Czed Tednical University
In Prague
Faculty of Eledrical Engineenng
Department of Computer Science
and Engineenng

MSc. Thegs

2002 Petr FiSer

Czed Tedhnicd University
In Prague
Faaulty of Eledricd Engineaing
Department of Computer Science
and Engneeaing

Minimization of Boolean Functions

Petr FiSer

May 2002

Statement

| declare herewith, that this M.S. Thesis is my own work and that all used sources are
listed as references. Further, | agree that the Department of Computer Science and
Engineering, FEE CTU may in the future use the results of my work for
non-commercial purposes.

Acknowledgement

| would like to express my great thanks to my supervisor Prof. Jan Hlavicka for his
guidance, for enabling me to work in an interesting area of the logic design and
diagnostics and for all his help duing my MSc. studies.

Also, | would like to thank to Hlavkova Foundation for my financial support.

Abstract

This thesis presents two new methods of test-per-clock BIST design for combinationd
circuits. One of them is based on a transformation of the PRPG code words into test patterns
generated by an ATPG tod. This transformation is dore by a combinational circuit. For a
design d such a circuit two major tasks have to be solved: first, the proper matching between
the PRPG code words and the test patterns has to be found and then the resulting Bodean
function that is described by a truth table neals to be minimized. Swch a Boolean minimization
is a rather difficult task, as the number of inpu and output variables is often very large
Sandad minimization todls, like ESPRESSD, often canrot efficiently minimize functions with a
large number of inpu variables in a reasonable time. Therefore a novd Boolean minimizer
BOOM that is capable to hande such function was deveoped.

The BOOM system is based on a new implicant generation paadigm. In contrast to all
previous minimization methods, where the implicants are generated bdtom-up, the proposed
method wses a top-down appoach. Thus, instead of increasing the dimensiondity of impli cants
by omitting literals from their terms, the dimension of a universal hypercube is gradually
deaeased by addng rew literals, until an implicant is found. The function to be minimized is
defined by its on-set and off-set listed in a truth table; the dorit care set, which namally
represents the dominart part of the truth table, need na be spedfied explicitly.

The seaond BIST method, called the @mverage-direded assgnment, combines the pattern
assgnment and Boolean minimization together. The implicants of the combinational function
performing the pattern transformation are generated diredly from the PRPG code words, while
the processis direded by the cverage of the onesin the test patterns.

The complexty of the resulting BIST is evaluated for seveal ISCAS kenchmarks.

Abstr akt

V této praci jsou uvedeny dvé nové metody test-per-clock vestavéného testovani obvodii
(BIST). Prvni znich je zaloZzena na transformaci kodovych slov produkovanych generétorem
pseudo-ndhodnych vektorii na predem dané testovaci vektory. Tato transformace je vykondvdna
kombinacnim obvodem. PFi syntéze tohoto obvodu je nutné resit dva problémy: nejprve musi byt
nalezeno spravné prirazeni kodovych slov kteStovacim vektorim a posléze je nutné
zminimalizovat vyslednou booleovskou funkci. Provést takovouto minimalizaci je pomérné
komplikovana uloha diky velkému poctu vstupnich a vystupnich proménnych. Proto standardni
minimalizdatory, jako napf. ESPRESSO, casto nedokdzi zjednodusit takovou funkci v rozumném
case. Proto jsme vyvinuli novy minimalizator booleovskych funkci BOOM, ktery je schopry
zpracovavat funkce velkych rozmérii.

BOOM je zalozZen na novém principu generovdni implikantii. Na rozdil od ostatnich metod,
kde jsou impli kanty generovany z pivodnich zadanych termii, BOOM vytvdrt implikanty redukci
univerzalni hyperkrychle pridavanim novych literalii, dokud nevznikne novy implikant. Funkce
je zadam jgim on a off-setem, donir care set, ktery obvykle predstavuje dominantni cast
pravdivostni tabulky, nemusi byt explicitné specifikovdn.

Druh& BIST metoda nazvand , coverage-directed assignment”, kombinuje prifazovdnt
testovacich vektorii s booleovskou minimalizaci. Implikanty kombinacni funkce provadéjici
transformaci jsou generovany primo z kodovych slov generdtoru, pFicemz mechanizmus jejich
vytvdreni je Fizen pokrytim jednicek v testovacich vekored.

Slozitost vysledného BIST obvodu je vyhodnocena pro nékolik ISCAS benchmarkii.

Table of Contents

I T o110 e [V oA o o HO PSP PP T TP 1
== 1Y oo L=~ PP PPPTPPPPTRR 2.
1.2 TREPRPG SITUCLUIE. ...ttt ettt e e e e et et et e bbb e e e e e e e 3
1.3 Survey of the BIST MENOUSuuiiiiiiiee e eee s 4

2 Prollem SEAOMENT.ee et 10
3 COlUMN IMBECHING ettt ettt e e s s e e e e e e e e e e s benne e bbb e e e eeas 13
3.1 0NEL0-ONE ASTONIMENTeeeeetiiii it e ettt ettt e e e e e ettt teeeeeeeseb bbb r s e e e eeeeeeeeeeeeeenne 14
3.2 SCOMNG IMBEFIX ..ttt ettt e e e e e e e e e e ettt e et bbb s s s e e e e e e eeeeeennne 15
3.3 Generdized Column MaEChINGceiiiiiiiiiiiiiee et e e e 16
3.4 Column Matching EXploiting TESt DON't CaresS........ccvviiiiiiiiiiiiiee e et 16
3.5 1NVErse ColUMN MEECHINGuveeii ettt e e e e e e e e e e eeenabennnnee 17
3.6 An ISCAS Benchmark EXAMPIE........ouuuuiiiiiiie ettt 17

4 EXPEMENtal RESUITSo e e et e e 20
4.1 Influence of the PRPG ONthE RESUIL........cooiiiiiiiiiii e 20
4.2 1SCAS BENCHMAIKS ...ttt e et e e e e e ettt ettt e e e e e aeaeeaaeeeeennns 21

5 Coverage-Direded ASSONMENT.ccoiiiiiiiiiiiiei ettt e e e e e 23
5.1 The PrinCIPIES OF CD-A ..ottt e et e et e e e e bbb s 23
B.2 FiNA COVEragE PhaSE. ...ttt 24
A3 FNd IMPLCANE PRESE. ... s 27
DA TRE NG PRASE. ...ttt e e e e e et 30
5.5 ASIGNMENT OF ROWS ...t et e bbb 31
5.6 Generdized Coverage-Direded ASTONMENT.......ccoiiiiiiiiiiiiiiie e 33

6 TheBOOM MINIMIZENccoiiiiiiieii e e e e e et aa e e e e e e e e e e 36
6.1 BOOM SHTUCLUM®.ceviiie ettt ettt et e et e r e e e e e e e e e e e rre e 36
6.2 Coverage-Direded (CD) SEaCNccuuiriiiiiiie ettt e e et 37
6.3 Implicant EXpansion (IE).........couuuiiiiiiiiiiieeiiieeeciieeeeiiiiis e eeeee e eneee e 40
6.4 Solution of the Covering Problem.........coooiii e 41
6.5 Minimization of Multi-OutpUt FUNCLIONScooviiiiiiiiiiie e 41
6.6 1terative MINIMIZALIONooiiiiiiiiiie et e e e e e e e e 42
6.7 EXPEiMENTEl RESUIES. e 43

