
Simulation and SAT Based ATPG for Compressed Test Generation

J. Balcárek, P. Fišer, and J. Schmidt
Dept. of Digital Design

Czech Technical University in Prague
Prague, Czech Republic

{jiri.balcarek, petr.fiser, jan.schmidt}@fit.cvut.cz

Abstract—This paper presents a novel ATPG algorithm
directly producing compressed test patterns. It benefits both
from the features of satisfiability-based techniques and
symbolic simulation. The ATPG is targeted to architectures
comprised of interconnected embedded cores, particularly to
the RESPIN architecture. We show experimentally that the
proposed ATPG significantly outperforms the state-of-the-art
approaches in terms of the test compression ratio.

Keywords-ATPG, satisfiability, symbolic simulation, test
compression, embedded cores, RESPIN.

I. INTRODUCTION
As the complexity of integrated circuits and systems

continually increases, their testing becomes more and more
difficult. The test data volume increases with the circuit size,
making the test storing and application unfeasibly memory
and time consuming. Therefore, using some kind of test
compression becomes inevitable. According to the ITRS
roadmap [1], the required test data volume compression
reaches tremendous ratios (2,000-times in 2015 and up to
more than 100,000-times in 2024).

The compression (and subsequent decompression) can be
accomplished by several means. The test compression is
performed algorithmically, whereas the decompression
always involves some additional hardware. Basically, there
are three major approaches:

1. A non-compressed test is generated by a
conventional Automatic Test Pattern Generation tool
(ATPG) and then it is algorithmically compressed.
The decompression is then performed by a special
non-intrusive hardware, usually a kind of FSM. This
approach comprises Huffman encoding based
algorithms [2], Golomb codes [3], statistical (FDR)
codes [4], but also the well-known LFSR reseeding
[5], [6], and the Embedded Deterministic Test (EDT)
technique [7], which is now the industrial
state-of-the-art.

2. Dedicated design-for-testability (DFT) architectures
are used for test decompression, while the test
generation process still relies on a conventional
ATPG. Random access scan [8], [9], Illinois scan
[10] and RESPIN-based [11], [12], [13]
architectures belong to this category, together with

rather theoretical papers with no particular
architecture proposed [14].

3. Dedicated ATPGs are used to generate test for
dedicated architectures. Such an approach
theoretically offers the highest possible flexibility.
Methods presented in [15], [16], and [17] are typical
representatives. Here the ATPG is constrained or
modified, so that the compressed test stream for the
RESPIN architecture is generated directly. This is
also the approach we have adopted in this paper.

As for ATPGs, there are two major baselines:
circuit-based ATPGs [18], [19], [20], [21] and approaches
transforming the ATPG problem to the satisfiability
(CNF-SAT) problem [22], [23]. Modern ATPGs then
combine benefits of both, mostly by introducing structural
information to help the SAT-solver compute the solution
faster [24], [25], [26].

In this paper we extend the SAT-Compress algorithm
[16], [17] by injection of “don’t cares” into the generated test
stream, in order to maximize the freedom of the search
algorithm, and thereby produce more compact results.

The SAT-Compress ATPG algorithm generates the test
stream by constraining a conventional SAT-based ATPG.
Conventional SAT solvers [27], [28] used as the vital part
of most of SAT-based ATPG tools produce completely
specified solutions (all variables are assigned a value in the
satisfying solution), which somewhat restricts the search for
subsequent test patterns. Although there are many techniques
allowing don’t cares in the solution [29], [30], or there are
even optimization SAT solvers maximizing the number
of don’t cares in the solution [31]-[35] (let us call them DC-
SAT solvers), we will show that they are highly unsuitable
for our application.

We propose a fault simulation-based technique to
alleviate the constraints imposed by completely specified
SAT solutions by sequentially trying to “unassign” particular
variables.

The benefits of such an approach will be experimentally
documented, showing significant improvement in both the
test stream size and test compression time.

The paper is organized as follows: the target architecture
and basic principles of test compression/decompression are
sketched in Section II. Basics of SAT-based ATPGs and the
SAT-Compress algorithm are given in Section III. The way

of injecting don’t cares is described in Section IV, Section V
presents experimental results, to illustrate the contribution
of the proposed method. The presented don’t care injection
technique is justified and discussed in Section VI. Section
VII concludes the paper.

II. TARGET ARCHITECTURE

A. The RESPIN Architecture
The SAT-Compress algorithm [16], [17] and also its

enhancement proposed in this paper are based on the
RESPIN architecture [11], which is targeted to SoC designs
compliant with the IEEE P1500 standard [36], [37]. Only a
very small modification of P1500 (addition of one
multiplexer) can accomplish the test decompression job.

The basic idea of RESPIN is illustrated by Figure 1.
Multiple embedded cores are considered here. To test one
core (CUT – Core under Test), the test decompression is
performed by another core (ETC – Embedded Tester Core).

