BOOM - aHeuristic Boolean Minimizer

Jan Hlavi¢ka, Petr FiSer
Department of Computer Science and Engineering, Czech Technical University
Karlovo nam. 13, 12135 Prague 2
e-mail: hlavicka@fel.cvut.cz, fiserp@fel.cvut.cz

Abstract

We present a two-levéd Boolean minimization tool (BOOM)
based on a new implicant generation paadigm. In contrast to all
prevous minimization methods, where the implicants are
generated bottom-up, the proposed method uses a top-down
approach. Thus instead d increasing the dimensiondity of
implicants by omitting literals from their terms, the dimension o
a term is gradudly deaeased by addng rew literals. Unlike
most other minimization tods like ESPRESSD, BOOM doesn't
use the definition d the function to be minimized as a basis for
the solution, thus the original coverage influences the solution
only indiredly through the number of literals used.

Most minimization methods use two basic phases introduced
by Quine-McCluskey, known as prime implicant (Pl) generation
andthe covering problem solution. Same more modern methods,
like ESPRESSD, combine these two phases, reducing the number
of PIsto be processed. This approach is also used in BOOM, the
search for new literals to be included into a term aims at
maximum coverage of the output function.

The function to be minimized is defined by its on-set and off-
set, listed in a truth table. Thus the don't care set, often
representing the dominant part of the truth table, need not be
spedfied explicitly. The proposed minimization method is
efficient above all for functions with a large number of input
variables while only few care terms are defined.

The minimization procedure is very fast, hence if the first
solution daes not med the requirements, it can keimproved in an
iterative manrer. The method has been tested onseveal different
kinds of problems, like the MCNC standard benchmarks or
larger problems generated randomly.

1. Introduction

The problem of two-level minimization of Boolean functions
is usually solved for functions with lessthan 100 variables. This
is due to two mutually dependent fads:. larger circuits are not so
common, and no minimization method for larger problems has
been available so far. However, Boolean minimization is by no
means limited to the aea of switching circuit design, where it
was first identified [8]. The new implementation tedhnologies of
digital circuits, e.g., multi-level custom design, FPGAs, and
above dl PLASs, require this minimizaion in some phase.
Minimizaion problems with a large number of variables are
encountered in many modern applicaion areas like design of on-
line red-time ntrol systems, design of built-in self-test
equipment for VLSI circuits, in the aeaof artificial intelligence,
in software engineaing, etc. These problems are mostly
charaderized by alimited number of input states for which the
output value is determined (care states). On the other hand, the

number of dont care states then reades astronomicd values, and
the quality of aminimizaion method is thus determined hy its
ability to take alvantage of their existence without enumerating
them. An efficient minimization method must in addition be &le
to cope with the existence of a large number of prime implicants
(PIs) of the given function, most of which are not neaded for the
minimum solution.

Many attempts have been made to increase the size of
problems that can be solved by saaificing absolute minimality
and/or modifying the dassicd two-phase @proach (PI
generation, covering problem solution) introduced by Quine and
McCluskey. Modification of the two-phase gproach means, e.g.,
combining Pl generation with the solution of the avering
problem (CP) in order to reduce the size of the problem and
above dl to reduce the number of implicants to be processed.
This combination is a daraderistic feature of several modern
methods, including the well-known ESPRESSO [4, 7] with its
later improvements ESPRESSO-EXACT and ESPRESSO-
SIGNATURE [9]. This approach is used also in BOOM, namely
in the primary implicant generation phase - the "coverage-
direded seach".

A common fedure of all methods proposed so far is obtaining
the final solution from an initial solution (which is contained in
the function definition) by improvements direded by some
objedive function. This approach may be of advantage, if the
initial solution is favorable, but in some ases it may leal to a
blind end, or to an wnecessry waste of time. The method
presented here uses an origina approach to impli cant generation,
which is completely independent of the initial solution. The
1-terms found in the function definition are used only indiredly,
for guiding the seach for literals to be included into the solution,
O-terms are used to determine whether a given term is an
implicant. The don't care set, which is usually the largest of all
threesets, is thus not consulted at all.

