
Fault Tolerant System Design Method Based on Self-Checking Circuits

Pavel Kubalík, Petr Fišer, Hana Kubátová
Department of Computer Science and Engineering

Czech Technical University in Prague
Karlovo nam. 13, 121 35 Prague 2

e-mail: (xkubalik, fiserp, kubatova)@fel.cvut.cz

Abstract

This paper describes a highly reliable digital circuit
design method based on totally self checking blocks
implemented in FPGAs. The bases of the self checking
blocks are parity predictors. The parity predictor
design method based on multiple parity groups is
proposed. Proper parity groups are chosen in order
to obtain minimal area overhead and to decrease the
number of undetectable faults.

1. Introduction
This paper presents a parity predictor design method

based on parity nets grouping. FPGAs are based
on SRAM memories sensitive to Single Event Upsets
(SEUs), therefore using FPGA circuits in mission
critical applications without any method of SEUs
detection is impossible. Our structure increases
dependability parameters together with ensuring a
relatively low area overhead compared with classical
methods such as duplication or triplication [1]. Our
solution assumes a possible dynamic reconfiguration
of a faulty part of the system.

2. Proposed Method
There are three basic qualitative criteria in a field

of CED: fault security (FS), self-testing (ST) and
totally self-checking (TSC) properties. Our previous
results [2] show that to fully satisfy the TSC property
(to 100%) is difficult, so we have proposed a new
structure based on two FPGAs. Each FPGA has one
primary input, one primary output and two pairs
of checking signals OK/FAIL.

The parity predictor is used to generate proper
output code of the circuit. These techniques ensure
small area overhead and higher fault coverage while
the fault coverage reached is not 100% [3, 4, 5].

2.1. Parity Bits Grouping
An algorithm used for grouping the circuit’s outputs

is described here. Two outputs are XORed in each step,
until a desired number of parity bits is obtained. The
selection of outputs to be joined is of a key importance
for the final design area overhead. We propose a
method based on a “similarity” of functions. The
algorithm is based on these assumptions:

(1) When two equal functions are XORed, the
result will be ‘0’ for all minterms. If values of
two functions will differ in a few minterms,
there will be only few ‘1’ values in the resulting
function. Experiments show that a low number
of ‘1’s at the output is very advantageous for the
subsequent minimization process (Figure 1).

(2) Two inverse functions, when XORed, yield a
‘1’ value for each minterm. If the output values
of two functions are inverse but a few minterms,
there will be only few ‘0’ values in the result,
which is advantageous too (Figure 1).

(3) If two functions are “similar”, there is a big
probability that they will share a lot of logics.

A typical dependency of an area on the number of
‘1’ values in the output is shown in Figure 1. The
number of ‘1’s in the output varied from 10% to 90%
while the number of gate equivalents of the circuit
obtained after a minimization by BOOM [6, 7] was
measured.

10% 20% 30% 40% 50% 60% 70% 80% 90%
100

150

200

250

300

350

400

450

G
Es

% of 1's in the output

Figure 1: Dependency of the area overhead

on the ratio of output ‘1’s

2.2. Evaluation of Similarity of Functions
The first two criteria could be a sufficient criterion

to choose the two outputs to be joined. Experiments
show that this is not an efficient way to do so (see 3.1).
A scoring function is introduced to obtain better
results. Its value describes the measure of a
“similarity” of the two functions. The method is based
on a comparison of values of two functions, when a
value of one input variable is changed. To compute the
values of scoring functions, all the minterms are
processed. For each minterm each input variable value
is changed and values of the outputs of the two
functions are observed. If both values remain
unchanged, the scoring function is increased by one,
since this represents the same behavior of these two
functions. If both values change, the scoring function is
increased by one as well.

3. Experimental Results
3.1. Comparison of the Methods

The results obtained by our case study were
validated on MCNC and ISCAS [8] benchmarks.