RESPIN uses two features of P1500 – the serial and
parallel test access mode. The compressed test bitstream
serially enters the ETC, which is configured as a shift-
register. Then the decompressed data is applied to the CUT,
which is tested in the parallel scan-chain mode.

Figure 1. RESPIN architecture [11]

The ETC is provided by a multiplexer, enabling rotation
of the pattern. Thereby, if no data come from the ATE, no
information on the stored pattern is lost. This enables a
simple way to compression: the deterministic
non-compressed test patterns are reordered (see
Subsection II.B), so that they overlap when rotated by one
(optimally) clock cycle. Then the next test pattern to be
applied to the CUT involves only one bit coming from the
ATE. For details see [11].

B. Patterns Overlapping Based Approaches
An illustrative example of an overlapping-based

compression is shown in Figure 2. Here the non-compressed
test length equals to the number of patterns multiplied by the
number of CUT scan-chain cells, 105 = 50 bits in the

example case. When properly overlapped, the compressed
test length is only 16 bits.

Note that by shifting the pattern only by one bit the
overlap needs not be always achieved. Then two or more
clock cycles (shifts) must be applied. Such a situation is in
[11] referred to as a presence of link patterns. They do not
increase the fault coverage, but may increase the defect
coverage.

Figure 2. Patterns overlapping

Algorithms producing compressed test from test patterns
obtained by ATPG rely on one property of scan-based
designs: the order of patterns in which they are applied to the
CUT is insignificant. Therefore, the patterns may be
reordered, in order to reach maximum compression (i.e.,
maximum overlap).

Further, standard circuit-based ATPGs [21] are able
to generate test patterns with a huge amount of don’t care
values (typically more than 90% in industrial designs [7]).
Test don’t cares are greatly beneficial for the compression,
since they can be overlapped with any value. Thus, don’t
cares bring more freedom into the overlapping process.

The RESPIN compression algorithm [11] just
sequentially tries all yet uncovered test vectors for overlap
with the pattern stored in the ETC shifted by one bit, with the
bit at the released position left unassigned (don’t care).
If such a vector is found, the pattern is constrained by this
vector and a new test stream bit is generated. If not, the ETC
pattern is shifted by one more bit, adding another don’t care,
and the procedure is repeated. The algorithm is greedy, in the
first-improvement manner.

Let us note that other algorithms used for the purpose
of finding an optimum overlapping exist. For example,
in [14] the authors transform the problem to the Travelling
Salesman Problem (TSP). However, TSP is NP-complete
and therefore hard to apply to practical examples.

III. THE SAT-COMPRESS ALGORITHM
Unlike in the previously mentioned approaches ([7]-

[14]), we do not rely on pre-generated test patterns. Even
though numerous unspecified (don’t care) bits are present
in non-compacted tests produced by conventional ATPGs,
there is still some information lost; all vectors detecting a
fault usually cannot be described by a single pattern, even
with don’t cares.

0010-
010--
101--
01010
10100
100--
00111
0111-
11100
10001

0010-
 010--
 101--
 01010
 10100
 100--
 00111
 0111-
 11100
 10001
0010101001110001

Test bits tream:
 010-- 01010 100-- 0111- 100010010- 101-- 10100 00111 11100
Compressed test bitstream:
 0010101001110001

Test patterns Overlapped test patterns

Therefore, we use an implicit representation of all test
patterns for a given fault as a SAT instance described in a
conjunctive normal norm (CNF). Any satisfying solution
of the related CNF-SAT problem represents a test vector for
the fault [23] and vice versa. If the CNF is not satisfiable, the
fault is undetectable (redundant).

The size of the SAT instance is linear with the circuit
size, therefore such an approach imposes no computational
and memory overhead.

For details of the circuit-CNF conversion, see [23], [24],
[16], [17].

The compressed test is produced by constraining SAT
instances by patterns stored in the ETC. Note that a similar
approach was proposed in [15]. Here a conventional
(commercial) ATPG was constrained in a similar way.
However, SAT-based representation of test vectors offers
much higher flexibility and possibilities of speed-up [17].

Basic principles of SAT-based ATPGs and the
SAT-Compress algorithm will be briefly reviewed in this
Section.

SAT-Compress tries to find the best overlap of test
patterns by gradually building the compressed test bitstream,
while each generated test pattern imposes constraints on the
subsequent test pattern. The basic algorithm is shown
in Figure 3.

First, a fault list for the circuit is generated (1).
Redundant faults are detected by solving SAT for each fault
and deleted from the fault list (2). Then the bitstream is
initialized by the first test pattern TP0 (3, 4). It can be an all-
zero pattern representing the reset state of the scan-chain
[11], [12], or any pattern the designer chooses. Then the
pattern is submitted to the fault simulation, and faults
detected by it are removed from the fault list (5).

The initial pattern forms constraints for the subsequent
pattern. Indeed, the constraints are formed by shifting the
pattern by one bit left and a don’t care is put to the rightmost
position, unconstraining the last bit of the pattern TP[n-1] (6,
7). The variable n represents the number of bits in the pattern
which corresponds to the number of PIs of the circuit.
Therefore, all but one bits of the subsequent pattern are
constrained.

