
On Using Permutation of Variables to Improve the

Iterative Power of Resynthesis

Petr Fiser, Jan Schmidt

Faculty of Information Technology, Czech Technical University in Prague

fiserp@fit.cvut.cz, schmidt@fit.cvut.cz

Abstract

Recently we have observed, that behavior of many contemporary logic synthesis and

optimization processes depends on variable ordering in their input; they produce different results

for different variable orderings. This fact can be exploited to escape local optima in the iterative

resynthesis process, where individual synthesis and optimization steps are run repeatedly, in order

to gradually improve the solution quality.

In this paper we show an experimental analysis of influence of variable ordering on the result

quality, for different synthesis steps in ABC. Next, we present a method of using random

permutations of variables in the overall iterative synthesis process, in order to improve the result

quality. Experimental evaluation using both standard benchmarks and industrial circuits is

presented, to show the viability of the concept.

1 Introduction

Basic principles of logic synthesis of Boolean networks have been established already in 1960’s. The

synthesis consists of two subsequent steps: the technology independent optimization and technology

mapping.

The technology independent optimization starts from the initial circuit description

(sum-of-products, truth table, multi-level network) and tries to generate a minimum multilevel circuit

description, such as a factored form [5], And Inverter Graph (AIG) [6], [7] or a network of BDDs [8],

[9]. Then the technology mapping follows [10]-[13].

The synthesis process, where the forms of its input and output are the same (Boolean networks,

AIGs), is called resynthesis [14]. Thus, by resynthesis we understand a process modifying the circuit

in some way, while keeping the format of its description.

The academic state-of-the-art logic synthesis tool is ABC [15] from Berkeley, a successor of SIS

[16] and MVSIS [17]. Individual resynthesis processes in SIS and ABC are represented by commands.

Since the number of available resynthesis processes is large (e.g. don’t care based node simplification

[18], rewriting, refactoring, resubstitution [7], [14], [19], etc.), it is difficult to determine a universal

sequence of these commands leading to optimum results. Thus, different synthesis scripts were

proposed (e.g. “script.rugged” and “script.algebraic” in SIS, “resyn” scripts,

“choice”, and “dch” in ABC). These scripts are supposed to produce satisfactory results.

The resynthesis process may be iterated, to further improve the results. Iteration of resynthesis was

proposed in ABC [15], too. Authors of ABC suggest repeating the sequence of the technology

independent optimization (e.g. the “choice” script) followed by technology mapping several times.

Also the synthesis process of SIS may be efficiently iterated. The necessary condition for using

iteration is that the network structure must not be completely destroyed in the process, e.g.,

by collapsing it into a two-level form or turning it into a global BDD [8], [9]. Then all the effort made

in previous iteration would be in vain. Fortunately this is not the case of the mentioned synthesis

scripts.

Even though iteration is not too positively accepted by industry for longer runtimes imposed, it can

be advantageously exploited in specific designs, like the low-power or low-area ones. Next, iteration

may show the complexity upper bounds. By this, efficiency of any synthesis processes can be judged.

In a typical iterative resynthesis, the result quality (size, delay) gradually improves in time, until it

converges to a stable solution. In an ideal case it reaches the global optimum. However, the process

usually quickly converges to a local optimum, which is sometimes far from the global one (see

Subsection 4.3). Thus, introducing some kind of diversification, as known in other iterative

optimization processes [20], [21], could be beneficial.

Most of synthesis processes in ABC are greedy and not systematic. Thus, they use some heuristic

function to guide the search for the solution. Even though the heuristic is usually deterministic, there

often are more equally valued choices. In such situations, the first occurrence is taken. Note that these

choices are equally valued just at the point of decision and they will most likely influence the

subsequent decisions. Therefore, they can produce different results.

We have realized that many of these processes are also not immune to variable ordering of the

source function (source file). Therefore, different runs of one process with different variable ordering

produce different results. We take an advantage of this, in order to diversify the search for the solution.

A method of using random permutations of input and output variables is proposed in this paper.

The order of variables is randomly changed at the beginning of each iteration. Thus, randomness is

painlessly introduced into the process.

We have run extensive experiments both on standard academic benchmark circuits [22], [23] and

industrial designs from OpenCores [24]. We have reached positive average improvements, both in area

and delay, for any number of iterations the synthesis was run for.