T CONCIUSIONS. ...ttt e e et e e e ettt et e et bbb e e e e e e e et e aee et e e ee b bbb a e e e e e e e eeaans 46

APPENDIX A ettt e e et e e e bbbt — et ettt e e e e e e e e e e e anb bbb e e b 51

APFENDIX B ..t e et a e 56

APPENDIX € .ottt et r et 60

1 Introduction

With the growing complexity of the logic circuits, testing gains an ever-increasing
importance There often arise faulty chips during the manufaduring processdue to an
inacarate technology and such chips should be deteded and eliminated. Moreover,
there may continuously occur physical faults in a chip due to its aging, due to a cosmic
radiation or an inappropriate use. Thus, the dips dould be tested aso during their
functionality. The external testers are often very expensive and they cannot be used for
a oontinuous testing. The @ncept solving this problem is a BIST (Built-in Self-test)
approach. It allows the logic circuit (chip) to be tested without using any external
testers; the testing mechanism is included in the circuit itself. Moreover, the use of the
BIST equipment is becoming inevitable with the growth of the complexity of the VLSI
devices. The growth of the amount of logic accegble through one dip pin follows
approximately the Moore's law (for the feaure size of 0.1 micron it reacies me 100
000 transistors per pin), and thus testing the dips via their external acaess points is
often rather demanding. The BIST allows us to test individual functional blocks of a
chip separately, as their inputs and outputs can be eaily accessed by the BIST
structures; the test is not restricted to the external outputs.

The problem of BIST design has been studied for more than two decales and the
results can be found in several survey papers [McC85, Agad3]. Obviously, to
implement a BIST some alditional circuitry is necessary, thus the BIST causes an area
overhead of a chip and this means also bigger power consumption of a circuit.
Especially nowadays, when the low-power design is desired, the BIST should be
implemented in a minimal area The second asped is duration of atest —the longer time
the system spends with testing, the more power is consumed, and thus also the length of
ates should be reduced.

The general BIST structure consists of the threemain parts — seeFigure 1.1. The TPG
(Test Patterns Generator) produces the test patterns that are fed to the inputs of a
Circuit under Test (CUT) and the responses of a circuit are then evaluated in a Response
Evaluator (RE).

Test Pattern Generator

Circuit under Test

Response Evaluator

Figure1.1. BIST structure

During the test the test patterns are sequentially fed to the primary inputs of a logic
circuit and the response at the primary outputs is checked. If the response is different
from the expected value, the fault is detected.

There eist two basic testing strategies. the functional testing and the structural
testing. The functional testing chedks the circuit’s response to the input patterns to test
the functionality of a circuit, while the inner structure need not be known. On the other
hand, the structural test tries to find the physical defects of a circuit by propagating the
faults to the output (by finding a sensitive path). There may exist several kinds of
physicd faults, namely the stuck-at faults (stuck-at-one, stuck-at-zero), bridging faults
and other technology dependent faults. Most of these ae eay to deted, as they can be
propagated to the circuit’ s outputs by many test patterns (of their total number 2", where
n is the number of the primary inputs of a circuit). However, there eist faults that are
hard to detect (random resistant faults), as only few test patterns propagate these faults
to the outputs. Thus, the amount of faults that can be deteded by a particular test set
depends on the test patterns. Thus we always have to specify the set of faults on which
we oncentrate. If a test set detects all faults from the given fault set, it is denoted as
complete. The most commonly accepted fault set consists of all stuck-at faults.

1.1 Test Modes

As the TPG can be constructed to have both parallel and/or serial outputs the BIST
can be implemented in two general ways. test-per-clock and test-per-scan. The
test-per-clock BIST feeals the CUT with the parallel outputs of the TPG, and thus eath
test pattern is procesed in one clock cycle. A LFSR is often used as a TPG (see
Subsection 1.2), either standalone or conreded with some @mbinational logic
modifying its code words.

The response of the CUT goes in parallel to the response evaluator, which is often a
MISR (Multi-Input Shift Register). Such astructureisillustrated by Fig. 1.2.

LFSR
¥

Circuit Under Test
(CUT)

¥

MISR

Figure 1.2. Test-per-clock BIST

A sewnd typical structure, suitable especially for testing sequential circuits is
denoted as a test-per-scan BIST. It is used in connedion with CUTSs having a scan
chain, i.e., the circuit’s flip-flops are cnneded into a chain making one scan register for
testing puposes. Here the test patterns are shifted into the scan register of the CUT and
applied by activating the functional clock after every full scan-in of one test pattern. The
response is then scanned out and typicdly evaluated by a serial signature analyzer
(signature register). The basic structure of atest-per-scan BIST isshown in Fig. 1.3.

Circuit Under Test
(CUT)

&

LFSR —» Scan Chain = Signature Reg

Figure 1.3. Test-per-scan BIST

1.2 The PRPG Structure

The design of the test pattern generator (TPG) is obviously of a key importance in the
BIST design, as the area overhead of a TPG determines the area overhead of the whole
BIST. Generally, the TPG is a sequential circuit that produces test patterns. There exist
many TPG architectures (see Subsection 1.3) and most of them exploit sequential
structures called pseudo-randam pattern generators (PRPG). The PRPGs are generally
very easily implementable circuits that generate deterministic code words having
random characteristics. These code words are then either fed directly to the CUT inputs,
or they are modified by some additional circuitry before that.

The most common PRPG structures are linear feedback shift registers (LFSR) or
cdlular automata (CA). An n-bit (n-stage) LFSR is a linear sequential circuit consisting
of D flip-flops and XOR gates generating code words (patterns) of a cyclic code
(k, k-n). The structure of an n-stage LFSR with internal XORs is shown in Fig. 1.4.

D D D Serial Output
A e e

Parallel Outputs

Figure1.4. LFSR structure

The register has n parallel outputs drawn from the outputs of the D flip-flops and one
flip-flop output can be used as a serial output of aregister.

The coefficients ¢; — cn1 express whether there exists (1) a connection from the
feedback to the corresponding XOR gate or not (0), thus it determines whether there
exists a XOR gate or the flip-flops are directly connected.

The sequence of code words that are produced by a LFSR can be described by a
generating pdynomial g(x) in GF(2"):

n-2

g(x) = X"+ Cn-lxn-1 +ChoX "+ ...t C1X1 +1

If a generating polynomial is irreducible, the LFSR has a maximum period 2'-1,
thus it produces 2"-1 different patterns.

The initial state of aregister (initial values of the flip-flops) is called a seed.

The cellular automata ae sequential structures smilar to a LFSR, but mostly they are
not linear and also their period is shorter. An example of a CA performing
multiplication of the polynomials corresponding to code words by the polynomial x+1
(therule 102for ead cell) is shown in Fig. 1.5. For more information see[Alo93].

e D D { D Serial Qufput

Parallel Outputs

Figure 1.5. Cellular automaton example

In general, the LFSR code words have more balanced numbers of ones and zeros
(both in the very code words and in the outputs when observed duing several cycles)
than the cllular automata. For some purposes the more balanced petterns are
advantageous, however, the properties of some specially designed cellular automata
sometimes can ke of advantage. Several studies were made describing a design of a
cellular automaton that produces the required test patterns, see eg., [Nov9§].

