BoolTool: A Tool for Manipulation of Boolean
Functions

Petr FiSer, David Toman
Czech Technical University in Prague
Department of Computer Science and Engineering
Karlovo nam. 13, 121 35 Prague 2
e-mail: fiserp@fel.cvut.cz, tomand1l@fel.cvut.cz

Abstract

A new tool for manipulation of logic functions isgsented in this paper. The source functions
are described by an algebraic expression (or afsetpressions), in a VHDL-like style, by a truth
table (PLA) or as a CNF form. In particular, any tikevel network of logic gates can be used as a
source for the tool. The tool is capable of perfagnbasic Boolean operations on the source
functions, like negating the function, performingNB, OR, XOR operations, etc., between two or
more functions. Then, the tool is able to mutualtgnsform the CNF and DNF function
representations, which also enables to solve sfisdility (SAT) problem as a byproduct. Last, but
not least, the tool performs a function collapsing.,, it transforms a multi-level Boolean network
into its two-level description (truth table).

Some Boolean operations, like computing a negatfanfanction in DNF, are rather time and
memory consuming. For this reason a special streiatalled a “ternary tree” is introduced. The
ternary tree is used to store the function’s teamd to perform a basic minimization of the function
representation. Basic principles of the ternary teggesentation of a function and its minimization
principles are described in this paper too.

The proposed tool was tested on several differesitlems (minimization of a function, SAT
solving, collapsing) and compared with state-ofdletools.

1. Introduction

The logic synthesis process has undergone a gregtgss since 1960’s, mostly due to a rapid
development of EDA (Electronic Design Automatioopls. There are many logic synthesis tools
available, either commercial or open-source, likgpresso [1] and Boom [2, 3] for a two-level
minimization of combinational functions, SIS [4] MWBIS [5] and ABC [6] for a multi-level sequential
synthesis. Very sophisticated synthesis algoritanesemployed there, offering the end user powerful
synthesis tools. However, all these tools are pilgngargeted towards conducting standard synthesis
processes. To our best knowledge, there is noawailable enabling the user to perform elementary
Boolean operations upon logic functions or Booleatworks. Therefore we have developed such a
tool (BoolToo) enabling us to efficiently manipulate Booleandtions. There always is a possibility
to “hard-wire” the required operation in some nétrel function specification format, like VHDL or
BLIF [7], and to synthesize the resulting functiby, e.g., SIS [4] or ABC [6]. However, this
procedure is rather inconvenient in most cases iamdnnot be easily performed using a script.
We offer an easy-to-use tool able to perform amyp& Boolean operation upon Boolean functions,
or, better, Boolean expressions. The tool can bg efficiently exploited using a script file, soaththe
overall design process would be maximally automated

Some of Boolean operations, like computing a complet of a function, involve exponential
growth of the computational time and, more impditgnexponential growth of the memory
consumption. Moreover, many duplicate terms aradproduced in the computation process. Thus, a
sophisticated structure to store the function’ssetterms is needed, so the duplicities are avcaded
the number of terms could be reduced using a fastmzation algorithm. We proposeternary tree
structure enabling both.

The paper is structured as follows: the BoolTodhgples and its capabilities are described
in Section 2. The ternary tree structure and thgswat its minimization are shown in Section 3.
Section 4 contains some experimental results antloBe5 concludes the paper.

2. TheBoolTool

2.1. Basic Description

BoolTool is a powerful tool for manipulation of lisgfunctions which are described either by a
two-level representation (PLA [1, 4]) or as a nHeétrel Boolean network, in a structural VHDL-like
format. The DIMACS [8, 16] format is also supportemallow employing BoolTool as a SAT solver.

The source function (or, better, a set of functfjaashen processed either by interactively giving
commands to BoolTool, or by a script. The resulteimirned in the PLA [1, 4], VHDL, BLIF [7] or
DIMACS CNF format [16].

