
experiment for n = 15 and r = 4 is presented in Table 6. A linear expander using
the BCH(4,2) code has been synthesized with Espresso and BDS. A nonlinear
expander has been generated using Algorithm 2 and binary input encoding. The
synthesis flow was the same. Although the BCH(4,2) code is not optimal, the
expander is considerably smaller.

4 Future directions

The main hope of this work is to gain knowledge about the problem. As Equa-
tion 2 and Theorem 3 indicate high degree of symmetry in all instances, we
hope that the problem is not so difficult as the numbers in Table 2 indicate. Any
NSUB gives a lower bound for encoder width. To find NOPT analytically would
enable us to judge optimality of any code. Another potential benefit of the high
symmetry could result in better construction algorithm.
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Table 5: Expander implementations, gate counts with random encoding
n r ABC Espresso, BDS Espresso, BDS, ABC

min median max min median max min median max

10 2 22 33 49 16 40 69 15 28 48
10 3 69 94 126 74 111 145 59 84 115
10 4 188 228 276 212 260 307 167 207 244
10 5 441 492 552 488 550 610 403 448 495
10 6 889 972 1046 978 1071 1171 792 876 952

16 2 36 50 73 35 69 101 30 48 70
16 3 128 159 194 149 189 232 119 148 177
16 4 498 588 662 643 735 823 497 576 655
16 5 1214 1309 1403 1472 1568 1690 1180 1267 1361
16 6 2625 2770 2907 3057 3201 3374 2471 2592 2726

20 2 39 58 82 45 84 122 36 58 83
20 3 168 198 239 194 234 276 151 183 213
20 4 650 738 817 823 924 1014 654 726 808
20 5 1612 1736 1830 1883 1989 2125 1533 1614 1708
20 6 3572 3700 3854 3888 4044 4226 3168 3276 3419

24 2 52 72 101 56 102 138 47 72 96
24 3 290 355 431 401 492 572 305 360 428
24 4 816 917 1010 1041 1127 1223 815 894 976
24 5 1984 2104 2220 2277 2376 2506 1841 1939 2028
24 6 6427 6645 6848 8065 8360 8702 6335 6570 6866

28 2 58 88 113 77 123 158 59 88 115
28 3 340 408 493 458 567 667 334 414 490
28 4 1001 1092 1195 1234 1323 1420 971 1062 1136
28 5 2387 2512 2615 2659 2772 2904 2154 2256 2372
28 6 7837 8109 8335 9623 9900 10206 7587 7848 8103

30 2 64 92 122 82 132 168 64 92 120
30 3 386 462 541 530 623 717 366 462 549
30 4 1098 1197 1291 1326 1421 1522 1066 1140 1220
30 5 2604 2718 2852 2842 2970 3127 2310 2408 2517
30 6 8602 8848 9074 10404 10700 11003 8136 8480 8729

32 2 65 94 122 88 138 173 61 96 123
32 3 399 486 574 538 656 748 401 486 559
32 4 1172 1274 1368 1412 1520 1625 1136 1212 1306
32 5 2811 2912 3028 3029 3150 3280 2457 2552 2668

Table 6: A comparison of a linear and a nonlinear expander for n = 15 and r = 4
BCH(4,2) proposed

width i 8 7
literals 108 807
gates 27 329
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5 Conclusions

The problem to design a nonlinear code for a test vectors expander, with the
requirement of all r-tuples possible in the output, has been formulated as a
clique cover problem. The instances of the problem are large but have a high
degree of symmetry, which seems to offer the possibility of analytical solution
or better heuristic construction. To benefit from the degrees of freedom in the
problem, assigning expander inputs to the produced vectors has been identified
as an multi-valued (MV) variable encoding problem.

Experimental evaluation shows that good MV encoding is important for small
r. For small instances up to n = 6 and r = 2, the sets of all minimum size
covers were obtained using brute force. Instances up to n = 32 and r = 6 were
solved heuristically, with the resulting expander widths i mostly equal to, and
sometimes better than existing solutions. For the synthesis of the expanders,
both the classical minimization-decomposition and resynthesis approaches can
be used. The produced circuits were larger than corresponding linear expanders.
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