1.3 Survey of the BIST M ethods

1.3.1 Exhaustive Testing

There eist several testing approaches differing in their successfulness and area
overheal. The most naive method —the exhaustive testing — feads the circuit with all the
2" paterns and cheds the responses. Obviously, for a combinational circuit the
exhaustive test provides the full fault coverage, and can be very easily implemented (the
areaoverhed is often the lowest possible), but it is extremely time demanding and thus
very inefficient. It is applicable to the circuits with up to 30inputs (10° patterns, which
takes 1 secon the frequency of 1 GHz), for more inpus the exhaustive testing is not
feasible. The test patterns are mostly generated by an LFSR, as it produces 2"-1
different patterns during its period and it can be very easily implemented on the dip.

A dlight modificaion of this method called a pseudo-exhaustive testing [McC84]
allows us to test a drcuit exhaustively without the need to use all the 2" test patterns.
The circuit is divided into several possibly overlapping cones (see Fig. 1.6), which are
logic elements that influence the individual outputs of the circuit. Then, all the mnes are
exhaustively separately tested, and hereby also the whole circuit is completely tested.
The only fault type not covered by pseudo-exhaustive tests are bridging faults between
elements belonging to dfferent non-overlapping cones. If such an efficient

decomposition is possible, the circuit can be tested with much less than 2" test patterns.
However, for more complex circuits the mnes are rather wide (the wnes have alarge
number of inputs) and thus the pseudo-exhaustive testing is often ot feasible either.

Ry %2 Xn
caodistbi g0 B S |
\ / / 3 ! f'i
\\, \ / / WX / P
\ \ / / . / 7R
\ N ! % / 7 E
: o, ‘.\ / f \ \\ / / -
5\ "/ ¢ \ b} / / H
iy P SRR 4 \ v / 5
\ / \ F 4 \ ff“\\ } .
k f’f\ , ‘T’ \Tf

f1 f2 fm-1 fn

Fig. 1.6. The drcuit’s cones

1.3.2 Pseudo-random Testing

The second group of BIST methods exploits the test patterns that are pre-computed
by an ATPG (Automatic Test Pattern Generator) tool. For a given circuit the required
number of test patterns providing a full fault coverage test is computed and those
patterns are to be fed to the circuit’s inpus. In the simplest approac these patterns are
stored in ROM memory, from where they are diredly leal to the circuit under ted.
However, the aeaoverhead of a ROM is often prohibitively large. Here some trade-off
methods come to place— namely the pseudo-random BIST methods.

In a simple pseudo-random testing the test patterns are generated by some
pseudo-random pattern generator (PRPG) and lea directly to the circuit’s inputs. The
difference from the exhaustive testing is that if the PRPG structure and seed are
properly chosen, only several test patterns (lessthan 2") are necessary to generate to
completely test the drcuit. The pseudo-random testing is also widely used in a @ase
when the complete fault coverage is not required, as the pseudo-random patterns often
successully deted most of the eay-to-detect faults.

In more complicated pseudo-random testing methods the pseudo-random code words
generated by a PRPG are being transformed by some additional logic (combinational or
sequential) in order to read better fault coverage. Here the main areaoverhead consists
in the combinational logic.

1.3.3 Mixed-Mode Testing

The combination of using a PRPG and the ROM memory is known as a mixed-mode
testing. In the simplest case, a plain PRPG is used to produce several test patterns
detecting easy-to-detect faults and then the random pattern resistant faults are detected
by patterns gored in ROM. However, the size of a memory is often large, even when
using this approach. Here some pattern compresson tedniques have to be used
[Aga3]].

More successful mixed-mode BIST methods use a LFSR that is seeded with more
than one computed seeds during the test, thus only the seeds need to be stored in a ROM
[Koe9l]. The seeds are often smaller than the test patterns themselves and, most
importantly, more than one test patterns are derived from one seed. This significantly
reduces the memory requirements.

One problem is that if a standard LFSR is used as a pattern generator, it may always
not be possible to find the seed that produces the required test patterns. A solution of
this problem is using a multi-polynomial LFSR (MP-LFSR), where the feedback
network of a LFSR is reconfigurable [Hel92]. Here both the seeds and polynomials are
stored in a ROM memory and for each LFSR seed also a unique LFSR polynomial is
selected. The structure of such a TPG isshown in Fig. 1.7.

MP-LFSR ..
------------------- Circuit Under Test

(CUT)
3

Scan Chain — Signature Reg.

Decoding

Figure 1.7. Multi-polynomial BIST

This idea was extended in [HelOO] where the folding counter, which is a
programmable Johnson counter, is used as a PRPG. Here the number of folding seeds
that need to be stored in ROM is even more minimized.

More complicated mixed-mode approach minimizing the memory requirements and
area overhead was proposed in [NovO1l]. A special cellular automaton constructed of
T-flip-flops is used as a PRPG whose code words are being influenced by modifying
bits stored in a serial memory.

In spite of all these techniques reducing memory overhead, the implementation of a
ROM on a chip is ill very area demanding and thus the ROM memory should be
completely eliminated in BIST.

1.3.4 Weighted Pattern BIST

One of such approaches, namely the weighted pattern testing, biases the PRPG
patterns by defining a signal probability of each of the PRPG outputs (the probability of
a 1 value) in order to reach the required test patterns. In the weighted pattern testing
method two problems have to be solved: first, the weight sets have to be computed and
then the problem how to generate the weighted signals. Many weight set computation

methods were proposed [Bra37] and it was sown that multiple weight sets are
necessary to produce patterns with the sufficient fault coverage [Wun88]. These
multiple weight sets have to be stored on chip and also the logic providing switching
between them is complicated, thus this method often implies alarge aeaoverhead.

Several techniques reducing the aea overhead of a weighted pettern testing were
proposed — one of them is a Generator of Unequiprobable Random Tests (GURT)
presented in [Wun87]. The aea overheal is reduced to minimum, however it is
restricted to only one weight set. Also the more general method based on modifying the
GURT [Har93] uses only one weight set and thusiit is also limited to spedal cases of the
tested circuits and cannot be used in general.

Special methods using multiple weight sets that are ealy implementable were
proposed in [Pom93] and [AIS94]. In [Pom93] three different weight values can be
applied by adding a very simple combinational logic to the PRPG outputs, [AlS94] on
the other hand uses gecially designed PRPG flip-flops.

As the LFSR code words have very balanced properties, the design of the logic
generating a weighted signal can be rather difficult. Some gproades using cellular
automata instead an LFSR were studied, and good results were reatied using this
approach for some circuits [Nov99]. Methods using inhomogeneous cellular automata
to produceweighted pettern sets are presented in [Ne€93].

It can be said in general, that the weighted pattern BIST methods either require large
areaoverheal, or they are restricted to circuits with special properties.