A similar approach, where randomness was introduced “from outside”, was published in [25] and

[26]. Here randomly extracted large parts of the circuit are synthesized separately, in an iterative way,

too. We must admit that the method presented in this paper is inferior to [26], in terms of the result

quality. This is obvious, since the method based on variable permutations is theoretically a subset

of [26]. However, extraction of the parts involves some computational overhead. Since the random

permutations are made in time linear with the number of variables, no noticeable time overhead is

involved. Therefore, the main message of this paper is to document that using random permutations

always pays off.

2 Discussion on Variable Ordering

Many logic synthesis and optimization processes are sensitive to the ordering of variables in the source

function (network) description. Here we discuss possible reasons for it. Experimental results will be

presented in Section 4.1.

Typically, variables are processed in a lexicographical order, which is defined a-priori, usually

by their order in the source file. Then, different variables orders may induce heuristic algorithms run

differently, possibly producing different (but definitely correct) results.

A typical and well known example of such a behavior are BDDs [8], [9]. Here the variable ordering

is essential; the BDD size may explode exponentially with a “bad” variable ordering [9]. Computing

the optimum variable ordering is NP-hard itself, thus infeasible in practice. Even though there are

efficient heuristics for determining a possibly good variable ordering [27], they consume some time,

whereas do not guarantee any success, and thus they are usually not employed in practice. Typically,

the default variable ordering in the BDD manipulation package CUDD [28] (which is used in SIS and

ABC, too) is just equal to the variable ordering in the source file.

Most of ABC algorithms are based on processing AIGs [6], [7]. Usually, the AIGs are traversed

deterministically, in topological order [7], [19]. But still, there remains some freedom in choosing the

order which will be the nodes processed in, since there usually are more nodes in each topological

level. In ABC, nodes with the lowest ID (which is determined by the node creation instant) are

processed first. Even the nodes creation order may influence the size and topology of the resulting

AIG, which affects all the subsequent processes.

Also the well-known two-level Boolean minimizer Espresso [29] (which is used both in SIS and

ABC) is sensitive to variable ordering. There are many essential parts of the overall algorithm, where

decisions are made in a lexicographical way. Some decisions do not influence the result quality; they

just may influence the runtime (e.g., in the tautology checking process [29]), some do influence the

result as well (e.g., the Irredundant phase [29]).

Keeping this in mind, all these algorithms that claim to be deterministic are not deterministic at all,

actually. The initial variable ordering shall be considered as random as any other random ordering. But

anyway, the algorithms should be designed to succeed under any ordering. Therefore, introducing

random ordering to the synthesis process should not make the process perform worse. Conversely, it

could help us escape local minima. From the search space point of view, the global optimum is

approached from different sides.

3 The Proposed Method

The state-of-the-art iterative process, as used in ABC [15], can be described as follows: first, the

internal description (SOP, AIG, Boolean network, network of BDDs, etc.) for the technology

independent optimization is generated from the initial description or the mapped network. Then the

technology independent optimization, followed by technology mapping is performed. The process is

repeated (iterated), until a stopping condition (number of iterations, result quality, timeout) is satisfied

(see Figure 1:).

do {

 generate_internal_representation

technology_independent_optimization

 technology_mapping

} while (!stop)

Figure 1: The iterative resynthesis

Assuming that each iteration does not deteriorate the solution, the solution quality improves

in time. This needs not be true in practice, however. For such cases several options are possible:

1) to hope that the overall process will “recover” from small deteriorations,

2) to accept only improving (non-deteriorating) changes,

3) to record the best solution ever obtained and return it as the final result,

4) combination of 1) and 3).

The first and the last option are usually used in practice.

For the purpose of this paper, we offer just a slight modification of the algorithm from Figure 1:

do {

 randomly_permute_variables

generate_internal_representation

technology_independent_optimization

 technology_mapping

} while (!stop)

Figure 2: The iterative resynthesis with random permutations

Here we only added the randomly_permute_variables step, where the ordering

of variables (inputs, outputs, or both) is performed. This step can be executed in a time linear with the

number of variables, hence it does not bring any significant time overhead.

4 Experimental Results

4.1 Influence of Permutation on Synthesis Commands

Here we will present an experimental evaluation of some basic synthesis and technology mapping

commands in ABC [15], technology independent optimization scripts (which are usually using the

basic synthesis commands), and complete synthesis scripts, targeted to standard cells (the “strash;

dch; map” script) and LUTs (the “strash; dch; if; mfs” script). Finally, results

of Espresso [29] and even Espresso-exact are shown. The dependency on both input and output

variables ordering is studied.