The compressed bitstream is gradually generated in the
main loop of the algorithm (8-26). A CNF is generated for
each fault (10), the constraints are applied to this CNF (11),
and SAT is solved (12). If the constrained formula is
satisfiable, a new test pattern is formed from the assignment
of primary inputs in the SAT solution (14). Faults detected
by this pattern are then removed from the fault list (15) and
the inner loop is terminated (16).

If no fault can be detected by the pattern with the current
constraints imposed (19), a link pattern (Subsection II.B,
[11]) is generated by randomly assigning one bit (20-21).

Then a new bitstream bit and new constraints are formed
(23-25). The test generation continues until the fault list is
not empty (26).

SAT-Compress (circuit)
1 Generate FL for circuit
2 Remove redundant faults from the FL
3 TP = TP0
4 bitstream = TP
5 FL = FL - Detected_by_simulation(TP)
6 constraints[0...n-2] = TP[1 .. n-1]
7 constraints[n-1] = DC
8 do {
9 for each fault fFL {
10 = Create_CNF(circuit, f)
11 = Apply_constraints(constraints,)
12 S = SAT()
13 if (S) {
14 TP = Assignment_of_PIs(S)
15 FL = FL - Detected_by_simulation(TP)
16 break the for loop
17 }
18 }
19 if (S ==) {
20 TP = constraints
21 TP[n-1] = random_bit
22 }
23 bitstream += TP[0]
24 constraints[0...n-2] = TP[1 .. n-1]
25 constraints[n-1] = DC
26 } while (FL)
27 return bitstream

Figure 3. The SAT-Compress algorithm

IV. INJECTING DON’T CARES
The proposed extension of the SAT-Compress algorithm

by don’t care injection, the Coverage Preserving Don’t Care
Injection (CPDCI) technique, will be described in this
section. Basically, it involves an alleviation of constraints
obtained by the SAT solver, which gives the SAT-Compress
more freedom in test patterns overlapping. It can be
assumed, that such a constraints reduction can accelerate the
algorithm and increase the compression ratio, because less
constrained patterns could be overlapped easier.

InjectDCs(constraints, TP, FL)
1 d1 = |detected_by_simulation(TP)|
2 TP_tmp = TP
3 for (i = 0; i < n; i++) {
4 if (constraints[i] == DC) {
5 TP_tmp[i] = DC
6 d2 = |detected_by_simulation(TP_tmp)|
7 if (d1 == d2) TP = TP_tmp
8 }
9 }
10 return TP

Figure 4. Coverage Preserving Don’t Care Injection (CPDCI)

The DCs injection is performed by a procedure which is
called for each test pattern obtained as the SAT solution
of the CNF (Figure 3, step 14). Note that the SAT solution is
completely specified, i.e., all bits of the pattern are assigned
a value. However, the fault coverage of the pattern can
remain intact, even when some of its bits are “unassigned”.
This is the main idea of the Coverage Preserving Don’t Care
Injection technique.

The procedure has three input parameters: the
constraints, the test pattern (TP) and the fault list (FL). Its
pseudo-code is shown in Figure 4.

First, the number of faults detected by the original
completely specified pattern is found by simulation (1).
A temporary test pattern is then formed as a copy of the test
pattern (2). Next, each variable is sequentially tried for
“unassignement”, i.e., the don’t care injection (3). Of course,
the value of the variable cannot be changed if previous
constraints were applied to it, since it would modify the
already generated bitstream (4).

A don’t care is then temporarily injected (5) and fault
simulation [38] is performed (6). If the fault coverage
remains intact, the injection is made permanent (7).

The result of the procedure is a test pattern covering all
faults the original pattern covered, with some bits
unassigned.

This procedure is greedy; its complexity is polynomial
with the circuit size (depending on the fault simulation
subroutine used). Therefore, it imposes no big run-time
overhead.

When summarized, the CPDCI technique maximally
alleviates the constraints, whereas the fault coverage of the
pattern is preserved.

Restricting the don’t care injection to fully preserve the
fault coverage of the pattern may seem to be too strong.
Actually, any pattern covering at least one fault can be used
as a candidate. To accept such patterns, only the condition
in step 7 has to be modified to “d2 > 0”. Even though
maximum of don’t cares are injected this way, such an
approach did not lead to satisfactory solutions. This issue
will be discussed in Section VI.

V. EXPERIMENTAL RESULTS

A. Summary Comparison Results
A comparison of the basic SAT-Compress algorithm and

its extension by Coverage Preserving Don’t Care Injection
technique (CPDCI) will be presented in this Subsection.

The measurements were performed on a CPU i5-2400
3.1GHz with 8GB RAM. Atalanta [21], [38] was used for the
fault list generation and fault simulation purposes, MiniSAT
v1.14 [27] as the SAT solver.