1.3.5 Mapping Function

The main principle of all the weighted pattern testing methods consists in placing
some wmbinational logic & the LFSR outputs in order to read a better fault coverage.
However, the design of this combinational block can be generalized to perform any
other mapping function. The method proposed in [Tou9%g] consists in modifying some
of the PRPG patterns in order to detect hard-to-detect faults — seeFig. 1.8.

Original Transformed

ajapay ajapag a a, as
000 000 rest ,

001 001

010 — 001 mmk_j&'

011 — 001 |

100 100 1 |
101 101

110 110 &| |+
111 111 I [

Figure 1.8. Modifying the PRPG patterns

This idea was generalized in [Tou990], where the problem of finding a mapping
function is transformed into finding a minimum redangle in a binate matrix. Procedures
used in ESPRESSO [Bra84] were used to find a mapping logic.

In [Tou9q this method was extended for testing sequential circuits — the test
sequence entering the scan chain is altered by a bit-fixing function modifying some of
the bits in order to obtain the required test patterns (seeFig. 1.9).

LFSR
v

Bit-Fixing Sequence
Generator Fix-to-0

Scan Chain

Fix-to-1

Figure 1.9. Bit-fixing function

As it is a more general method than the weighted pattern BIST, in most cases it
reates lower areaoverhead. However, the logic function modifying only several PRPG
code words, while the rest remains unchanged, may be rather complicated. In general it
may be more advantageous to design a simple logic function that transforms all the
code words to the test patterns with the required fault coverage, as it is done in a row
matching method.

1.3.6 Row Matching

In the row matching approach proposed in [Cha95] a simple mmbinational function
that transforms ome of the PRPG patterns into test patterns is being designed in order
to read better fault coverage. Here, the test patterns are independent on the PRPG code
words in a sense of a similarity of the patterns — the proper test vedors are
pre-computed by an ATPG tool; they are not derived from the original PRPG code
words as it was being done in the previous methods.

The row matching means finding an assgnment of these test patterns to the code
words, as it is shown in Fig. 1.10. Each of the test patterns has to be asigned to some
PRPG pattern to generate the required test. Here the problem to be solved consists in
finding such a row matching that the pattern transformation function is as simple &
possible. Such an ideais also exploited in our BIST methods presented in this thesis.

0011100

0001110

0000111

1100011

1010001

1001000

0100100 0011001
0010010 0110101
0001001 0000100
1100100 0010011
0110010 - 1100000
0011001 0001111
1101100

0110110 TARGET PATTERNS
0011011

1101101

1010110

0101011

1110101

1011010

LFSR PATTERNS

Figure 1.10. Row matching principle

In [Cha95] the cost function of the row matching is used as a aiterion for finding a
row match. The @st function is an estimation of the complexity of the combinational
function performing the pattern transformation. The s of a matching M for a n-input
CUT (and thus the combinational block has n outputs) is defined as follows:

C<M):ZQMI><WQMI))

where [; is called an input index of the output variable i and it is defined as a set of
inpu variables of an output deader that are needed to obtain the values of the i-th
output —i.e., the suppat of the i-th output variable. The weight W is used to take into
acount anon-linea relation between the size of the I; and the aeaoverhead.

The aim is to find a row matching that minimizes this function. This is, however,
an NP hard problem [Gar79] and thus ome heuristic must be used. In the proposed
algorithm the rows are being matched sequentially (one-by-one) preferring the match
that locally minimizes the st function. After the matching is done, the result isin a
form of a truth table, which has to be minimized by some Boolean minimizer
(ESPRESSD) to obtain the final solution. The truth table @rresponding to the
example from Fig. 1.10is own in the following Figure:

Input Output values required at

Vector OJIT21374T7T57T6
OOTTO0OO0OTfOJOJIJIJO]O]TI
I1T10I0TI QO [IJITOTTITOTT
OQO000ITTHOJOJOJO]JITJTOTDO
OOTOO0TOROJOJIJOJOTTITI
I10001ITI QI [T[O]JOTO0TO0T0
O00ITTOJOJOJO]T T IT|TIT1I

Figure 1.11. Thefinal truth table

There ae several drawbadks of this method: first, computing the input indexes is
an NP hard problem itself, and thus another nested heuristic has to be used. The one
proposed by Chatterjee is a gready heuristic, which is rather inefficient. The second
problem of the algorithm is the faa that the number of input variables nealed to
produce one single output is taken as a aiterion of minimality — for a multi-output
minimization it may not be truth.

The main drawbadk consists in the fad that the row matching is done by a simple
gready heuristic that cannot change the matches previously made — we have found
that the matching must be taken in global in order to read good results. The method
proposed in thisthesis efficiently avoids all these drawbadks.

2 Problem Statement

In this thesis we propose a test-per-clock BIST method for combinational circuits,
where the CUT is fed with test patterns that are pre-computed by an ATPG tool. These
patterns are generated by a TPG circuit consisting of two parts, asis shown in Fig. 2.1.
First, pseudo-random vectors are produced by a PRPG and then these vectors are
converted into the required test patterns by a combinational circuit —the output decoder.

Test Pattern Generator

PRPG

I liosoo Lk

Output Decoder Y

r-1

¥p

Circuit under Test

Figure2.1. TPG structure

Designing a simple BIST means reducing the complexity of all its parts, namely
using a short shift register, simplifying (or eliminating) the @ntrol unit and memory,
and most importantly simplifying the LFSR output decoder. In our method any control
logic and memory are totally eliminated and our goal is just to synthesize the output
deaoder to be @& small as possible. In this thesis only the methods describing the
synthesis of an output decoder are described and the it is mainly taken as a
combinational problem; the methods are goplicable also in other areas of logic design
and Boolean function theory. The structure of the decoder is grictly dependent on the
PRPG patterns as well as on the required test patterns. Thus, the inputs of the design
algorithm are these two peattern sets.

Let us have an n-stage (n-bit) PRPG running for p cycles. Then the mde words
produced by this PRPG can be described by a C matrix (code matrix) with the
dimensions (n, p). The total length of atest isthen equal to p. The parallel outputs of the
PRPG are entering the output decoder as input variables Xo - Xn.1. Thus, the wlumns of a
C matrix will be sometimes denoted as the values of the input variables of the output
deaoder, while the rows of the matrix can be taken as input vectors or input minterms.
An example of a C matrix produced by a 5-stage LFSR with generating polynomial
x>+ x? + 1 seaded with avedor 00010running for 10 clock cycles is shown in Fig. 2.2.

10

Xo- X4
00010
00001
10100
01010
C = 00101
10110
01011
10001
11100
01110

Figure 2.2. Example of a C Matrix

The test set pre-computed by an ATPG tool is described by a T matrix (test matrix).
For an r-input CUT the output decoder has to have r outputs denoted as yo-Yr-1. FOr a
test set with svedors the T matrix will have dimensions (r, s). The @lumns of the
T-matrix will be denoted also as output variables of the decoder, the rows as the output
vectors.