The ABC experiments were conducted as follows: 228 benchmarks from the IWLS and LGsynth

benchmarks sets [22], [23] were processed. Given a benchmark, its inputs and/or outputs were

randomly permuted in the source BLIF file [30] (or PLA for Espresso), the synthesis command was

executed, and the number of AIG nodes (
1
), gates (

2
), LUTs (

3
) or literals (

4
), respectively, was

measured. This was repeated 1,000-times for each circuit.

In order to compactly represent all the results, the maximum and average percentages of size

differences were computed, over all the 228 circuits. The results are shown in Table 1.

We can observe striking quality differences, especially for the complete (compound) synthesis

processes.

Even the numbers of literals produced by Espresso-exact differ, since Espresso-exact guarantees

minimality of the number of terms only.

Table 1. Influence of permutation of variables – summary results

Process

Permuted inputs Permuted outputs Permuted both

max. avg. max. avg. max. avg.

Technology

independent

optimization:

commands

balance
1
 7.69% 1.04% 11.48% 1.60% 12.50% 2.27%

rewrite
1
 15.38% 0.68% 19.30% 2.41% 19.13% 2.78%

refactor
1
 12.07% 0.36% 29.73% 2.49% 29.73% 2.79%

resub
1
 2.50% 0.06% 20.83% 1.70% 20.83% 1.71%

Technology

independent

optimization:

scripts

resyn2
1
 44.53% 4.60% 52.75% 5.58% 52.69% 7.38%

resyn3
1
 13.56% 1.57% 22.50% 2.74% 22.66% 3.72%

choice
1
 34.40% 7.17% 38.14% 7.14% 36.17% 10.13%

dch
1
 60.53% 10.42% 40.39% 9.33% 60.50% 13.50%

Technology

mapping

map
2
 17.09% 1.35% 12.28% 1.93% 17.09% 2.84%

fpga
3
 0.00% 0.00% 5.26% 0.29% 5.26% 0.29%

if
3
 0.00% 0.00% 2.88% 0.24% 2.88% 0.24%

Complete

synthesis

strash; dch; map
2
 74.38% 8.67% 70.47% 10.52% 86.27% 13.40%

strash; dch; if; mfs
3
 92.14% 11.50% 85.42% 12.60% 92.02% 14.81%

Two-level

optimization

Espresso
4
 34.90% 1.51% 11.82% 1.04% 42.95% 2.11%

Espresso-exact
4
 0.63% 0.02% 6.06% 0.23% 6.06% 0.24%

Next, detailed results for two particular circuits, belonging to the largest ones of the measured set,

apex2 and cordic [22] are shown in Tables 2 and 3. For each process, the minimum, maximum, and

average values are presented, together with percentage differences between the minima and maxima.

More precise results were computed here; they were obtained from 10,000 runs. Espresso is insensitive

to variable ordering for these particular circuits, thus the results are not present.

When observing the results of the individual synthesis processes and the overall synthesis, the

behavior of the apex2 case is expectable. Almost all the synthesis processes are sensitive to variable

ordering, and the effect accumulates in the progress.

However, cordic is quite a striking example. First of all, this is the circuit responsible for the

maximum difference of LUTs in the complete synthesis process “strash; dch; if; mfs”.

Solutions ranging from 27 to 687 LUTs were obtained. But, strangely enough, the standalone synthesis

processes (“balance”, ”dch”, ”if”, ”mfs”) are not significantly sensitive to variable ordering

(the mapping phase is completely immune). In quantitative measures, the effects of individual

processes cannot be combined to obtain such differences in the final design. Therefore, we conclude

that some qualitative flaws occur in the progress. This effect is rather surprising and worth studying

more thoroughly. More strange phenomena can be observed from the table, however, their explanation

is out of scope of this paper.

4.2 Results of the Proposed Synthesis Process

Very exhaustive experiments were performed in order to justify the benefit of using random

permutation of variables in the iterative process. We have processed 490 benchmark circuits

altogether, coming from academic IWLS and LGsynth benchmark suites [22], [23], as well as from

large industrial designs from OpenCores [24] (up to 100,000 LUTs). The 4-LUTs-mapping process

was chosen for the testing purpose. However, we expect the same behavior for any target technology.

The most recent LUT-mapping synthesis script suggested by the authors of ABC was used:

“strash; dch; if; mfs; print_stats –b” as a reference. Then, the ABC command

“permute” randomly permuting both inputs and outputs was implemented and employed, yielding

the script “permute; strash; dch; if; mfs; print_stats –b”. Both scripts were

executed 20-, 100-, 1000-, and 5000-times for each circuit, while the best result ever reached was

recorded and returned as the solution (this is accomplished by the “print_stats –b” command).