The experiments have been performed on a subset (170
benchmark circuits) of the ISCAS'85 [39], ISCAS'89 [40],
ITC'99 [41] and LGSynth [42] benchmark circuits.

The summary results are shown in TABLE I.

The first column of the table (“Circuit”) represents the
name of the benchmark circuit. The second column “#Flts”
gives the number of faults in the circuit, which reflects its
size. The next two columns “#Bits” and “Time” represent
the number of bits of the compressed bitstream and the time
spent by compression by the basic SAT-Compress algorithm.
The next columns show results for the SAT-Compress
algorithm with the CPDCI technique. The length of the
compressed bitstream and the compression time is shown
here too. The percentage test length and time improvements
w.r.t. the basic SAT-Compress algorithm are shown in the
“Bits impr.” and “Time impr.” columns.

Furthermore, the column “#DCs tried” shows the
number of care bits tried for DCs injection and the “DCs set”
column the number of successfully injected bits. The
percentage of successfully injected don’t cares is then shown
in the “Success” column.

Finally, results of the test compression tool COMPAS
[12], [13] are shown. This tool was chosen for comparison,
because it represents the current state-of-the-art and is based
on the same principles (the RESPIN architecture). However,
it relies on a pre-computed test, instead of generating the
compressed test sequence adaptively.

The compressed bitstream lengths are given in the
“#Bits” column, the bitstream length differences w.r.t. the
proposed CPDCI technique is shown in the last column.
COMPAS runtimes are not present, since the experiments
were conducted on different platforms, thus they are hardly
comparable.

The last row of the table shows average values obtained
from all benchmarks.

We can see that the CPDCI technique can significantly
decrease the length of the compressed bitstream and
accelerate the algorithm. The bitstream length is reduced
by 46.31% on average and the compression time is reduced
to 35.18% in comparison with the basic SAT-Compress
algorithm. Even the successfulness of the CPDCI technique
in don’t care injection is remarkable; more than 65% of bits
tried were successfully assigned a don’t care.

The CPDCI technique increased the efficiency of the
SAT-Compress algorithm, both in the compressed test length
and test generation runtime. However, there are some cases
where the extended SAT-Compress algorithm produces
worse results, e.g. for the c499 circuit. We assume that such
results are caused by some special properties of the
benchmarks, like the percentage of random pattern resistant
faults. This phenomenon deserves a more detailed
exploration.

In comparison with COMPAS we reach a 6%
improvement on average. There are benchmarks, for which
SAT-Compress strikingly overcomes COMPASS (e.g.,
c1355, c2670). For some benchmarks COMPAS wins,
however, the differences are not so big. This is probably due
to a huge amount of randomness introduced into the ATPG
process, as it will be shown in the following subsection.

B. Influence of Randomness on the ATPG Process
There are many random aspects that can influence the

test generation process. First of all, it is the selection of the
initial test pattern (TP0 in Figure 3). It defines the initial
constraints and therefore it influences the whole run of the
greedy algorithm. The same holds for the ordering of the
fault list. The fault list is traversed sequentially until a test
vector detecting some fault is found (see Figure 3, steps 9,
16). Different orderings of the fault list will induce different
runs of the test generation heuristic.

The influence of the initial test pattern is shown in Figure
5 and Figure 6 for two benchmark circuits (c432 and c880).
The ATPG process was executed 5,000-times, each time
with a randomly generated initial pattern. The frequencies
of occurrence of the resulting bitstream of different lengths
(the x-axis) are shown, both for the basic SAT-Compress and
the SAT-Compress augmented with CPDCI.

Figure 5. Frequency of bitstream length distribution (c432)

Figure 6. Frequency of bitstream length distribution (c880)

We can see that the histograms follow the Gaussian
distribution, which is expectable. More importantly, the two
distributions have different mean values, advantageously

to the CPDCI. CPDCI also has smaller standard deviation.
This gives us an experimental proof that CPDCI is
systematically better than the original algorithm.
Nevertheless, the influence of the randomness is crucial
(even though reduced in the CPDCI case), and worse results
can be obtained by CPDCI accidentally, see Figure 5, where
the histograms overlap.

VI. JUSTIFICATION OF CPDCI AND DISCUSSION
As it was mentioned in Section IV, the requirement

of completely preserving the fault coverage in CPDCI may
be too strong. Theoretically, even more don’t cares could be
injected by the procedure in Figure 4, for a cost of losing the
fault coverage of the processed pattern. Note that any pattern
covering at least one fault is “useful” and may be returned as
a result of the InjectDCs procedure. Faults that became
undetected by this pattern are just not removed from the fault
list, so as to be covered by latter patterns.

Therefore, we may ask whether the fault coverage, or the
number of patterns don’t cares, play more significant role
in the compression process.