These operations are supported:

« Application of basic Boolean functions (NOT, ANDRONAND, NOR, XOR, XNOR)

« Transformation of an arbitrary Boolean network iatoAND-OR-NOT representation

e Transformation of an arbitrary Boolean network imtaetwork consisted of NAND or
NOR gates only

e Transformation of an arbitrary Boolean network iat€ NF or DNF representation, thus,
collapsing the multi-level network to obtain a tlewel representation

e Satisfiability (SAT) solving

e Cofactor computation

Using these operations, any Boolean function arsfiarmation can be performed upon any given
Boolean network and the result may be obtained astnof commonly used Boolean function or
network descriptions.

2.2. Internal Representation of a Network and the Network Manipulation

A binary tree was chosen as an internal representaf a Boolean expression. One binary tree is
constructed for each function (Boolean expressidonjernal nodes of the tree represent binary
operators, leaves represent input variables, sgelFiHere a tree for thi; nor %) or (% and %)
expression is shown.

Figure 1. Boolean expression tree Figure 2. Negated expression tree

Such a representation offers us many benefits wleeiorming Boolean operations upon it, since it
can be processed recursively very easily. For el@ngerforming a negation of a function is done
by recursively traversing the tree from its roottihe leaves. Nodes are gradually being substituted
by their negated versions (AND to NAND, etc.). Mover, DeMorgan’s rules may be simultaneously
applied (without any significant performance logs),produce a tree constructed of AND-OR-NOT
nodes only. When a NOT node is encountered, ittimoved from the tree and the recursion is
terminated. The resulting negated tree from Fig.shown in Fig. 2.

Simple Boolean operations (like AND, OR, XOR, hétween two functions (expression trees) are
being conducted in a straightforward way: the reSpe operator becomes a root of the resulting tree
and the operand trees are appended to it as tesaars.

2.3. Network Collapsing

The conversion of a Boolean network into a two-leepresentation of a function (i.e., into a CNF
or, more frequently into a DNF) is an essentialrapen for many BoolTool applications. It is known
that the multi-level network collapsing is compidgatlly extremely demanding, since the memory
consumption grows exponentially with the numberthe function’s input variables. En exemplary
function to demonstrate it is an Achilles’ heel détion [9], whose CNF representation is polynomial
in size, whereas its DNF representation is expaalent

The network collapsing process is conducted infitlewing way: first, the expression tree is
processed by recursively applying DeMorgan’s laavé,tto produce a tree constructed of AND, OR
and NOT nodes. Simultaneously all the NOT nodesyareed to the leaves. Then distributivity laws
are applied to the tree, to obtain the required Ddim.

Since an extreme growth of the number of the eswastree nodes is usually observed, a fast
intermediate minimization of sub-trees should befggmed, to reduce time and memory demands
of the collapsing process. For this purpose a ®ngd fast two-level minimization algorithm is
employed. Since the tree is being transformed DtéF from leaves to the root, a two-level
minimization can be performed at each transformatgiep. A very fast ternary tree based
minimization algorithm is thus being run after eadilapsing step, to reduce the overall expression
tree size. The algorithm will be described in Sat8 into details.

24. SAT Solving

In order to solve the Boolean satisfiability (SAdrpblem, the expression tree is first converted int
a DNF (i.e., sum-of-products) representation. Tthenfunction’s satisfiability check can be perfodne
in linear time, by traversing the AND-OR tree. A \falue is being distributed from the root to the
leaves. Variables are assigned a value at the adgpdeaves. The conflicting variable is identifie
when a value opposite to already assigned valteehs assigned to the variable.

Let us note that, in contrast to many well knowrd aommonly used SAT-solvers [10, 11],
BoolTool is able to compute all the solutions of ¥olved SAT, not only to perform a satisfiability
check. This makes the SAT solver very time and mgnconsuming. However, the obtained results
may be advantageously exploited in many areas oit ldesign, e.g., in automatic test pattern
generation (ATPG) process.