The numbers of resulting 4-LUTs and the delay (in terms of the longest path) were measured.

Results of all the 490 circuits are shown in Figure 3: and Figure 4:, for area (4-LUTs) and delay

(levels), respectively. The scatter-graphs visualize the relative improvements w.r.t. the state-of-the-art

(i.e., no permutations used). Positive values indicate an improvement, the negative ones deterioration.

The size of the original mapped circuit, in terms of 4-LUTs, is indicated on the x-axis. Two border

cases, 20 and 5,000 iterations are shown here only. Results of 100 and 1,000 iterations lay in-between.

We see that a significant improvement may be reached even when the process is run for 20

iterations. However, also more deteriorating cases are observed. When iterated more, the results

become more positive, especially for larger circuits. This is quite obvious, since these circuits usually

converge slower (see Subsection 4.3).

Figure 3: Area improvements w.r.t the standard iterative process

Figure 4: Delay improvements w.r.t the standard iterative process

Summary statistics are shown in Table 4. Only 290 circuits, whose resulting implementation

exceeded 100 LUTs, were accounted in these statistics, to make the practical impact more credible.

The minimum, maximum and average percentage improvements for both area and delay are given.

Also the percentages of cases, where the improvement is positive (“Better in”) and negative

(“Worse in”) are shown. The complement of the sum of these two values to 100% represents cases

where equal solutions were obtained.

Table 4. Summary statistics

Iterations 20 100 1,000 5,000

LUTs

Minimum -12.8% -8.2% -5.4% -6.7%

Maximum 46.5% 51.2% 74.6% 75.2%

Average 1.0% 2.1% 4.9% 6.1%

Better in 52.2% 64.9% 81.0% 82.6%

Worse in 39.8% 28.8% 15.2% 13.9%

Levels

Minimum -33.3% -33.3% -25.0% -25.0%

Maximum 22.2% 27.3% 40.0% 40.0%

Average 0.6% 0.6% 1.6% 2.5%

Better in 16.3% 13.8% 19.7% 23.9%

Worse in 9.3% 5.5% 6.2% 5.5%

We see that with an increasing number of iterations results become more stable and tend

to improve, both for area and delay. There is a positive average improvement even for 20 iterations.

For 5,000 iterations the average improvement reaches 6.1% in area and 2.5% in delay. Also cases,

where deterioration was obtained, are becoming rare (13.9% and 5.5% for area and delay,

respectively).

Assume the worst case, where the number of deteriorating solutions of one iteration of synthesis is

50% (equal chance for both the improvement and deterioration). In Table 4 we see that all the

minimum improvements (maximal deteriorations) are much less than 50%, even for 20 iterations.

From these figures we can conclude that permutation always pays off.

4.3 The Convergence Analysis

Here we will show an illustrative example of convergence curves for the iterative synthesis with and

without using random permutations for two of the IWLS benchmark circuits [23] alu4 and apex2, see

Figure 5:. The progress of the size reduction during 1,000 iterations was traced.

Here we see the justification of our theory. In general, it is not possible to say what method

converges faster. Theoretically, both should converge equally fast. This can be seen, e.g., in the alu4

case, where the standard synthesis converges faster at the beginning, but then the convergence slows

down. But more importantly, when the resynthesis without using permutations converges to a local

minimum, the permutations will help to escape it (see the apex2 curves – here the local minimum was

reached in the 300
th

 iteration, whereas the solution quality still improves after 1000 iterations when

permutations are used). Similar behavior can be observed for most of the tested circuits. This confirms

our theory – the permutations do increase the iterative power.

Figure 5: Convergence curves for the alu4 and apex2 circuits

5 Conclusions

We have documented that the performance of the state-of-the-art academic logic synthesis tools

significantly relies on the variable ordering on their input. Using this fact, we have proposed a method

of increasing the iterative power of resynthesis, by non-violently introducing randomness into their

run – by randomly permuting input and/or output variables in the process.

The method was tested on standard academic benchmarks and large industrial designs. A positive

average improvement in quality (both in area and delay) was obtained. Since introducing the

permutations into the iterative process takes almost no time, we can conclude that employing random

permutations definitely pays off. Random permutations help to avoid local optima. Cases, where worse

results are obtained, are relatively rare.