Designing the output decoder means finding a combinational logic that transforms
these two matrices — the C matrix vectors entering the decoder should be transformed
into the T matrix vedors (seeFig. 2.3).

n

—"—
0010010040
0001001004
1001100100 F
0100110040 e,
0010011004 10110010
1000001100 11010111
0100000110 00101010
0010000041 01000101
1000000001 [:::::i;>. 01011001 | o
1101000000 11011110

o 0110100000 01001100
0011010000 10011111
0001101000 00100001
0000110100 10110000
0000011040
0000001104 Test Patterns

1001000110
0100100011
1011010001
1100101000

PRPG Patterns

Figure 2.3. Transformation of matrices

There ae some obvious relationships valid for the values mentioned above, like
p <2"- 1 (the maximum number of distinct patterns that can be generated by a PRPG)
and p = s, because there must be enough patterns to implement all test vectors generated
by the ATPG. On the other hand, there are no drict requirements regarding the
relationship of n and r, because the number of LFSR stages can be even smaller than the
number of CUT inputs (the LFSR outputs can be split). For alarger number of C matrix
columns the transformations are often easier and the resulting combinational logic is
less complex, but the size of PRPG grows, and thus there must be a trade-off found.

11

As all the methods proposed here ae restricted to combinational circuits, they are
based on the following important fad: when testing combinational circuits, the order of
test patterns generated by an ATPG tool is insignificant and thus the patterns can be
reordered in any way. In other words, any vedor (row) fromaT matrix can be asigned
to any vedor of a C matrix. Moreover, the rows in the C matrix need not form a
compad block. The excesdve patterns that are not transformed into test vedors just
represent the idle cycles of the PRPG. They do not disturb the testing, but only extend
its length. If a low-power testing is required, we may use the pattern inhibition
techniques - see[Gir99]. Finding a transformation from C matrix to T matrix means
finding a matching of all srowsof T matrix with any distinct s rows of C matrix — thus
finding a row assignment (see Fig. 2.4), i.e., determining which C matrix rows are
matched with which T matrix rows.

The output decoder is than a combinational block that converts sn-dimensional
vedors of a C matrix into sr-dimensional vedors of T matrix. The decder is
represented by a Boolean function with n inputs and r outputs, where only values of
sterms are defined, the rest are don't caes. This Boolean function can easily be
described by atruth table.

i

—"—

0010010010
0001001001 ,

1001100100 B
0100110010 —, Xg-Xg ¥y~ ¥y
0010011001 0110010 0010010010 10110010

1000004100 11040144 0010000011 11010411
0100000110 004010 0100110010 00104010
0010000011 04000104 0110100000 01000401
1000000001 01011004 5 |:> 1001000110 01011001

1404 000000 1044110 0001101000 11011110

o 01104 00000 01004100 1000001100 01001100
10011114 0000110100 10011111

Q04 00004 1100101000 00100001
10440000 00000411010 10110000

Truth table of the
Test Patterns Output decoder

004101 0000
0004104 000
0000110100
0000011010
0000001104
100100011
0100100011
1011010001
110010100

PRPG Patterns

Figure 2.4. Example of a row matching

Although the output decoder is just acombinational circuit, its design may represent a
rather difficult problem, because of the high number of input and output variables. Until
recently, the problems of this size were not solvable because the state-of-the-art tools,
like, e.g., ESFRESSO [Bra34, ESPRESSO], were unable to handle them. We succeealed
in designing these deaders only thanks to the existence of the proprietary minimization
system BOOM [1-7], which is briefly described in Sedion 6. Its runtimes were
sufficiently short to allow experimental verification of several different solutions.

12

3 Column Matching

The assignment of the rows of T matrix to the rows of C matrix is of a key
importance for the design of the output decoder. Our task is to find an assignment that
reduces the combinational logic of the output decoder to minimum.

An indirect inspiration for the proposed method was the paper [Cha95], where the
LFSR outputs and the required test patterns are matched row-wise. Some very
interesting BIST solutions for the ISCAS benchmark circuits, although with incomplete
fault coverage, were found in thisway.

The proposed method on the contrary works with column matching. It is based on the
fact, that if in the final assignment the i-th column of the C matrix is exactly the same as
the j-th column of the T matrix (the values of j-th output variable are equal to the values
of i-th input variable), there is no combinational logic required to implement the j-th
variable in hardware. Thus, we try to find as many column matches as possible, after
that all the T matrix rows are assigned to the C matrix rows by solving a group (the row
matching is restricted by the column matches) of row matching problems using some of
the row matching methods [Cha95], which yields a truth table. From this truth table the
resulting combinational logic is synthesized by a Boolean function minimizer (BOOM).
The whole processis illustrated by Fig. 3.1:

C—Matrix T—Matrix

N/

Match Columns

Match Rows

Row assignment

Minimize

PLA matrix
Figure 3.1. The column matching

An example in Fig. 3.2 shows the principle of the column matching: ten
5-dimensional vectors of the T matrix have to be assigned to the 5-dimensional vectors
of the C matrix and the logic of the output decoder synthesized. When the T matrix
vectors are properly reordered and the corresponding vectors matched row-wise, we get
two column matches which yields no hardware to implement two outputs of the decoder
(Yo, Ya). The remaining output functions (y1, Y2, Y3) are synthesized using a standard
design method.

13

C-Matrix T-Matrix Reordered T-Matrix

HO-x4 ¥O-v4d
—h— ——

01001
11001
01110

a 11 a 00110 h [0

B 11 b 11100 g [1

¢ ol c 10111 el ¥0 = %3

D 11 d 10100 Regrder 11 ¥l = x0'x2xd' +x0x4

E 11 e 11011 Qi ¥2 = x2'H4+x0'H4+x2 ' K3
F oo £ 10001 dn ¥v3 = x0'x2+x2'x3’

& 11 g 10000 b 1 vd = w2

H h c 1

I i 3 (0

I 3 a |0

Figure 3.2. Example of column matching

We have developed several methods implementing the column matching principle,
their applicability depends on the nature of the problem. Some of them are described in
the following subsections.

3.1 One-to-One Assignment

As a one-to-one assignment will be denoted the case where p = s, thus all the PRPG
vectors are assigned to the test vectors and no idle PRPG cycles are present. This is the
fastest BIST method (only the necessary number of PRPG cycles is needed), however,
the amount of logic needed to implement the output decoder is often large.

The most important feature of the one-to-one assignment is the fact that all PRPG
vectors that are to be transformed into test patterns are known in advance. Determining
a column match is a simple task then: the match is possible if the counts of ones (and
zeros) in the corresponding columns are equal. In our previous example (Fig. 3.2) the
counts of ones in the C matrix for columns xo-x4 are {6, 7, 5, 7, 6}, the counts of onesin
the T matrix for columns yo-ys are {7, 5, 5, 4, 5}, thus there are five possible column
matches { Xi-Yo, Xa-Yo, Xo-Y1, X2-Y2, X2-Ya} .

After finding a column match the two matrices are decomposed into two disjoint
parts containing the rows with zeros and ones respectively in the matching columns, let
the sub-matrices be denoted as Cy, C; and Ty, Ti1. Then any vector from the Ty
submatrix can be assigned to any vector from Co, as well as any vector from the T,
submatrix can be assigned to any vector from C;, but not otherwise. In our example,
when the x-ys match is selected first, Co = {B, F, G, I, J}, C1 = {A,C,D, E, H}, To =
{a,b,dg,j},and T ={c, ef, h,i}.