Now let us assume a slight modification of the InjectDCs
algorithm from Figure 4, see Figure 7. Only the step 7 is
modified, so that a single don’t care injection is accepted, if
the fault coverage of the resulting vector drops by the ratio
CL at most, CL0, 1). Therefore, there are two extreme
cases:

1 CL = 0. This corresponds to the CPDCI technique;
the fault coverage must remain the same. Therefore,
the fault for which the pattern was generated
(f in Figure 3, step 9) is covered, together with all
the other faults the original pattern (TP) covered.

2 CL infinitely approaches 1. Here any vector
covering at least one fault is accepted. Note that the
fault f needs not be covered any more. However, a
pattern covering any yet uncovered fault represents
a “useful” and valid solution. Patterns having more
don’t cares are produced, thus the overlapping
algorithm is offered yet more freedom.

Summarized, low values of CL represent cases, where the
coverage is not lost by the pattern, however less don’t cares
are injected. High CL values induce injecting more don’t
cares, for a cost of losing fault coverage of the pattern.

InjectDCs_CL(constraints, TP, FL, CL)
1 d1 = |detected_by_simulation(TP)|
2 TP_tmp = TP
3 for (i = 0; i < n; i++) {
4 if (constraints[i] == DC) {
5 TP_tmp[i] = DC
6 d2 = |detected_by_simulation(TP_tmp)|
7 if ((d1 - d2) / d1 ≤ CL) TP = TP_tmp
8 }
9 }
10 return TP

Figure 7. The simulation based DCs injection

0

50

100

150

200

250

300

350

400

450

135 155 175 195 215 235 255 275 295 315 335 355 375

N
um

be
r o

f o
cc

ur
en

ce
s

[-]

Bitstream length [-]

SAT-Compress

CPDCI

0

20

40

60

80

100

120

140

160

180

N
um

be
r o

f o
cc

ur
en

ce
s

[-]

Bitstream length [-]

SAT-Compress

CPDCI

It is difficult to say intuitively, what CL values will
produce best results. Low values preserve the fault coverage
of the pattern, which may theoretically speed up the whole
compression process. Since patterns covering more faults are
generated, less patterns (and therefore SAT instances) will be
needed to achieve complete fault coverage. However, these
patterns will be rather constrained (low number of don’t
cares), and thus the chances of a successful overlap decrease.

Conversely, high CL values induce many don’t cares, the
vectors will more likely overlap, however, more vectors
would be probably needed to achieve the complete fault
coverage.

While the influence of CL on the numbers of generated
SAT instances and injected don’t cares is quite clear, it is
discussable what effects will these two aspects have on the
final bitstream length and the compression run-time.
Therefore, we have evaluated the influence of the CL value
on the algorithm execution experimentally.

The results for one representative ISCAS'85 [39]
benchmark circuit c3540 are shown in TABLE II. The
SAT-Compress algorithm was run with different values of
the CL parameter and the absolute numbers of SAT instances
solved (“SATs”), the absolute numbers of injected don’t
cares (“DCs”), the final bitstream length (“Bits”), and the
compression run-time (“Time [s]”) were measured. The
values were obtained from averaging values of 30 runs with
random initial patterns, to diminish the influence
of randomness.

TABLE II. INFLUENCE OF LOSING FAULT COVERAGE

CL [%] SATs DCs Bits Time [s]
0 770.33 3385.97 820.33 585.07
5 765.59 3442.73 815.59 467.85

10 773.15 3509.79 823.15 637.94
15 804.88 3686.73 854.88 606.44
20 799.12 3804.24 849.12 571.74
25 796.12 3899.79 846.12 548.21
30 822.09 4008.97 872.09 578.85
35 843.61 4305.64 893.61 590.09
40 861.39 4439.18 911.39 605.66
45 868.23 4492.18 918.23 342.38
50 946.50 5206.18 996.50 344.73
55 941.55 5216.45 991.55 492.73
60 950.91 5331.45 1000.91 514.31
65 985.50 5573.05 1035.50 844.77
70 1042.68 6130.23 1092.68 845.89
75 1087.73 6565.82 1137.73 775.16
80 1099.50 6756.91 1149.50 754.09
85 1126.05 7106.68 1176.05 884.67
90 1191.00 7839.77 1241.00 982.47
95 1226.36 8462.09 1276.36 1072.92

99.99… 1307.88 9924.30 1357.88 1105.55

We can see that the initial assumptions were confirmed:
the number of solved SAT instances monotonously grows
with increasing CL, while the number of injected don’t cares
increases too.

The most important observation concerns the final
bitstream length: the bitstream length monotonously
increases with CL (see Figure 8), with best results obtained
for CL = 0, i.e., the CPDCI technique. The same holds for
the runtime. Similar experiments were performed on many
other benchmark circuits and the same behavior was
observed in all cases.

This experiment has shown that no fault coverage of
every single pattern can be sacrificed, even though more
don’t cares would be injected otherwise. Therefore, the usage
of the CPDCI technique from Figure 4 is fully justified; there
is no need for looking for a compromise between the number
of injected don’t cares and the fault coverage.

Consequently, this also compromises using DC-SAT
solvers ([29]-[35]) to obtain don’t cares; don’t cares must be
injected with care, and definitely their number in the SAT
solution must not be the optimization criterion for the
SAT-solver.