Now we still have to ask two ultimate questions:

“What will happen, if I just reorder the variables in the source file header?” and

“What shall happen, if I just reorder the variables in the source file header?”

Acknowledgement

We would like to thank Alan Mishchenko from UC Berkeley for implementing the

“print_stats –b” option and, more importantly, for a fruitful discussion.

References

[5] G. D. Hachtel and F. Somenzi, “Logic Synthesis and Verification Algorithms“, Kluwer

Academic Pub. 1996, 564 p.

[6] K. Karplus, “Using if-then-else DAG’s for multi-level logic minimization”, Univ. California.

Santa Cruz, UCSC-CRL-88-29, 1988.

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

L
U

T
s

Iteration

alu4

Standard synthesis

Synthesis with permutations

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

L
U

T
s

Iteration

apex2

Standard synthesis

Synthesis with permutations

[7] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG rewriting: a fresh look at

combinational logic synthesis”, In Proc. of 43th Design Automation Conference, San Francisco,

CA, USA, 2006, pp. 532-535.

[8] S. B. Akers, “Binary decision diagrams”, IEEE Transactions on Computers, vol. C-27, No. 6,

June 1978, pp. 509-516.

[9] R. E. Bryant, “Graph based algorithms for Boolean function manipulation“, IEEE Transactions

on Computers, vol. 35, No. 8, August 1986, pp. 677-691.

[10] C.W. Moon, B. Lin, H. Savoj, and R.K. Brayton, “Technology Mapping for Sequential Logic

Synthesis”, In Proc. of International Workshop on Logic Synthesis, North Carolina, May 1989.

[11] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. Sangiovanni Vincentelli, “Logic

Synthesis for Programmable Gate Arrays”, In Proc. of the Design Automation Conference, June

1990, pp. 620–625.

[12] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational and sequential mapping

with priority cuts”, In Proc. of International Conference on Computer-Aided Design 2007,

pp. 354-361.

[13] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to technology mapping for

LUT-based FPGAs”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Vol. 26(2), Feb 2007, pp. 240-253.

[14] R. K. Brayton et al., “SAT-based logic optimization and resynthesis”, In Proc. of International

Workshop on Logic Synthesis 2007 (IWLS), pp. 358-364.

[15] Berkeley Logic Synthesis and Verification Group, “ABC: A System for Sequential Synthesis

and Verification”, http://www.eecs.berkeley.edu/~alanmi/abc/ [Online].

[16] E.M. Sentovich et al., “SIS: A System for Sequential Circuit Synthesis”, Electronics Research

Laboratory Memorandum No. UCB/ERL M92/41, Univ. of California, Berkeley, CA 1992.

[17] M. Gao, Jie-Hong Jiang, Y. Jiang, Y. Li, S. Sinha, and R.K. Brayton, “MVSIS”, In the Notes

of the International Workshop on Logic Synthesis, Tahoe City, June 2001.

[18] H. Savoj and R.K. Brayton, “The Use of Observability and External Don’t Cares for the

Simplification of Multi-Level Networks”, In Proc. of the Design Automation Conference

(DAC), 1990, pp. 297–301.

[19] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple circuit structure”,

In Proc. of International Workshop on Logic Synthesis (IWLS) 2006, pp. 15-22.

[20] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, “Optimization by Simulated Annealing”,

Science 13, Vol. 220, no. 4598, May 1983, pp. 671-680.

[21] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning”,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984, p. 41.

[22] K. McElvain, “LGSynth93 Benchmark Set: Version 4.0“, Mentor Graphics, May 1993.

[23] S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide”, Technical Report

1991-IWLS-UG-Saeyang, MCNC, Research Triangle Park, NC, January 1991.

[24] http://opencores.org

[25] P. Fišer and J. Schmidt, “It Is Better to Run Iterative Resynthesis on Parts of the Circuit”,

In Proc. of 19th International Workshop on Logic and Synthesis 2010, Irvine, California,

pp. 17-24.

[26] P. Fišer and J. Schmidt, “Improving the Iterative Power of Resynthesis”, In Proc. of 15th IEEE

Symposium on Design and Diagnostics of Electronic Systems (DDECS), 2012, Tallinn

(Estonia), pp.-30-33.

[27] R. Rudell, “Dynamic variable ordering for ordered binary decision diagrams”, In Proc. of the

International Conference on Computer-Aided Design, Santa Clara, CA, 1993, pp. 42-47.