3. Tenary Tree

The two-level minimization algorithm employed in @®ool is based on processing oteanary
tree structure. The ternary tree has been proposetthdaiirst time in [12] as &ee buffer The ternary
tree structure was used to store and, more impbrtaguickly look up product terms. The main
implementation requirement for the buffer was itghhlook-up speed. However, all the capabilities
of the structure were not discovered at that time.

The ternary tree depth is equal to the number péits of the functionn). The tree is gradually
constructed by adding product terms to it. Let efiné a total ordering < over the set of input
variables, the functiomar(i) gives the input variable of the function in ikt order. Each level of the
ternary tree corresponds to one variable, accoririge ordering. Each non-terminal node at a level
corresponds to a “partial” product term, where alwf onlyvar(0)...var(i-1) variables are defined.
Terminal nodes correspond to completely describeus.

An example of a ternary tree of a 3-input functisrshown in Fig. 3. Three terms are contained
in the tree, namely 0-0, 10- and 11- (a dash stéorda don't care, i.e., the respective variabl@ads
present in the term). Each non-terminal nodm@ay have three potential childrdon(u), do(u), hi(u).

In our examplelo(u) is the left-hand childdc(u) the middle one anki(u) the right-hand one.

When inserting a term into the tree, atitlte level of the tree, the branch is chosen acogrth the
polarity (O, -, 1) of tha-th variable in the term. If the corresponding lmtams present, we follow it,
when not, the branch is newly created.

Checking for a presence of a term is of a comp}eRi), however, if the term is not present in the
tree, the search terminates in less thateps. If, e.g., term 011 being is looked for itre® shown
in Fig. 3, the search will fail in the node ‘0’ wigeno path leading to ‘01’ is present.

Figure 3. Ternary tree example

3.1. TheTreeMinimization Algorithm

The minimization algorithm used in BoolTool is vesimple and straightforward. It is based
on applying absorption and complement propertysrofeBoolean algebra only, targeting the reduction
of the number of the ternary tree terminal nodeaug¢s). Particularly, when a non-terminal nodéat t

(n-1)-th level has two successor nodes (which ars tluminals), they always may be merged into one
dc terminal, either by applying the absorption rule d case of a 0- or 1-terminal together witdca
terminal) or a complement properties rule (in secafsa 0- and 1-terminal).

The principles of the reduction are illustratedtbg following example. Let us consider a function
Yy = X + X + X3 described by its on-set minterms (see Table 13. dhiquely represented by a ternary
tree shown in Fig. 4. There are seven terminal sgdpresenting the on-set minterms 1-7. It can be
easily seen that minterm couples (010, 011), (10Q) and (110, 111) may be merged, to obtkin
terminals, see Fig. 5. The Complement property ofloolean algebra has been applied to the
variable x;. No other tree reduction can be performed at thige, thus another phase of the
minimization algorithm follows — the tree rotation.

Table 1. The example function

minterm| x; | X% | X3 y
0 0| 0| O 0
1 0| 0] 1 1
2 Ol 1| 0 1
3 o 1] 1 1
4 1] 0| 0 1
5 1] 0| 1 1
6 1]1| 0 1
7 1] 1] 1 1
001010011 100 101110111 001 O01- 10- 11-
Figure 4. Minimization example (1) Figure 5. Minimization example (2)

3.2. Tree Rotation

The algorithm proposed in the previous subsectionsiclers a minimization of the number
of terminal nodes only, i.e., only the leaf var@l§l;) is being removed from the terms, if possible.
Thus, the next step to follow is obvious: the rotatof the tree, so that non-terminals become
terminals. Then the terminal minimization procediseperformed again. The whole process is
repeatedn-times (wheren is the number of input variables), so that all ttagiables are tried for
removal. Moreover, the quality of the result mayitmproved by repeating the whole minimization
process several times, i.e., running itifderations (which involves.i rotations).