The BOOM (BOOlean Minimizer) approach propcsed here
combines Pl generation with solving the cvering problem,
leading to a reduction in the total number of Pls generated.
However, the principal improvement over the previous methods
consists in speading up Pl generation by applying a top-down
approach instead of the cmmonly used bdtom-up approach.
Several heuristics allowing us to control individual phases of the
solution are used in order to meet the quality requirements and
runtime limitations. BOOM was programmed in Borland C++
Builder and tested under MS Windows NT.

This paper has the following structure. After aformal problem
statement in Sedion 2, the principles of the proposed method are
presented in Sedion 3. The iterative procedure is then described
in Sedion 4. The results of extensive experimental verification

are evaluated and commented in Section 5, and the time
complexity of the proposed algorithm is evaluated in Section 6.

2. The Problem of Boolean Minimization

The problem of two-level minimizaion will be defined in a
usua way [4, 6, 7]. A Bodean function of ninput variables is
defined by a truth table describing the on-set F(xy, %o, ... X,) and
off-set R(Xy, Xy, ... X,). Here the on-set (off -set) is the set of terms
to which the output value 1 (0) is assgned. Both minterms and
terms of higher dimension may be used for defining the on-set
and off-set, hence the individua lines of the truth table may
contain dorit care aitries in the input portion. The terms not
represented in the input field of the truth table ae implicitly
asdgned dorit care values of the output function, i.e., they
represent the don’t care set D(Xy, X, ... Xpn)-

We ae going to formulate asynthesis algorithm producing a
sum-of-products expression G = g;+g,+...+g, where F 0 G O
F+D and t isminimal. In the case of a set of m functions we will
minimizethe total number of implicants g; of al functions, while
some of them can be used for more output functions. According
to this gedfication, the number of product terms (implicants) is
used as a universal quality criterion. This is mostly justified, but
it should be kept in mind that the measure of minimality must
correspond to the needs of the intended applicaion. ESPRESSO
uses the sum of the number of literals and the number of inputs
into all output OR gates (also denoted as the output cost). For the
BOOM system the minimizaion criterion may be set as a
parameter.

3. Principle of the Method
3.1. BOOM Structure

When minimizing a single-output function, the BOOM system
uses the following three phases: 1. Coverage-direded seach
(generation of implicants). 2. Implicant expansion (generation of
prime impli cants). 3. Solution of the @vering problem.

For multi-output functions, instead of phase 3, phases 4, 5 and
6 are exeauted: 4. Prime implicant reduction. 5. Solution of the
group covering problem. 6. Solution of the covering problem for
ead output independently.

3.2. Minimization of Single-Output Functions

3.2.1. Coverage-Directed (CD) Search

The idea of confining implicant generation to those redly
needed gave rise to the CD-seach method, which is the most
innovative feature of the BOOM system. It consists in a direded
seach for the most suitable literals that should be added to some
previously constructed term in order to convert it into an
implicant of the given function. Thus instead of increasing the
dimension of an implicant starting from a 1-minterm (or any
other 1-term given in the function definition), we reduce the
n-dimensional hypercube by adding literals to its term, until it
becomes an implicant of the given function. This happens at the
moment when this hypercube no longer interseds with any
O-term.

The implicant generation method aims at finding a hypercube
that covers as many 1-terms as possble. We start by selecting the

most frequent input literal from the given on-set. The seleded
literal describes an n-1 dimensional hypercube, which may be an
implicant, if it does not intersect with any O-term. If there ae
some O-minterms covered, we add aie more literal and verify
whether the new term alrealy corresponds to an implicant. After
ead literal seledion we temporarily remove from the on-set the
terms that cannot be covered by any term containing the seleced
literal - the terms containing that literal with the oppaite
polarity. In the remaining on-set we repetitively find the most
frequent literal and include it into the previoudy found product
term until it is an implicant. Then we remove from the original
on-set the terms covered by this implicant. Thus we obtain a
reduced on-set containing only uncovered terms. Now we repea
the procedure from the beginning and apply it to the uncovered
terms, selecting the next most frequently used literal, until the
next implicant is generated. In this way we generate new
implicants, until the whole on-set is covered. The output of this
algorithm is a set of product terms covering al 1-terms and
interseding no O-term.