C-Matrix T-Matrix

H0-x4 vi-y4

—= —
a 1101 -» C1 a o011 -> TO
B 11010 -> C0 b 11100 -> TO
¢ odiio -> €1 c 10114} -> T1
D 11111 -> C1 d 10100 -> TO
E 11110 -> C1 e 11014} -> T1
F 00011 -> €0 £ 1000 -> T1
G 11011 -> €0 g 10000 -> TO
H 01111 -> C1 h o100 -> T1
I 10001 -> €O i 11004 -> T1
J uﬂﬁuu -> C0 j oi1ig -> TO

Figure 3.3. Thefirst assignment to the submatrices

14

Finding all possible column matches consists in a successive decomposition of each
of the original matrices into set systems until no other decomposition is possible. This
happens when no more columns with equal one and zero counts are available in any two
Ci and T; submatrices. The selection of the candidate columns for a match is controlled
by a heuristic, which measures the proportion of zeros and ones in both the candidate
columns and selects the most balanced decomposition. Another possibility is an
exhaustive column match search, where all the possible combinations of column
matches are tried. This is applicable for problems with a low number of possible column
matches.

The output of this algorithm are two systems of subsets of the C and T matrices. Each
two corresponding subsets contain vectors that can be assigned to each other in any
order. Then some row-matching based method, e.g. [Cha95], is applied to al these
subsets to make a final assignment. At the end all rows of the T matrix are matched
with all the rows of C matrix.

3.2 Scoring Matrix

Exact matching of columns minimizes the logic needed to implement some of the
output variables of the output decoder. However, it is often not possible to find more
than one or two matches using this method. Moreover, finding an exact match
sometimes does not mean the reduction of the entire logic. The amount of logic needed
to implement other outputs may surpass the savings gained by exact matches. Hence, an
idea of non-exact matching was introduced together with a scoring matrix S. As was
said above, when one exact column match is found (two matching columns with the
same number of ones), the logic needed to implement one output variable of output
decoder is reduced to zero. The non-exact column matching is based on the idea, that
when two columns with nearly the same number of ones are matched, there will be
some logic needed to implement the output variable, but not too complex. Next, this
method considers the fact that one column matching may negatively affect another one.
Thus the previously found matches eliminate some of the new ones, even if they might
be better. These previous matches should rather be suppressed. All these aspects are
considered in the S matrix based column-matching method. The structure of the S
matrix used for the one-to-one assignment is shown in Fig. 3.4. The rows of the S
matrix represent the vectors of a C matrix and the columns represent the vectorsof a T
matrix. The value of an i, j] element expresses the measure of likelihood that the i-th
row of the T matrix will be matched with the j-th row of C matrix.

abecdefghi3j

Figure 3.4. Scoring matrix for 10 rows of C and 10 rowsof T

15

At the beginning of the mlumn matching processthe S matrix is filled with some
constant non-zero value. Then we ae looking successvely for the best possible wlumn
match, i.e., for two columns with the neaest counts of ones and zeros respedively. If,
e.g., column k of the T matrix is matched with column | of the C matrix, then the values
of al cells [i, j] in the S matrix are reduced by a penalization factor when
T[i, K # C[j, I] (when the @rresponding rows contain opposite values in the selected
columns). The penalization fador depends mainly on the similarity of the matched
columns.

This procedure is performed for al columns of the T matrix and then the matches
with the highest values in the S matrix are seleded, so that the best row matches are
finally picked out from the S matrix.

3.3 Generalized Column M atching

Both methods proposed above asumed a one-to-one row matching where p = s. In
pradice, it is often more advantageousto let the PRPG run more cycles than needed and
pick out only several suitable vedors (seeFig. 2.4). Then the idle test cycles are present,
however this approacd significantly reduces the complexity of the output decoder.

The exad column matching method is very efficiently applicable here. Unlike the
method described in subsedion 3.1, we canot determine a ©lumn match by comparing
the number of ones in the @rresponding columns, becaise we do not know in advance
which C matrix vectors will be included in the final row assignment. However, when
we can freely choose anong the wde words (if p >> s), finding an exad match is a
trivial problem; for several initial matches pradicdly any two columns can be
successully matched.

The method of generalized column matching is then very similar to the set system
based method described in 3.1. Both C and T matrices are being divided into two
disoint parts, while in this case their sizes need not be equal, the number of vedors in
each C; must be greater or equal to the number of vedors in the @rresponding T;. If
not, there would exist some test patterns that cannot have a @de vedor assigned and
then the matching procedure ends. After that, like in the original algorithm, some
row-matching method is used to acaomplish the final assignment of vedors.

3.4 Column Matching Exploiting Test Don’t Cares

Until now, we have asaumed that the T matrix contains only test patterns in their
compad form, i.e., minterms. Some ATPG tools produce test patterns containing don’t
cae values (DCs). Such atest is often significantly longer than the mmpaded one, but
the don't cares can be alvantageously exploited in the design of the output decoder.

The problem of constructing the output decoder is in this case similar to the previous
ones. all vedors fromthe T matrix are to be asigned to vedors of the C matrix, while
S< p. The T matrix contains don't care states, the C matrix contains only minterms as
concrete vedors are produced by a PRPG. We have found that using the set system
approach here is rather time-consuming, athough it is not impossible. More
advantageous is a binary scoring matrix approac. Here the scoring matrix S contains
only 0 and 1 values in each cell. Initially the matrix is filled with 1 values. If, again,
column k of the T matrix is matched with column | of the C matrix, then the value of the
element [i, j] in the scoring matrix is st to zero when T[i, k] # CJ[j,I] and

16

simultaneously T[i, k] # DC. Thus the matrix element is set to zero when the
corresponding rows of T and C matrices contain opposite values in the selected
columns, while the don’t cares do not restrict the row match.

The fad that the rows of the C matrix are not divided into disjoint sets complicates
the final assgnment to some extent. The i-th row of the T matrix can be matched with
the j-th row of the C matrix if the cell [i, j] in the scoring matrix is equal to one. We
neal to find a match for al rowsin the T matrix while any row of the C matrix can be
used only once Finding such an assgnment from the scoring matrix is an NP hard
problem, as well as even determining whether there exists such an assgnment. This
problem has to be solved by some heuristic method.

The second consequence of this fad is that it is hard to determine the end of the
column matching process as the previously used criteria ae not applicable here. In
pradice we perform the final assgnment after ead of the succesful column matching
and, if it fails, the procedure ends.

3.5 Inverse Column Matching

As we proposed above, the ideaof exad column matching is motivated by finding a
maximum of the deder outputs that can be implemented just as wires, thus without
any logic. This happens when the value of the matched output variable is equal to the
value of some inpu variable in al care terms.

In most cases the PRPG outputs are drawn diredly from the outputs of flip-flops.
These flip-flops often have also the negative value of their outputs provided. Then, also
the negative exad matching should be mnsidered as a possibility of implementing some
variable of the output decoder as a simple wire. This happens when the value of the
matched output variable is a cmplement to the value of some input variable in all care
terms. The possibility of a negative olumn matching has to be cnsidered in all the
previously described column matching methods (Subsedions 3.1-3.4).