Figure 8. Influence of CL on the generated bitstream length

VII. CONCLUSIONS
We have presented an efficient enhancement of the

SAT-Compress ATPG algorithm, the Coverage Preserving
Don’t Care Injection technique (CPDCI). Basically, the
SAT-Compress algorithm gradually constructs compressed
test patterns by repetitively solving the SAT problem for
instances constrained by patterns generated in previous steps.
The CPDCI technique significantly alleviates these
constraints by substituting defined values by don’t cares,
without any loss of the fault coverage in each step. This is
accomplished by a procedure based on a symbolic fault
simulation. Less constrained SAT instances allow reaching
better results, both in test bitstream size (by 46% on average)
and test generation time (by 35% on average). We see that
even though the fault simulation imposes some
computational overhead, the resulting run-time is
significantly reduced, because of shorter bitstreams
generated.

ACKNOWLEDGMENT
This research has been supported by the grant of the

Czech Technical University in Prague,
SGS13/101/OHK3/1T/18.

REFERENCES
[1] Semiconductor Industry Association, “The International Technology

Roadmap for Semiconductors (ITRS)”, 2009.
On-line: http://www.itrs.net/

[2] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan vector
compression/decompression using statistical coding,” in Proc. of
VLSI Test Symp., 1999, pp. 114-120.

[3] A. Chandra and K. Chakrabarty, “Efficient test data compression and
decompression for system-on-a-chip using internal scan chains and
Golomb coding,” in Proc. of Design, Automation and Test in Europe,
Conference 2001, pp.145-149.

[4] A. Chandra and K. Chakrabarty, “Test Data Compression and Test
Resource Partitioning for System-on-a-Chip Using Frequency-
Directed Run-Length (FDR) Codes,” in IEEE Transactions
on Computers, vol. 52, No. 8, 2003, pp. 1076-1088.

[5] B. Koenemann, “LFSR – Coded Test Patterns for Scan Designs,”
in Proc. of Europian Test Conf., Munich, Germany, 1991,
pp. 237-242.

[6] S. Hellebrand, et al., “Built-In Test for Circuits with Scan Based
on Reseeding of Multiple-Polynomial Linear Feedback Shift
Registers,” in IEEE Trans. on Comp., vol. 44, No. 2, February 1995,
pp. 223-233.

[7] J. Rajski, “Embedded Deterministic Test,” in IEEE Trans. on CAD,
vol. 23, No. 5, 2004, pp. 776-792.

[8] D. H. Baik, K. K. Saluja, and S. Kajihara, “Random Access Scan: A
Solution to Test Power, Test Data Volume and Test Time,” in Proc.
of 17th International Conf. on VLSI Design, Jan. 2004, pp. 883-888.

[9] Dong Hyun Baik and K.K Saluja, “Progressive random access scan: a
simultaneous solution to test power, test data volume and test time,”
in Proc. of IEEE International Test Conference, Nov. 2005.

[10] I. Hamzaoglu and J. H. Patel, “Reducing Test Application Time for
Full Scan Embedded Cores,” in Proc. of the International
Symposium on Fault Tolerant Computing, 1999, pp. 260-267.

[11] R. Dorsch and H.-J. Wunderlich, “Reusing Scan Chains for Test
Pattern Decompression,” in Journal of Electronic Testing: Theory and
Applications (JETTA), Vol. 18, Issue 2, April 2002, pp. 231 – 240.

[12] O. Novák, J. Zahrádka, “COMPAS – Compressed Test Pattern
Sequencer for Scan Based Circuits,” in Proc. of EDCC, 2005, pp.
403-414.

[13] J. Jeníček and O. Novák, “COMPAS Advanced test compressor,”
in Proc. of IEEE East-West Design and Test Symposium 2010,
pp. 543-548.

[14] C. Su and K. Hwang, “A Serial Scan Test Vector Compression
Methodology,” in Proc. of IEEE International Test Conference (ITC),
1993, pp. 981-988.

[15] R. Dorsch and H. J. Wunderlich, “Tailoring ATPG for embedded
testing,” in Proc. of IEEE International Test Conference (ITC), 2001,
pp. 530–537.

[16] J. Balcárek, P. Fišer, and J. Schmidt, “Test Patterns Compression
Technique Based on a Dedicated SAT-based ATPG,” in Proc. of 13th
Euromicro Conference on Digital Systems Design (DSD'10), Lille
(France), 1.-3.9.2010, pp. 805-808.

[17] J. Balcárek, P. Fišer, and J. Schmidt, „Techniques for SAT-based
Constrained Test Pattern Generation,“ in Microprocessors and
Microsystems, Vol. 37, Issue 2, March 2013, Elsevier, pp. 185-195.

[18] J.P. Roth, “Diagnosis of automata failures: A calculus and a method,”
in IBM Journal of Research and Developmen, Vol. 10, Issue 4, July
1966, pp. 278-291.

