
On Identification of XOR Gates in AIGs

Ivo Háleček, Petr Fišer, and Jan Schmidt

Dept. of Digital Design, Faculty of Information Technology

Czech Technical University in Prague, Czech Republic

halecivo@fit.cvut.cz; fiserp@fit.cvut.cz; schmidt@fit.cvut.cz

1. Introduction

Logic synthesis and optimization had become

a well-established and matured process in late 1980’s. Since

that time, different decomposition and optimization

algorithms have been proposed [1], [2] and academic tools

implementing these algorithms were released [3], [4]. Here,

the internal representation of a processed circuit is typically

a Boolean network, admitting arbitrary node functions.

Technology library gates appear later, in the technology

mapping phase [1], [2].

As a successor, algorithms based on And-Inverter-

Graphs (AIGs) appeared [5], [6] and were implemented in

the present academic state-of-the-art logic synthesis tool

ABC [7]. The internal representation is a directed acyclic

graph with nodes representing 2-input AND operators,

while the edges may be negated. Such a representation is

simple and scalable, and leads to simple algorithms.

Despite of unquestionable advantages of AIG-based

algorithms, there appeared hints recently, that contemporary

logic synthesis does not perform well in some cases [8], [9];

results orders of magnitude bigger than expected were

produced. One of the identified reasons of the failures is the

inability of the algorithms to produce results of any

structure, particularly, XOR-intensive structure [10], [11].

Essentially, employing a new type of decomposition in

a standard synthesis flow cannot ultimately solve the

problem; the synthesis must be adapted to be able to

perform more complex operations and natively support

more complex transformations [11]. Even the most recent

research in logic synthesis turns back from simple

representations to more complex ones [12], [13].

The aim of this work is to extend the concept of AIGs

to natively support XOR gates, i.e., to introduce a novel

internal representation, Xor-And-Inverter-Graphs (XAIGs),

and devise algorithms working upon it. XAIGs represent an

orthogonal approach to Majority-Inverter-Graphs (MIGs),

where the ANDs in AIG are substituted by majority-of-three

functions [13]. In contrast, XOR is not monotonic, and

XAIGs cover all relevant classes of NPN equivalence,

which may lead to different areas of efficient application.

In this paper we present a preliminary work, where XOR

structures are identified in an AIG. We study how structural

hashing [6] in ABC [7] handles XOR gates coming from an

already mapped netlist, whether they are structurally

retained and whether new XOR structures can be identified

in the AIG.

2. Identification of XORs in AIGs

To identify XOR gates in an AIG, AND-nodes are

scanned recursively for XOR patterns. As seen in Figure 1,

a XOR pattern consists of two input nodes, two or three

inner nodes and one end node, which can be either inverted

or not.

Once a pattern is found, fan-outs of the inner AND-

nodes are checked. If no fan-out leading outside the XOR is

found, the XOR is marked as “fanout-free”. Nodes not

marked as fanout-free are excluded from the total XOR

count.

Figure 1. XOR structures in AIG

An example of an AIG of a 2-bit adder optimized and

mapped by ABC is shown in Figure 2. The four identified

XOR structures are encircled; however, only three of them

can be used as gates, since the XOR structure rooted in node

22 is not fanout-free. However, its presence can be possibly

exploited, provided that other nodes will provide the signals

for nodes 10 and 12.

3. Experimental Results

We have performed the experiments using over 400

circuits from different benchmark sets [14], [15], [16], [17].

The ABC tool [7] was used to optimize and map the circuits

into 2-input gates (AND, NAND, OR, NOR, XOR, XNOR)

by a sequence of commands “strash; dch; map; mfs”. The

number of XOR gates in the resulting BLIF file was then

taken as the first measure.

Next, the resulting gate-level description was converted

back to an AIG by the ABC “strash” command, yielding

a structurally hashed AIG [6]. XOR structures in the

resulting AIGs were then identified, see Section II.

i1

x1 x2

y

i2

o

i1

x1 x2

y

i2

o

i1

x1 x2

y

i2

o

x0

Figure 2. Identification of XORs in an AIG of a 2-input adder

Some representative results are in TABLE I. After the

benchmark name, the number of gates in the mapped netlist

and the number of AIG nodes after structural hashing are

given. The column “XORs” indicates the number of XOR

gates in the mapped netlist, “FF XORs” gives the counts

of fanout-free XORs identified by our tool. Finally, the

number of all identified XOR structures is shown in the “All

XORs” column.

In several circuits, some XORs present in the mapped

netlist have disappeared during the AIG construction (see,

e.g., am2910). On the other hand, new XOR structures

appeared in the AIGs in some cases (see s38417). Moreover,

potential new XOR gates have been identified in most of

cases (see the last column).