3.6 An ISCAS Benchmar k Example

To illustrate the principles of the method we have chosen the cl7 ISCAS benchmark
[ISCAS] for its simplicity. As an inpu we have a omplete test set generated by an
ATPG tool. The set consists of 10test patterns (seeFig. 3.5). Our goal isto implement a
BIST dructure applying the given test set to the c17 benchmark circuit.

Before starting the solution, it should be mentioned that the complete test set from
Fig. 3.5 is used here for drictly illustrative purposes. It is well known that c17 can be
completely tested with 4 patterns and that, on the other hand, if we used an exhaustive
test (which would be eay to implement due to the small size of the circuit), the output
deaoder would completely disappear.

17

01111
00001
01101
10001
01110
10111
00101
10011
00011
01000

Figure 3.5. ISCAS c17 test vectors

As a PRPG we have selected a 5-stage LFSR with generating polynomial x°>+ x? + 1
seeded with a vector 00010. In the following two subsections we first let the LFSR run
only the necessary 10 cycles to find a one-to-one assignment, then we let it run for 19
cycles in order to reach a better solution.

3.6.1 One-to-One Assignment for c17 Benchmark

In this example we show in detail how is the decomposition of matrices into set
systems done for the one-to-one assignment. As an input we have two matrices. the C
matrix represents the patterns generated by the LFSR, the T matrix contains
pre-generated test patterns from Fig. 3.5.

First, the counts of ones in all columns in both matrices are enumerated: for the C
matrix these counts are {4, 4, 5, 5, 4}, for T matrix {3, 4, 5, 5, 8}. Thus, al possible
column matches are {Xo-y1, Xi-Y1, X2-Y2, Xo-Y3, X3-Y2, X3-Y3, Xa-Y1}. At the beginning we
select Xs-y» match and perform the decomposition of the matrices. Then the inverse
column match x'»-ys is chosen and at the end we select the match x;-y:. No exact
matches are possible any more, thus we have found three exact column matches.

X0-x4 yo-v4
—— —— - T

A 00010 a 01111 B 000D1 b 00001 c 10100 B DOODY C 10100 b 00001
B 00001 b 00001 ¢ 10100 4 10001 coiE 00101 d 10001 rgg €010 |p gg101 4 10001|""""
¢ 10100 ¢ 01101 co |[E 00101 h 10011|pg T 11100 5 01000 c011|I 11100 5 01000|T001
D 01010 d 10001 x3-y2 H 10001 i 00011 ¥2-y3 cgg B 00001 h 10011 . xi-yl coogB 00001 h 10011 o
E 00101 e 01110 | :>_1 11100 3 01000 :> H 10001 i 00011 ::> |H 10001 i ooo11|

¢ |F 10110 £ 10111 a 00010 a 01111 F 10110 ¢ o110l C11dF 10110 g 00101 T100
¢ 01011 g 00101 D 01010 c© 01101 €11l g1110 g ooio1 'O €111]T 01110 c 01101 T101
H 10001 h 10011 c1|F 10110 e D1110|T1 m oooio a 01111 C100/A 00010 £ 10111 T110
I 11100 i 00011 G 01011 £ 10111 C10p 01010 e 01110 711 c104? 01010 a oiiiif
T 01110 3 01000 T 01110 g 00101 6 01011 £ 10111 G 01011 e 01110| T111

Figure 3.6. One-to-one exact column matching example

In all the subsets the C; vectors are assigned to T; vectors and the remaining logic is
minimized by BOOM or ESPRESSO. The resulting schematic is shown in Fig. 3.7.

18

Remaining Logic LFSR
x0-x4
—— ¥0,¥4 =0 x1 X2 x3 x4
10110 01 l '?
ioio00 01 . . . ¥0 = x0'x1! ¢ I
ooioi 11 minimization ¥l = x1 | ﬁ
01011 00 [y 2 -0
01010 01 ¥3 = x2 & .
poolo 11 vd = x0'xd'+x1’'] -
11100 00
opoo1l 11 ¥0 ¥l 2 ¥3 ik}
10001 01
0iiio 01 cuT

Figure 3.7. BIST implementation for c17 circuit

3.6.2 Generalized Column Matching Example

In the previous example we have found three exact column matches for one-to-one
assignment, whereas the decoder for the remaining two variables needed to be
synthesized. Now we can try to let the LFSR run more than the minimum required 10
cycles and see if we can achieve more exact matches.

We have found experimentally that, when we retain the LFSR generating polynomial
and seed from the previous example, 19 LFSR cycles are needed to match all the
columns. Thus, absolutely no additional logic is needed to build the LFSR output
decoder for the BIST. In Fig. 3.8 we show one of the possible assignments of the test
patterns to 10 of the 19 LFSR patterns and the resulting combinational logic of the
output decoder, which in this case is just a permutation of wires. For comparison, let us
note that an exhaustive test set having an equally simple output decoder, would require
32 patterns. The exact column matches found for our example are obvious from the
final solution.

HO-x4

——

00010

00001

10100

01010 y0-vd Final Assignment B i i
o010l —— esulting Logic
10110 01111 10110 01111

01011 oooo1 00011 00001

10001 01101 10111 01101 ¥0 = =l
11100 10001 01011 10001 ¥yl = x0
01110 01110 10100 01110 ¥2 = x2
00111 10111 01110 10111 ¥3 = xd
10111 00101 00111 00101 ¥4 = x3
11111 10011 01010 10011

11011 00011 00010 00011

11001 01000 10001 01000

11000

01100

00110

00011

Figure 3.8. Assgnment of rowsfor cl17 circuit

19

4 Experimental Results of the Column Matching Method

4.1 Influence of the PRPG on the Result

The influence of the PRPG structure on the complexity of the output decoder is
analyzed here. Intuitively, the more oycles the PRPG runs, the more vedors are
available to choose from when finding column matches (using the generalized column
matching method) and thus the better solution can be found. Similarly, the more bits has
the PRPG, the more @lumns we have to choose from and there ae more possibilities to
find the exad column matches.

As an example we have dosen the &32 1SCAS benchmark circuit [Brg85, whose
test vedors were generated by an ATPG tool ATOM [ATOM]. Test vedors are in their
non-compressed form, thus they contain don't cares. The 432 circuit has 36 inputs,
thusr = 36 and the complete test set contains 520 \edors (s = 520).

The C matrix vedors were produced by a LFSR with variable width n (10 — 100
seaded with arandom non-zero vedor, and the LFSR ran for a given number of cycles p
(520- 10000). The atries in Tab. 4.1 indicae the number of exact matches achieved
and the complexity of the final output decoder. As the complexity measure we seleded
the sum of the number of literals in the sum-of-products form of the Boolean function
and the output cost. The output cost is the total number of wires entering the OR-gates
in the two-level implementation of a Boolean function. The results confirm the previous
asumption: the number of exact matches reached increases and the cmplexity of the
output decoder deaeases with the increasing number of patterns generated by a LFSR.
However, the width of a PRPG is not of a big significance

Table 4.1. Influence of the LFSR on the result

n/p 520 1000 2000 5000 10000
10 [5/2667 |11/1961 - - -

13 [4/2392 |12/1840 [14/1509 |19/1436 -

22 |6/2069 [14/1459 [16/1400 |17/1084 [21/794
37 |5/1861 |15/1284 |19/1014 [22/739 |24/744
50 |6/1736 |15/1190 |17/1241 [22/699 |22/727
100 |4/1810 |16/1075 |18/855 |22/612 [24/698

Entry format: exact matches/ literals + output cost

A similar experiment was made using a &llular automaton instead of a LFSR, while
al the other parameters are kept the same. The CA chosen was an automaton
performing multiplicaion of the polynomials corresponding to code words by the
polynomial x+1 (the rule 102 for ead cell) — see Fig. 1.5. The results are shown in
Table 4.2. Let us note that the misgng entries in the Table imply that the period of the
given cellular automaton was not long enough to produce the required number of
patterns.