[19] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for
Combinational Logic Circuits,” in IEEE transactions on Computers,
Vol. C-30, no. 3, 1981, pp. 215-222.

[20] H. Fujiwara and T. Shimono, “On the Acceleration of Test
Generation Algorithms,” in IEEE Trans. Comput. Vol. 32, No. 12
(December 1983), pp. 1137-1144.

[21] H.K. Lee and D.S. Ha, “Atalanta: an Efficient ATPG for
Combinational Circuits,” Technical Report, 93-12, Dep't of Electrical
Eng., Virginia Polytechnic Institute and State University, Blacksburg,
Virginia, 1999.

[22] M. R. Garey and D. S. Johnson, Computers and Intractability; A
Guide to the Theory of NP-Completeness, W. H. Freeman & Co. New
York, USA, 1990, p. 338.

[23] T. Larrabee, “Test pattern generation using boolean satisfiability,”
in IEEE Transactions on Computer-Aided Design, vol. 11, 1992,
pp. 4-15.

[24] R. Drechsler, S. Eggersglüß, G. Fey, and D. Tille, “Test Pattern
Generation using Boolean Proof Engines”. Springer Netherlands,
ISBN 978-90-481-2360-5, 2009, XII, p. 192.

[25] M. K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik,
“Combining strengths of circuit-based and CNF-based algorithms for
a high-performance SAT solver,” in Proc. of the 39th annual Design
Automation Conference (DAC '02), ACM, New York, NY, USA,
pp. 747-750.

[26] S. Safarpour, A. Veneris, R. Drechsler, and J. Lee, “Managing don't
cares in Boolean satisfiability,” in Prof. of Design, Automation and
Test in Europe Conference and Exhibition, 16-20 Feb. 2004,
pp. 260-265.

[27] N. Éen, N. Sorensson, “An extensible SAT-solver,” in Lecture Notes
in Computer, Science 2919 - Theory and Applications of Satisability
Testing. Springer Verlag, Berlin Heidelberg New York (2004)
pp. 333-336.

[28] N. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an effcient SAT solver,” in Proc. of 39th Design
Automation Conference (DAC 2001), pp. 530-535.

[29] M. Elm, M. A. Kochte, H. Wunderlich, “On Determining the Real
Output Xs by SAT-Based Reasoning,” In 19th Asian Test
Symposium, Shanghai, 2010, pp. 39-44.

[30] M. A. Kochte, M. Elm, H. Wunderlich, “Accurate X-Propagation for
Test Applications by SAT-Based Reasoning,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 31,
no. 12, pp. 1908-1919, 2012.

[31] R. Ben-Eliyahu, R. Dechter, “On Computing Minimal Models,”
Annals of Mathematics and Artificial Intelligence , vol. 18, pp. 2-8,
1993.

[32] C. Pizzuti, “Computing Prime Implicants by Integer Programming,”
in 8th International Conference on Tools with Artificial Intelligence,
1996, pp. 332.

[33] V. Manquinho et al. “Prime implicant computation using satisfiability
algorithms,” in 9th International Conference on Tools with Artificial
Intelligence, Newport Beach, CA, 1997, pp. 232-239.

[34] K. Ravi and F. Somenzi, “Minimal assignments for bounded model
checking,” in TACAS'04, Barcelona, Spain, Mar.-Apr. 2004,
pp. 31-45.

[35] I. Dillig, T. Dillig, K.L. McMillan, and A. Aiken, “Minimum
satisfying assignments for SMT,” in Proceedings of the 24th
international conference on Computer Aided Verification, 2012, pp.
394-409.

[36] Y. Zorian, E.J. Marinissen, S. Dey, “Testing embedded-core-based
system chips,” in Computer, vol.32, no.6, pp.52,60, Jun 1999.

[37] E.J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, M. Ricchetti,
Y. Zorian, “On IEEE P1500's Standard for Embedded Core Test,”
in Journal of Electronic Testing, August 2002, Vol.18, Issue 4-5,
pp. 365-383.

[38] H. K. Lee and D. S. Ha, “HOPE: An Efficient Parallel Fault
Simulator for Synchronous Sequential Circuits,” in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 15, pp. 1048-1058, September 1996.

[39] F. Brglez, H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortan,“ in Proc.
of the International Symposium on Circuits and Systems, 1985, pp.
663-698.

[40] F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles of
Sequential Benchmark Circuits,“ in Proc. of the International
Symposium of Circuits and Systems, 1989, pp. 1929-1934.

[41] F. Corno, M.S. Reorda, G. Squillero, “RT-level ITC`99 benchmarks
and first ATPG results,“ in: Proc. of the IEEE Design and Test of
Computers (2000) 44-53.

[42] K. McElvain, “LGSynth93 benchmark set: Version 4.0“, 1993.

TABLE I. EXPERIMENTAL RESULTS FOR THE BASIC ALGORITHM AND EXTENSION BY CPDCI

Circuit #Flts
SAT-Compress SAT-Compress with CPDCI COMPAS

#Bits Time [s] #Bits Bits impr.
[%] Time [s] Time impr.