The tree rotation is done by cutting off the rootle, which yields three separate trees at mosh, eac
for one subtree rooted ilo(u), do(u), hi(u), whereu is the root node. Then, the root variable is
appended to all leaves of the three trees. Théiontaf the tree from Fig. 5 is shown in Fig. 6.rele
the tree is split into two trees only, since thetraf the original tree has two successtmsafdhi).

Then the trees are merged together, by traverbeggttrees from their roots in parallel and merging
nodes. The result is shown in Fig. 7. Notice thatfour terminals remain unchanged; the rotatesl tre
describes the same set of terms as in Fig. 5.

10- 001 O0O1- 11- 001 -1- 10-
001 O1l1- 10- 11-

Figure 6. Minimization Figure 7. Minimization Figure 8. Minimization
example (3) example (4) example (5)

Now newly obtained terminals may me merged. Eadmitel merging results in a removal of a
particular (terminal) variable from a term. Theetiie rotatech-times, the resulting ternary tree after 3
rotations is shown in Fig. 8, representing threemse (001, -1-, 10-), which is the minimum
representation of the source function.

For more details on the ternary tree minimizatiee E.3].

4. Experimental Results

The experimental results presented in this secticm shown just to give an insight into the
capabilities and performance of BoolTool. The quiag and SAT solving comparison results are not
too positive for BoolTool. However, this is to bepected: more efficient structures and algorithnes a
used in the tools the comparison is done with. Hereet us remind that BoolTool is a more general
tool with different aims. Its collapsing and SAT\dng capabilities have arisen as a byproduct here;
we do not aspire to overpower other mature andenmoportantly, dedicated tools. Unfortunately, as
it was said in the introduction, we are not awafr@my tools similar to BoolTool, thus no relevant
comparison can be made.

Minimization capabilities of the built-in ternaryet based minimization algorithm are more
impressive. However, presenting of these resulb&y®nd the scope of this paper. For details sgke [1

All the experiments have been performed on a 2 GBQ Duo, 2 GB RAM PC, Windows XP.

4.1. TheCollapsing Results

The results of collapsing of MCNC benchmark cirsyit4] converted into their CNF form are
shown in this subsection. A comparison with MVSEif made in Table 2. The computational times
and the numbers of terms in the resulting DNF foemes shown. The “Terms” columns indicate the
number of terms in the obtained sum of productsesgion.

Table 2. Collapsing results

Time [s] Terms

Benchmark BoolTool MVSIS BoolTool MVSIS
b12 0.155 0.33 42 34
cordic 318.546 3.19 1757 1191
cps 5.566 1.23 4810 1870
duke2 2.883 0.37 2330 452
ex4 29.580 0.78 579 334
ex1010 64.530 2.62 11196 1415
misex2 0.065 0.08 286 146
misex3c 11.577 0.34 2502 508
pdc 204.837 30.26 2694 897
rds4 1.661 0.53 482 239
spla 197.931 32.27 1900 855

4.2. SAT Solving Results

Here we present SAT solving results, obtained bglBool and by a BDD-based approach [15].
This method was chosen as the only available catalitbr a meaningful comparison, since it also
generates all the solutions to the solved SAT. Bdvechmarks have been obtained from [16].

Table 3. SAT solving results

Time [s]
Benchmark BoolTool BDDCUDD
uf20-0500.cnf 4,162 0.780
uf20-0501.cnf 2.712 0.733
uf20-0502.cnf 2.584 0.749
uf20-0503.cnf 3.338 0.733
uf20-0504.cnf 2.408 0.718
uf20-0505.cnf 1.799 0.717
uf20-0506.cnf 4.335 0.733

Time [s]
Benchmark BoolTool BDDCUDDO
uf20-0507.cnf 3.290 0.734
uf20-0508.cnf 2.544 0.733
uf20-0509.cnf 1.140 0.733
uf20-0510.cnf 3.077 0.733
uf20-0511.cnf 1.717 0.718

5. Conclusions

We have introduced a new tool for manipulationagfit functions. The tool is able to efficiently
perform basic Boolean operations upon Boolean fonst like computing the complement of the
function, computing unions and products of funcsiocofactors, collapsing any Boolean network into
its two level representation or solving a SAT peshl The input file format can be a PLA description
(truth table) of a function, a CNF form or a VHDikéd multi-level network description. The resulting
file format is, again, PLA, VHDL, BLIF or DIMACS CH format.