3.2.2. Implicant Expansion (IE)

The implicants generated during the CD-seach need not be
prime. To make them prime, we have to increase their size by |E,
which means by removing literals (variables) from their terms.
When o literal can be removed from the term any more, we get
aPl. The expansion of implicantsinto PIs can be done by several
methods differing in complexity and quality of results obtained.
We tested several approadcies, from the simplest sequential
seach (which is linea) to the most complex exhaustive
(exponential) seach.

A Sequential Search systematicdly tries to remove from
eat term al literals one by one, whereas the first litera is
chosen randomly. Every removal is made permanent if no
O-minterm is covered. Only one Pl is generated from eah
implicant, even if it could yield more Pls. A Sequential Seach
obviously does not reduce the number of product terms. On the
other hand, experimental results show that it reduces the number
of literals by approximately 25%.

With a Multiple Sequential Search we try all posdble
starting positions within an implicant, which thus expands into
severa Pls. This method produces more primes than a Sequential
Seach, while the time complexity is acceptable.

Even the Multi ple Sequential Search algorithm cannot expand
an implicant into al possble Pls. To do so, an Exhaustive
Implicant Expansion must be used. Using reaursion or gueue,
al possble literal removals are then tried until al primes are
obtained. Unfortunately, the complexity of this agorithm is
exponential.

All these expansion strategies have been tested and evaluated
from the point of view of runtime ad result quality. Finaly the
Multiple Sequential Seach was sleded as the best method for
standard problems.

Having found a sufficient set of prime implicants, the
covering problem is lved. The heuristics used basicdly
correspond to the method suggested, e.g., in [6, 12].

3.3. Minimization of Multi-Output Functions

When minimizing a multi-output function, ead of the outputs
isfirst treaed separately. After performing the CD-search and |IE
phases we have aset of Pls aufficient for covering all functions.
However, to oltain the minimum solution we may need group
implicants, i.e., implicants of more than one output function that
are not primes of any. Hence al obtained primes are tried for
reduction by adding some literals. The method d implicant
reduction is similar to a CD-search. Literals are repetitively
added to eadt term until there is no chancethat the implicant will
be used for more functions. We prefer literals that prevent
interseding with most of the O-terms of al functions. When no
further reduction yields any passible improvement, the reduction
is dopped, and the implicant is recorded. After assigning
impli cants to the output functions the group covering problem is
solved. Finally, the output reduction, corresponding to the
ESPRESSO's MAK E_SPARSE procedure [4, 7], is performed.

4. lterative Minimization

When selecting the most frequent literal during the CD search,
it may happen that two or more literals have the same frequency
of occurrence When no ather criterion can be gplied to selea
one literal, the BOOM system choaoses at random. Thus thereisa
chance that repeaed applicaion of the same procedure to the
same problem would yield different solutions.

The iterative minimization concept takes advantage of the fad
that ead iteration produces a new set of implicants stisfadory
for covering all minterms. The newly creaed implicants are
added to the previous ones and the cvering problem is lved
using al of them. The set of implicants grows until a maximum
reatable set is obtained. The typicd growth of the number of
Pls as a function of the number of iterations is shown in Fig. 1
(thin line). The values were obtained during the solution of a
problem with 20 input variables and 200 minterms.
Theoreticdly, the more primes we have, the better the solution
that can be found. In redity, the quality of the final solution
improves rapidly during the first few iterations and then remains
unchanged, as can be observed in Fig. 1 (thick line).

nnnnn
Pls

uuuuu

8000

Prime Implicants
sjesey

2000 Literals

10000 20000 30000
Iterations

Fig. 1. Growth of Pl number and decrease of SOP length
during iterative minimization

When the solution meds the requirements, the minimizaion is

stopped.

5. Experimental Results

Many different problems were solved to evaluate the
efficiency of the proposed agorithm, espedally for large
numbers of input variables. The results obtained will be

presented in the foll owing subsedions. All problems were solved
by BOOM and ESPRESSO [14] to compare the results (i.e.,
number of implicants and/or number of literals and the output
cost) and the runtime in sewnds. The processor used was a
Celeron 433MHz with 160MB RAM.