[28] F. Somenzi, \CUDD: CU Decision Diagram Package Release 2.4.1", University of Colorado

at Boulder, http://vlsi.colorado.edu/~fabio/CUDD [Online].

[29] R. K. Brayton et al., “Logic minimization algorithms for VLSI synthesis”, Boston, MA, Kluwer

Academic Publishers, 1984, 192 p.

[30] Berkeley Logic Interchange Format (BLIF), University of California, Berkeley, 2005.

http://www.eecs.berkeley.edu/~alanmi/abc/
http://opencores.org/
http://vlsi.colorado.edu/~fabio/CUDD

Table 2. Influence of permutation of variables – details for apex2

Process

Permuted inputs Permuted outputs Permuted both

min. max. avg. % min. max. avg. % min. max. avg. %

Technology

independent

optimization:

commands

balance1 4162 4191 4174.2 0.69% 4155 4180 4170.6 0.60% 4150 4202 4176.3 1.24%

rewrite1 4129 4137 4132.7 0.19% 4132 4138 4134.8 0.14% 4128 4139 4133.4 0.27%

refactor1 4018 4018 4018.0 0.00% 4018 4027 4022.9 0.22% 4018 4027 4022.8 0.22%

resub1 4302 4317 4309.6 0.35% 4301 4308 4304.4 0.16% 4300 4322 4311.6 0.51%

Technology

independent

optimization:

scripts

resyn21 3360 3448 3399.9 2.55% 3389 3422 3407.4 0.96% 3351 3450 3403.3 2.87%

resyn31 3918 3945 3927.3 0.68% 3874 3930 3909.8 1.42% 3859 3948 3909.8 2.25%

choice1 4419 4522 4494.0 2.28% 4490 4508 4499.0 0.40% 4419 4524 4492.8 2.32%

dch1 2931 3194 3072.3 8.23% 3008 3143 3067.3 4.30% 2918 3198 3063.5 8.76%

Technology

mapping

map2 4371 4401 4383.7 0.68% 4354 4383 4371.5 0.66% 4350 4402 4380.1 1.18%

fpga3 2013 2030 2020.1 0.84% 2014 2020 2017.5 0.30% 2006 2029 2016.4 1.13%

if3 2040 2040 2040.0 0.00% 2039 2040 2039.5 0.05% 2039 2040 2039.5 0.05%

Complete

synthesis

strash; dch; map2 3221 3552 3378.7 9.32% 3292 3464 3360.5 4.97% 3202 3559 3369.8 10.03%

strash; dch; if; mfs3 1502 1731 1631.0 13.23% 1587 1666 1628.3 4.74% 1508 1744 1631.2 13.53%

Table 3. Influence of permutation of variables – details for cordic

Process

Permuted inputs Permuted outputs Permuted both

min. max. avg. % min. max. avg. % min. max. avg. %

Technology

independent

optimization:

commands

balance1 2727 2735 2730.7 0.29% 2727 2728 2727.5 0.04% 2727 2735 2730.5 0.29%

rewrite1 989 991 990.0 0.20% 987 991 989.0 0.40% 987 991 988.9 0.40%

refactor1 1125 1129 1127.0 0.35% 1128 1128 1128.0 0.00% 1125 1129 1127.0 0.35%

resub1 2723 2723 2723.0 0.00% 2723 2723 2723.0 0.00% 2723 2723 2723.0 0.00%

Technology

independent

optimization:

scripts

resyn21 463 537 502.5 13.78% 487 492 489.5 1.02% 459 541 502.3 15.16%

resyn31 2677 2724 2695.0 1.73% 2685 2685 2685.0 0.00% 2677 2724 2696.0 1.73%

choice1 2440 2773 2764.0 12.01% 2770 2770 2770.0 0.00% 2440 2774 2761.8 12.04%

dch1 396 545 486.3 27.34% 448 518 482.8 13.51% 411 555 490.7 25.95%

Technology

mapping

map2 2762 2772 2766.7 0.36% 2765 2766 2765.5 0.04% 2761 2772 2766.2 0.40%

fpga3 930 932 931.0 0.21% 931 931 931.0 0.00% 930 932 931.0 0.21%

if3 804 804 804.0 0.00% 804 804 804.0 0.00% 804 804 804.0 0.00%

Complete

synthesis

strash; dch; map2 447 2409 567.1 81.44% 486 597 541.2 18.59% 460 2412 571.2 80.93%

strash; dch; if; mfs3 27 687 335.5 96.07% 178 676 425.5 73.67% 34 689 318.4 95.07%

