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1. Introduction 

Logic synthesis and optimization had become 

a well-established and matured process in late 1980’s. Since 

that time, different decomposition and optimization 

algorithms have been proposed [1], [2] and academic tools 

implementing these algorithms were released [3], [4]. Here, 

the internal representation of a processed circuit is typically 

a Boolean network, admitting arbitrary node functions. 

Technology library gates appear later, in the technology 

mapping phase [1], [2].  

As a successor, algorithms based on And-Inverter-

Graphs (AIGs) appeared [5], [6] and were implemented in 

the present academic state-of-the-art logic synthesis tool 

ABC [7]. The internal representation is a directed acyclic 

graph with nodes representing 2-input AND operators, 

while the edges may be negated. Such a representation is 

simple and scalable, and leads to simple algorithms. 

Despite of unquestionable advantages of AIG-based 

algorithms, there appeared hints recently, that contemporary 

logic synthesis does not perform well in some cases [8], [9]; 

results orders of magnitude bigger than expected were 

produced. One of the identified reasons of the failures is the 

inability of the algorithms to produce results of any 

structure, particularly, XOR-intensive structure [10], [11].  

Essentially, employing a new type of decomposition in 

a standard synthesis flow cannot ultimately solve the 

problem; the synthesis must be adapted to be able to 

perform more complex operations and natively support 

more complex transformations [11]. Even the most recent 

research in logic synthesis turns back from simple 

representations to more complex ones [12], [13]. 

The aim of this work is to extend the concept of AIGs 

to natively support XOR gates, i.e., to introduce a novel 

internal representation, Xor-And-Inverter-Graphs (XAIGs), 

and devise algorithms working upon it. XAIGs represent an 

orthogonal approach to Majority-Inverter-Graphs (MIGs), 

where the ANDs in AIG are substituted by majority-of-three 

functions [13]. In contrast, XOR is not monotonic, and 

XAIGs cover all relevant classes of NPN equivalence, 

which may lead to different areas of efficient application. 

In this paper we present a preliminary work, where XOR 

structures are identified in an AIG. We study how structural 

hashing [6] in ABC [7] handles XOR gates coming from an 

already mapped netlist, whether they are structurally 

retained and whether new XOR structures can be identified 

in the AIG. 

2. Identification of XORs in AIGs 

To identify XOR gates in an AIG, AND-nodes are 

scanned recursively for XOR patterns. As seen in Figure 1, 

a XOR pattern consists of two input nodes, two or three 

inner nodes and one end node, which can be either inverted 

or not. 

Once a pattern is found, fan-outs of the inner AND-

nodes are checked. If no fan-out leading outside the XOR is 

found, the XOR is marked as “fanout-free”. Nodes not 

marked as fanout-free are excluded from the total XOR 

count. 

 
Figure 1. XOR structures in AIG 

An example of an AIG of a 2-bit adder optimized and 

mapped by ABC is shown in Figure 2. The four identified 

XOR structures are encircled; however, only three of them 

can be used as gates, since the XOR structure rooted in node 

22 is not fanout-free. However, its presence can be possibly 

exploited, provided that other nodes will provide the signals 

for nodes 10 and 12. 

3. Experimental Results 

We have performed the experiments using over 400 

circuits from different benchmark sets [14], [15], [16], [17]. 

The ABC tool [7] was used to optimize and map the circuits 

into 2-input gates (AND, NAND, OR, NOR, XOR, XNOR) 

by a sequence of commands “strash; dch; map; mfs”. The 

number of XOR gates in the resulting BLIF file was then 

taken as the first measure. 

Next, the resulting gate-level description was converted 

back to an AIG by the ABC “strash” command, yielding 

a structurally hashed AIG [6]. XOR structures in the 

resulting AIGs were then identified, see Section II. 
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Figure 2.  Identification of XORs in an  AIG of a 2-input adder 

Some representative results are in TABLE I.  After the 

benchmark name, the number of gates in the mapped netlist 

and the number of AIG nodes after structural hashing are 

given. The column “XORs” indicates the number of XOR 

gates in the mapped netlist, “FF XORs” gives the counts 

of fanout-free XORs identified by our tool. Finally, the 

number of all identified XOR structures is shown in the “All 

XORs” column. 

In several circuits, some XORs present in the mapped 

netlist have disappeared during the AIG construction (see, 

e.g., am2910). On the other hand, new XOR structures 

appeared in the AIGs in some cases (see s38417). Moreover, 

potential new XOR gates have been identified in most of 

cases (see the last column). 

4. Conclusions & Future Work 

An algorithm to detect XOR structures in AIGs was 

presented. Experimental results show that most of XORs 

present in the original mapped netlist are preserved in AIG. 

Moreover, newly formed XORs were discovered. 

Our immediate future work will be focused on 

possibilities of exploiting XOR gates identified in the AIG 

in the optimization process and technology mapping. Next, 

we are going to introduce the XAIG structure, where 2-input 

XOR gates will be represented as a single node, in contrast 

to three nodes in AIGs. Finally, synthesis and optimization 

algorithms operating upon this structure will be devised. 
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TABLE I.  EXPERIMENTAL RESULTS  

Name Gates AIG nodes XORs FF XORs All XORs 

am2910 702 748 13 2 14 

bca 2633 2449 0 0 13 

bigkey 3527 3547 1 0 112 

c1355 194 438 108 108 108 

dalu 850 902 37 36 41 

i10 1750 1866 86 84 110 

parity 15 46 15 15 15 

pcont2 1623 2053 245 245 430 

s13207 2422 2399 118 106 142 

s38417 8498 9220 358 359 377 

Sum 874k 924k 25k 23k 33k 
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