5.1. Standard MCNC Benchmarks

A set of 123 standard MCMC benchmarks [15] was lved by
BOOM and ESPRESS0O. Of these 123 poblems, 51.22 % were
solved by BOOM in shorter time than ESPRESSO, in 45.52 %
BOOM gave the same result as ESPRESSO (in one cae even
better). In 30.89 % these results were readed faster than by
ESPRESSO. It is also worth mentioning that in 28 cases the
BOOM runtime was non-measurable and the timer inserted an
implicit value of .01 sec

The so-cdled “hard” MCNC benchmarks were dso solved by
BOOM and ESPRESSO. For 10 problems BOOM found the
same solution as ESPRESSO, once in a shorter time, 4 problems
gave dightly worse solutions and 5 problems could not be solved
becaise of high memory demands. This is due to the high
number of terms, because for BOOM the runtime (and memory
demand) grows with the square of the number of terms - see
Sedion 6.

5.2. Problems with more than 100 variables

The MCNC benchmarks have relatively few input variables
(only for 3 standard benchmarks does n excead 50). In order to
compare the performance of the minimization programs on larger
tasks, a set of problems with up to 300input variables and up to
300 minterms were solved. The truth tables were generated
randomly, only the number of input variables, number of care
terms and number of dori't cares in the input portion of the truth
table (i.e., dimension of a term) were spedfied. The number of
outputs was st equal to 5 The on-set and off-set of each
function were kept approximately of the same size Firgt, the
problem was lved by ESPRESSO and then by BOOM, which
ran until a solution of the same or better quality was readed. The
quality criterion seleded was the sum of the number of literals
and the output cost. For al samples BOOM found the same or
better solution than ESPRESSO in much shorter time. As can be
seen from Tab. 1, BOOM needed at most 75 % of the
ESPRESSO time, but often its runtime sank below 1 %. The
number in parentheses indicaes the number of performed
iterations.

pin 100 150 200 250 300
50 |112(1) |06(1) |1.38(4) |0.76(2) |7.85(35)
100 |1.19(7) |4.01(9) |27.08(35)|8.00(19) |0.44(2)
150 | 11.88 (10) | 0.86(1) | 851 (20) | 14.49 (29) | 7.84 (19)
200 | 18.06 (15) | 30.94 (25) | 11.34 (20) | 029 (1) | 0.34(1)
250 | 74.94 (36) | 35.32 (23) | 51.56 (50) | 12.23 (27) | 21.55 (52)
300 | 60.81 (22) | 55.88 (38) | 49.11 (34) | 25.85 (38) | 6.83 (32)

Table 1. Percentage of ESPRESSO runtime needed by
BOOM for problemswith morethan 100 variables
5.3. Solution of Very Large Problems

A third group of experiments aimed at establishing the limits
of applicability of BOOM. For this purpose, a set of single-

output functions with up to 1000 input variables and 2000
defined minterms was generated and solved by BOOM. For
problems with more than 300 input variables ESPRESSO cannot
be used a al. Hence when investigating the limits of
applicability of BOOM, it was not possible to verify the results
by any other method. The results of this test are listed in Tab. 2,
where the time in seconds needed to complete one iteration for
various problem sizes is shown. We can see that even the largest
problem was solved in less than 5 minutes.

p/n 200 400 600 800 1000
200]o.21 0.38 0.55 0.90 1.06
400]0.98 1.90 3.30 4.84 5.96
600 |248 4.73 6.94 11.52 18.10
800 |]4.89 9.76 14.56 24.06 38.58
1000 |8.34 1551 27.88 48.85 74.29
1200 |17.64 |29.66 42.15 58.37 64.18
1400 |23.72 |41.49 58.58 74.09 106.65
1600 |36.05 |7343 104.90 118.98 161.42
1800]4953 |95.78 146.28 178.29 210.99
2000 |60.62 | 118.39 206.44 204.16 288.87

Table 2. Timefor oneiteration on very large problems

6. Time Complexity Evaluation

To establish the time complexity of the proposed agorithm,
we made a systematic investigation of the dependency of time
needed to complete one pass of the algorithm for various sizes of
single-output functions. Fig. 2 shows the growth of an average
runtime as a function of the number of care minterms (20-300)
and of the number of input variables (20-300). The curves on the
surface in Fig. 2 indicate that the runtime grows roughly with the
square of the number of care minterms and proportionally with
the number of input variables.

