
CCoolluummnn--MM aattcchhiinngg BBaasseedd

BBII SSTT DDeessiiggnn MM eetthhoodd
Petr Fišer, Jan

��� ����� �
	��

Department of Computer Science and Engineering

Czech Technical University

Karlovo nám. 13, 121 35 Prague 2

e-mail: fiserp@fel.cvut.cz, hlavicka@fel.cvut.cz

�
 A new test-per-clock BIST method

�
 For combinational circuits only

Principle of the method

PRPG patterns are transformed into the required

test patterns be some combinational logic –

 the output decoder

Perquisites

 The fault coverage is

determined by the test

patterns

 Test patterns are

precomputed by an ATPG

tool

The Inputs

 A set of patterns generated by a PRPG (LFSR, CA)

 A set of required test patterns

Our Task
Design the output decoder converting these two sets as small as possible

The problem: Transformation of matrices

C matrix: code words produced by a PRPG, dimensions (n, p)

n – the number of the PRPG bits (LFSR stages)

p – the number of PRPG patterns (cycles)

T matrix: test patterns produced by an ATPG, dimensions (r, s)

r – the number of the primary inputs of the CUT

s – the length of the test

Important facts:

• When testing combinational circuits, the order of test patterns generated by

an ATPG tool is insignificant ⇒ the patterns can be reordered in any way

• Any vector (row) from the T matrix can be assigned to any vector of the C
matrix

• The rows in the C matrix need not form a compact block (idle cycles can

be present)

�
 All the rows of the T matrix have to be assigned to the rows of the C matrix

�
 Unassigned C matrix rows represent idle PRPG cycles – make no harm

�
 After the assignment the output decoder is described by a truth table

�
 Boolean minimization is applied to the truth table – ESPRESSO or BOOM

The Column Matching Principle
Main Idea:

�
 If in the final assignment i-th column of the matrix C is exactly the same as

j-th column of the matrix T, there is no combinational logic required to

implement j-th variable in hardware

⇒ Matching of the columns
Also the negative matching is possible (using negated outputs of the flip-flops)

The principle:
1. Find as many column matches as possible

2. Match the rows (using some row matching method)

3. Construct the remaining logic using Boolean minimization (PLA matrix)

The Column Matching Algorithm
For p = s (one-to-one matching):

• The column match is possible if the counts of ones (and zeros) in the

corresponding columns are equal.

• After finding one column match, the two matrices are decomposed into two

disjoint parts: the rows with zeros and ones respectively in the corresponding

columns, let them be denoted as C0, C1 and T0, T1. Then any vector from the

sub-matrix T0 can be assigned to any vector from C0, and any vector from the

sub-matrix T1 can be assigned to any vector from C1, but not otherwise.

• The successive decomposition of both matrices into systems of subsets is

performed, until no decomposition is possible

Generalized column matching (p > s):

• Similar to one-to-one matching

• The number of vectors in each Ci must be greater or equal to the number of

vectors in the corresponding Ti

An Illustrative Example

ISCAS Benchmarks
• Test patterns computed by ATOM tool (100% fault coverage)

• An LFSR with r stages seeded with a random vector was used as a pseudo-

random pattern generator
benchmark LFSR (n / p) test size (r / s) matches cost

c1355 41 x 5000 41 x 192 8 1475

c1908 33 x 5000 33 x 210 10 2043

c432 36 x 5000 36 x 100 10 1180

c499 41 x 5000 41 x 127 9 698

c880 60 x 5000 60 x 133 10 3024

Conclusions
• A new test-per-clock BIST method for combinational circuits was described

• The pseudorandom patterns are generated by a PRPG and then transformed by a

combinational block into given test patterns

• It is based on the column matching approach, where as many outputs as possible

are directly matched to the inputs

Acknowledgment
This research was in part supported by grant #102/01/0566 Built-in Self-Test Equipment

Optimization Methods in Integrated Circuits of the Czech Grant Agency (GACR).