4. Conclusions & Future Work

An algorithm to detect XOR structures in AIGs was

presented. Experimental results show that most of XORs

present in the original mapped netlist are preserved in AIG.

Moreover, newly formed XORs were discovered.

Our immediate future work will be focused on

possibilities of exploiting XOR gates identified in the AIG

in the optimization process and technology mapping. Next,

we are going to introduce the XAIG structure, where 2-input

XOR gates will be represented as a single node, in contrast

to three nodes in AIGs. Finally, synthesis and optimization

algorithms operating upon this structure will be devised.

Acknowledgement

This research has been in part supported by CTU grant

SGS15/119/OHK3/1T/18.

TABLE I. EXPERIMENTAL RESULTS

Name Gates AIG nodes XORs FF XORs All XORs

am2910 702 748 13 2 14

bca 2633 2449 0 0 13

bigkey 3527 3547 1 0 112

c1355 194 438 108 108 108

dalu 850 902 37 36 41

i10 1750 1866 86 84 110

parity 15 46 15 15 15

pcont2 1623 2053 245 245 430

s13207 2422 2399 118 106 142

s38417 8498 9220 358 359 377

Sum 874k 924k 25k 23k 33k

References

[1] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification
Algorithms, Boston, MA, Kluwer Academic Publishers, 1996, 564 p.

[2] S. Hassoun and T. Sasao, Logic Synthesis and Verification, Boston,
MA, Kluwer Academic Publishers, 2002, 454 p.

[3] E.M. Sentovich et al., “SIS: A System for Sequential Circuit
Synthesis,” Electronics Research Laboratory Memorandum No.
UCB/ERL M92/41, UC Berkeley, CA 94720, 1992, p. 52.

[4] M. Gao, Jie-Hong Jiang, Y. Jiang, Y. Li, S. Sinha, and R.K. Brayton,
“MVSIS,” in Notes of the IWLS, Tahoe City, June 2001.

[5] P. Bjesse and A. Boralv, “DAG-Aware Circuit Compression For
Formal Verification,” in Proc. of IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2004, pp. 42-49.

[6] A. Mishchenko and R. K. Brayton, “Scalable Logic Synthesis Using a
Simple Circuit Structure,” in Proc. of the 15th Intl. Workshop on
Logic and Synthesis, Vail, Col., USA, June 7–9, 2006, pp. 15-22.

[7] Berkeley Logic Synthesis and Verification Group, “ABC: A System
for Sequential Synthesis and Verification” [Online]. Available:
http://www.eecs.berkeley.edu/alanmi/abc/.

[8] J. Cong and K. Minkovich, “Optimality study of logic synthesis for
LUT-based FPGAs”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 2007, Vol. 26, No. 2, pp. 230–239.

[9] P. Fišer and J. Schmidt, “Small But Nasty Logic Synthesis
Examples”, Proceedings of the 8th. Int. Workshop on Boolean
Problems, 2008, Freiberg, pp. 183–189.

[10] P. Fišer and J. Schmidt, “The Case for a Balanced Decomposition
Process”, in Proc. of the of 12th EUROMICRO Conference on
Digital System Design, 2009, pp. 601–604.

[11] C. Yang and M. Ciesielski, “BDS: A BDD-Based Logic Optimization
System”, IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems Vol. 21, 2002, No. 7, pp. 866–876.

[12] L. Amarù, P.-E. Gaillardon, G. De Micheli, “Biconditional Binary
Decision Diagrams: A Novel Canonical Representation Form”, IEEE
Journal on Emerging and Selected Topics in Circuits and Systems
(JETCAS), Vol. 4, No. 4, 2014, pp. 487-500.

[13] L. Amarù, P.-E. Gaillardon, G. De Micheli, “Boolean Logic
Optimization in Majority-Inverter Graphs”, Design Automation
Conference (DAC), San Francisco, CA, USA, 2015.

[14] S. Yang, “Logic Synthesis and Optimization Benchmarks User
Guide,” Technical Report 1991-IWLS-UG-Saeyang, MCNC,
Research Triangle Park, NC, January 1991, p. 45.

[15] F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles of
Sequential Benchmark Circuits,“ in Proc. of the International
Symposium of Circuits and Systems, 1989, pp. 1929-1934.

[16] F. Corno, M.S. Reorda, G. Squillero, “RT-level ITC`99 benchmarks
and first ATPG results,“ in Proc. of the IEEE Design and Test of
Computers (2000), pp. 44-53.

[17] http://opencores.org