[%]
#DCs
tried #DCs set Success

[%] #Bits Diff.
[%]

alu4 6435 3349 1994.97 3048 8.99 1773.53 11.10 3380 349 10.33 - -
b04_C 1666 5408 463.67 910 83.17 88.25 80.97 7659 6876 89.78 - -
b05_C 1928 1091 90.95 631 42.16 55.57 38.90 1593 1018 63.90 - -
b07_C 1084 997 9.89 706 29.19 7.88 20.32 1444 895 61.98 - -
b11_C 1675 863 41.90 562 34.88 32.00 23.63 1557 1084 69.62 - -
c1355 1566 330 13.40 334 -1.20 13.43 -0.22 312 19 6.09 1040 67.88
c1908 1869 607 44.66 495 18.45 36.71 17.80 542 82 15.13 1009 50.94
c2670 2629 3103 556.27 1806 41.80 387.30 30.38 11276 9791 86.83 6553 72.44
c3540 3291 3422 1618.65 833 75.66 323.90 79.99 4146 3415 82.37 747 -10.32
c432 520 209 1.39 156 25.36 1.28 7.91 368 256 69.57 195 20.00
c499 750 182 1.51 219 -16.89 1.67 -10.60 206 28 13.59 260 15.77
c5315 5291 1205 261.30 815 32.37 275.89 -5.58 2410 1812 75.19 1255 35.06
c7552 7419 6581 2739.73 3522 46.48 1902.73 30.55 9029 5998 66.43 6005 41.35
c880 942 1195 35.71 614 48.62 15.16 57.55 2250 1765 78.44 540 -12.05
duke2 1302 1486 56.80 986 33.65 35.13 38.15 1717 810 47.18 - -
ex5p 5430 276 38.72 276 0 42.12 -8.78 268 0 0 - -
intb 1893 2070 220.27 1653 20.14 171.01 22.36 2103 471 22.40 - -
jbp 1132 2174 41.42 843 61.22 16.69 59.71 2281 1563 68.52 - -
misex3 9251 3556 5240.01 3467 2.50 5220.65 0.37 3551 100 2.82 - -
s1196 1242 2487 109.33 876 64.78 36.36 66.74 4292 3474 80.94 740 -15.53
s1238 1286 2705 141.46 876 67.62 40.06 71.68 4926 4105 83.33 741 -15.41
s13207 9664 114390 285075 5498 95.19 22678.30 92.04 206673 202598 98.03 4163 -32.07
s1423 1501 1179 46.38 628 46.73 39.53 14.77 2346 1871 79.75 596 -5.10
s15850 11336 77582 147342 5734 49.41 22686.3 84.60 179148 174836 97.59 8234 30.36
s344 342 161 0.59 95 40.99 0.47 20.34 280 210 75.00 85 -10.53
s35932 35110 3686 308382 4998 85.76 390677 -26.69 2971215 2969101 99.93 1860 -32.21
s382 399 255 0.61 131 48.63 0.39 36.07 258 161 62.40 123 -6.11
s420 430 526 2.81 370 29.66 1.62 42.35 748 463 61.90 352 -4.86
s526n 553 830 5.27 471 43.25 2.70 48.77 1197 785 65.58 344 -26.96
s5378 4511 19847 6765.48 1989 89.98 870.94 87.13 31022 29444 94.91 2148 7.40
s641 463 1335 13.35 469 64.87 5.62 57.90 2282 1919 84.09 397 -15.35
s713 543 1223 11.64 454 62.88 6.08 47.77 2199 1859 84.54 428 -5.73
s820 850 702 10.30 664 5.41 9.97 3.20 692 65 9.39 460 -30.72
s838 857 2078 32.20 955 54.04 19.27 40.16 2957 2242 75.82 920 -3.66
s9234 6475 24395 25844.19 5688 76.68 10238.03 60.39 53308 48599 91.17 11594 50.94
s953 1079 3131 95.99 771 75.38 20.23 78.92 4317 3693 85.55 723 -6.23
t481 2853 5541 1808.29 5147 7.11 1561.09 13.67 5433 304 5.60 - -
table3 2487 2025 382.11 2085 -2.88 413.89 -8.32 2134 69 3.23 - -
table5 2384 3191 703.46 2821 11.60 609.92 13.30 3301 547 16.57 - -
term1 1314 6221 405.79 1418 77.21 102.96 74.63 5443 4089 75.12 - -
vda 1970 680 31.95 594 12.65 27.24 14.74 652 103 15.80 - -
vg2 1122 2507 59.94 1403 44.04 32.53 45.73 2430 1093 44.98 - -
x1 2504 7583 886.07 2953 61.06 354.54 59.99 7689 5013 65.20 - -
Avg. 3396 7649 23209.59 1585 46.31 13907.19 35.18 86341 85018 65.54 1981 6.08