0.2 220
0,1 120
Input variables

eeeeeeee
««««««««
——————

Fig. 2. Dependence of runtime on the number of inputsand
number of terms

7. Conclusions

An original Boolean minimization method has been presented.
Its most important fedures are its appli cability to functions with
several hundreds of input variables and very short minimization
times for sparse functions. The function to be minimized is
defined by its onset and off-set, whereas the dont care sef,
which normally represents the dominant part of the truth table,
need not be spedfied explicitly. The entriesin the truth table may
be minterms or terms of higher dimensions. The implicants of the
function are nstructed by reduction of n-dimensiona cubes;
hence the terms contained in the original truth table ae not used
asabasisfor the final solution.

The properties of the BOOM minimizaion too were
demonstrated on examples. Its applicaion is advantageous above
al for problems with large dimensions and a large number of
don't care states where it bedas other methods, like ESPRESSO,
bath in minimality of the result and in runtime. The PI generation
method is very fast, hence it can easily be used in an iterative
manner. The problems with more than 100 input variables were
in all cases lved faster and mostly with better results than by
ESPRESSO. The dimension of the problems lved by BOOM
can eaily be increased over 100Q because the rurtime grows
linealy with the number of input variables. For problems of very
high dimension, success largely depends on the size of the cae
set. This is due to the fad that the runtime grows roughly with
the square of the size of the cae set.

The BOOM system isavailable on [13].

References

[1] FiZer, P. - Hlavicka, J.: Efficient Minimization Method for
Incompletely Defined Boolean Functions, Proc. 4" Int.
Workshop an Boolean Problems, Freiberg (Germany), Sept.
21-22, 2000, pp. 91-98

[2] Fi&er, P. - Hlavi¢ka, J.: Implicant Expansion Method used in
the BOOM Minimizer. Proc. IEEE Design and Diagnostics of
Eledronic Circuits and Systems Workshop (DDECS 01),
Gyor (Hungary), 18-20.4.2001, pp. 291-298

[3] Hlavi¢ka, J. - FiSer, P.: A Heuristic method o two-level logic
synthesis. Proc. The 5th World Multiconferenceon
Systemics, Cybernetics and Informatics SCI'2001, Orlando,
Florida (USA) 22-25.7.2001, pp. 283-288, I

[4] Brayton, R.K. et a.: Logic minimization algorithms for VLSI
synthesis. Boston, MA, Kluwer Academic Publishers, 1984
192pp.

[5] Coudert, O. - Madre, J.C.: Implicit and incremental
computation of primes and essential primes of Boolean
functions, In Proc. of the Design Automation Conf.
(Anaheim, CA, June 1992, pp. 36-39

[6] Coudert, O.: Two-level logic minimizaion: an overview.
Integration, the VLS journal, 17-2, pp. 97-140, Oct. 94

[7] Hadhtel, G.D. - Somenzi, F.: Logic synthesis and verificaion
algorithms. Boston, MA, Kluwer Academic Publishers, 1996
564 pp.

[8] McCluskey, E.J.: Minimization of Boolean functions. The
Bell System Technicd Journal, 35, No. 5, Nov. 1956, pp.
14171444

[9] McGes, P. et d.: ESPRESSO-SIGNATURE: A new exad
minimizer for logic functions. Proc. DAC' 93

[10] Nguyen, L. — Perkowski, M. — Goldstein, N.: Palmini —fast
Boolean minimizer for personal computers. In Proc. DAC’ 87,
pp.615-621

[11] Rudell, R.L. — Sangiovanni-Vincentelli, A.L.: Multiple-
valued minimization for PLA optimizaion. IEEE Trans. on
CAD, 6(5): 725-750, Sept.1987

[12] Rudell, R.L.: Logic Synthesisfor VLSI Design, PhD Thesis,
UCB/ERL M8949, 1989

[13] http://cs.felk.cvut.cz/~fiserp/boom/

[14] http://eda.seodu.co.kr/~chang/ download/espreso/

[15] ftp://ic.eecs.berkeley.edu