Some of the implemented features require a muttdlenetwork collapsing, which is
computationally very intensive. For this reasonyeay fast and efficient two-level minimizer is
employed to reduce the size of intermediate resyikttding a significant reduction of the overathe
and memory consumption. Basic principles of thiaimizer are briefly presented in this paper.

The tool has been tested on several different problon standard benchmark circuits and the
performance evaluated and compared with other .tbtdsvever, since a tool of abilities comparable
to BoolTool probably does not exist, we were ndeab perform a sufficient comparatory evaluation
of its performance. Anyway, BoolTool has found dgplications in many areas of logic design up
to now, as an essential part of the design process.

BoolTool is available for publics at [17].

Acknowledgment
This research has been supported by MSMT undeamgs@rogram MSM6840770014.

References

[1] R.K. Brayton et al.: Logic minimization algorithrfer VLSI synthesis, Boston, MA, Kluwer Academic Hishers, 1984,
192 pp.

[2] J. Hlavitka, P. FiSer: BOOM - A Heuristic Boolean Minimiz&omputers and Informatics, Vol. 22, 2003, No.d,, 18-
51

[3] P. FiSer, H. Kubatova: Two-Level Boolean MinimiBDOM-II, Proc. 6th Int. Workshop on Boolean Probgem
(IWSBP'04), Freiberg, Germany, 23.-24.9.2004, (21-228

[4] E.M. Sentovich et al.: SIS: A System for Sequer@imtuit Synthesis, Electronics Research Laboraltéeynorandum No.
UCB/ERL M92/41, University of California, Berkele@A 94720, 1992

[5] D. Chai, J. Jiang, Y. Jiang, Y. Li, A. Mishchenlamd R. Brayton: MVSIS 2.0 User’s Manual, UC Berleleechnical
report, 2003

[6] Berkeley Logic Synthesis and Verification Group: @BA System for Sequential Synthesis and VerifaatRelease
70930.http://www.eecs.berkeley.edu/~alanmi/abc/

[7] Berkeley Logic Synthesis and Verification GroupriBsey Logic Interchange Format (BLIF)

[8] http://www.gbflib.org/gdimacs.html

[9] T. Sasao, Switching Theory for Logic Synthesis. Néwk: Kluwer Academic, 1999.

[10] D. McAllester, B. Selman, H. Kautz: Evidence fovamiants in local search. In Proceedings of therféenth National
Conference on Artificial Intelligence (AAAI'97), pes 321-326, Providence, Rhode Island, 1997.

[11] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhaigg,Malik: Chaff: Engineering an Efficient SAT Soivén
Proceedings of the 38th Design Automation Confer€BAC’'01), 2001.

[12] P. FiSer, J. Hla¥ka: On the Use of Mutations in Boolean Minimizati&moc. Euromicro Symposium on Digital Systems
Design, Warsaw (Poland) 4.-6.9.2001, pp. 300-305

[13] P. FiSer, P. Rucky, |. \réova: Fast Boolean Minimizer for Completely Spediffeunctions, Proc. 11th IEEE Design and
Diagnostics of Electronic Circuits and Systems Vgbdp 2008 (DDECS'08), Bratislava, SK, pp. 122-127

[14] S. Yang. Logic Synthesis and Optimization Benchmatker Guide, Technical Report 1991-IWLS-UG-SaeyM@NC,
Research Triangle Park, NC, January, 1991

[15] F. Somenzi: CUDD: CU Decision Diagram Package, &&e2.4.1, University of Colorado at Boulder
(http://visi.colorado.edu/~fabio/CUDP/

[16] http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

[17] http://service.felk.cvut.cz/visi/prj/BoolTool/