Four methods are compared here, to evaluate the
area overhead reached by each of them. The newly
proposed method, described in Subsection 2.2 (“Prop”)
is compared with two simple methods where only the
minterm values are compared (“Equal”, “Inverse”), (1)
and (2) in 2.1. Then, values obtained by the proposed
method are compared to a random choice of outputs
to be grouped together (“Rand”). An average of 500
random grouping is considered in this experiment.

All the values are in terms of gate equivalents,
obtained after the synthesis. An area reduction
obtained by the proposed method, with respect to the
random method is shown in the “Red.” column. It can
be seen that there is often a significant improvement
with respect to the random method. Simple “Equal”
and “Inverse” methods do not yield satisfactory results.

Table 1. Comparison results

Circuit Prop
[GEs]

Equal
[GEs]

Inverse
[GEs]

Rand
[GEs] Red.

alu1 156 1670 1442 967 83.9 %
apla 76 81 136 128 40.6 %
b11 21 20 17 36 41.7 %
alu2 40 1122 547 418 90.4 %
alu3 320 534 573 433 26.1 %

s1488 241 299 289 364 33.8 %

3.2. Evaluation of the Availability Parameters
The results obtained by the computation of the

models are summarized in Table 2. Here “Circuit” is the
benchmark circuit, “AO” is the area overhead, “C” and
“D” is the number of undetected faults, that are not

detected by code word , “SP” is number of parity nets
and “Ass” is the steady-state availability

Table 2. Availability parameters
Circuit AO [LUT] SP AO C D Ass [%]

alu1 55 1 687% 0 0 1
alu1 16 2 200% 0 0 1
apla 24 1 53% 1 109 0.9999912
apla 22 2 49% 1 92 0.9999928
b11 3 1 8% 42 59 0.9999938
b11 7 2 18% 38 52 0.9999937
alu3 34 1 121% 0 63 0.9999897
alu3 33 2 118% 0 63 0.9999888

s1488 41 1 13% 94 321 0.9999962
s1488 94 2 30% 80 267 0.9999961

4. Conclusions
A fault tolerant system design method based

on parity bits grouping is proposed. We design a parity
predictor, composed as a duplicate of the original
circuit with its outputs joined by “xor” gates. The
method is based on an algorithm properly choosing the
circuit outputs to be joined. This yields a big area
overhead reduction, with respect to other methods. The
method has been verified by experiments including
dependability models for dependability computations.

Acknowledgement
This research has been supported by GA102/04/0737
and MSM6840770014.

References
[1] Dobiáš, R., Kubalík, P., Kubátová, H.: “Dependability

Computations for Fault-Tolerant System Based on FPGA”,
Proc. of 12th ICECS Conf., 2005, vol. 1, pp. 377-380.

[2] Kafka L., Kubalík P., Kubátová H., Novák, O.: “Fault
Classification for Self-checking Circuits Implemented
in FPGA”, Proc. of IEEE DDECS Workshop. Sopron,
2005, pp. 228-231.

[3] Drineas, P., Makris, Y.: "Concurrent Fault Detection in
Random Combinational Logic”, Proc. of the IEEE ISQED
Symposium, 2003, pp. 425-430.

[4] Mitra, S., McCluskey E. J.: "Which Concurrent Error
Detection Scheme To Choose?" Proc. International Test
Conference 2000, pp. 985-994.

[5] Mohanram, K., Sogomonyan, E. S., Gössel, M., Touba,
N. A.: "Synthesis of Low-Cost Parity-Based Partially Self-
Checking Circuits", Proc. of the 9th IOLTS 2003, pp. 35.

[6] Hlavička, J, Fišer, P.: „BOOM - a Heuristic Boolean
Minimizer“. Proc. of ICCAD 2001, San Jose, California
(USA), 4.-8.11.2001, pp. 439-442.

[7] Hlavička, J, Fišer, P.: „BOOM - A Heuristic Boolean
Minimizer“, Computers and Informatics, Vol. 22, 2003,
No. 1, pp. 19-51.

[8] Brglez, F., Bryan, D., Kozminski, D.: “Combinational
Profiles of Sequential Benchmark Circuits”, Proc. of
ISCAS Symposium, pp. 1929-1934, 1989.