20

Table 4.2. Influenceof the CA on theresult

n/p |520 1000 2000 5000 10000
13 42473 |- - - -

22 6/2108 |- - - -

37 6/1951[14/1469 |18/887 20/971 |23/737
50 4/1941/9/1647 [18/919 21/959 |21/841
100 4/2034112/ 1479 |16/1122 [17/1121 |22/921

Entry format: exact matches/ literals + output cost

We @n see that the values obtained are very similar to the situation when an LFSR is
used as a PRPG. Thus, we can make a onclusion that the type of a PRPG does not
influence the column matching algorithm significantly.

In the third measurement again the LFSR was used as a PRPG and also the same
(c432) benchmark was used, but the test was compaded, thus the test vedors didn’t
contain don't cares. The length of atest is equal to 100, and thus smaller LFSR can be
used (with the minimum number of stages equal to 7) to produce the test. Table 4.3
shows that even when less column matches were found, the resulting function is often
simpler for lower number of LFSR cycles.

Table 4.3. Influence of the LFSR on the result — compacted test

w/ | 100 500 1000 5000 10000

7 2/1987 - - - -

10 |2/1775|7/1544 |8/1473 - -

36 |3/1461 |7/1445 |8/1289|10/1224|11/1150
50 |3/1377 |7/1366 |8/1306|10/1212|11/1183

4.2 | SCAS Benchmarks

The results of the olumn matching method are illustrated on several combinational
|SCAS benchmarks. Next, the impact of using atest with don't caresis gudied here.

The complete test sets were generated by the APTG tool ATOM [ATOM] for all
benchmark files. Both test sets — with and without don't cares - were used to study the
influence of the nature of the source on the resulting complexity of the output decoder.

An LFSR with the width equal to the number of primary inpus of the CUT was used
as a pseudorandom pattern generator, and the number of patterns generated was %t to
500Q The LFSR was saled with arandom vector.

Table 4.4 compares the results of the two test sets. For ead tedt its size is shown in
the table, for non-compacted tests the portion of don't cares in the test is indicaed in
parentheses. For ead benchmark circuits and its test set the number of exad column
matches obtained is shown, as well as the mmplexity of the resulting output decoder
(cogt) in terms of the sum of the number of literals and the output cogt (like in the
previous example).

21

Table 4.4. | SCAS Benchmarks

benchmark | LFSR (n/ p) Test with DCs Compacted test
testsize(r/9) maiches | cost | testsize(r/s) | matches | cost
c1355 41x 5000 41x 1566 (14.8%) |6 10944 | 41x 192 8 1475
c1908 33x 5000 33x187M(482%) |10 9277 |33x210 10 2043
432 36x 5000 36x520(685%) |17 908 36x 100 10 1180
c499 41 x 5000 41 x 750 (5.4 %) 12 5375 |41x127 9 698
c880 60x 5000 60x 942 (80.5%) |39 1009 |60x 133 10 3024

We @n see that in two cases (shaded cells) the use of a non-compressed test led to a
smaller hardware overhead. These were the caes where the portion of don’'t cares in the
test waslarge. In other cases, where the portion of don't cares is relatively small and the
test with don't cares neas its compacted form, the use of the compaded test is more
advantageous since the number of test patternsis snaller.

22

5 Coverage-Directed Assignment

In the previous Sedion the lumn matching besed approach to finding an
assignment of the rows of the T matrix to the rows of the matrix C was discussed.
When the wlumn match of the i-th column from the C matrix to the j-th column of the
T matrix is found (dired or inverse), the implicant x; (or x;' respedively) is €leded to
be apart of the final solution. This implicant covers all the ones in the j-th column of
the T matrix, thus all the values of the j-th output variable of the output decoder are
produced by this implicant. For example, in Figure 12 when the match Xs-yo is found,
the implicant x3 covers all the ones in the first column of the T matrix. The @mlumn
matching method tries to find the simplest implicants possible (which can be
implemented without any logic) in order to cover as many complete T matrix columns
as possible. The values of the other output variables have to be generated by other
terms, which are determined by some logic minimizer.

However, as was iown above, after finding the @lumn match the possibility of
matching the rowsis smehow restricted. Then, the row assignment need not be ideal in
terms of complexity of the final result measured by the number of additional terms that
need to be generated. In other words, these terms can complicate the solution, so that the
advantages of the mlumn matching are lost. The way to solve this problem is using the
Coverage-Direded Assgnment (CD-A) method.

5.1 The Principles of CD-A

The principles of a Coverage-Direded Assignment method are based on a simple
fad: when all the rows of the C matrix are asigned to the rows of the T matrix (e.g.,
after the olumn and row matching) the Boolean minimization has to be performed.
During this processimplicants are sequentially added to the solution, until all the ones
in the output matrix (T matrix) are @vered by them — see the cvering problem
solution. Thus for ead implicant the set of T matrix ones it covers is evaluated in the
minimization process Let us denote this st as a coverage of an implicant, the coverage
of the output matrix will be aset of the coverages of all the implicants in the solution.

In the Coverage-Direded Assgnment method we proceel badkwards — first, we find
a mverage of the output matrix and then we find the implicants that meet this coverage.
Then, the Boolean minimization process can be mpletely omitted and even
performing the row assignment is not necessary — the very implicants are produced by
this method. The final PLA matrix is produced by joining the implicants with their
coverage.

The whole processof the Coverage-Direded Assgnment isillustrated by Figure 5.1.

23

T—Matrix

Coverage masks

Find Coverage

Coverage sefts

Find Implicantsige=— C—Matrix

\

Implicants Row assignment

Join

PLA matrix

Figure5.1: CD-A Structure

5.2 Find Coverage Phase

In this phase we try to find the coverage of the T matrix, thus the implicants that
cover al ones in this matrix. But, the structure of these implicants is not known yet,
only their properties are determined — namely the @verage sets together with the
coverage masks.

Definition
Let t; be an implicant. The coverage set C(t;) of the implicant t; is a set of such vedors
(rows) of the T matrix, that at least one one in the vedor is covered by thisimplicant. In

other words, the cverage set is a set of vedors of the output matrix for which t; is an
implicant for at least one output variable.

Definition
The coverage mask M(t) of the implicant t; is the set of columns of the T matrix, in
which all vectorsincluded in C(t;) contain ones.

The coverage mask M(t) can also be expressed as a vector in the output matrix
respective to the term t;. In the following text we will use both representations of the
coverage mask.

Condition — validity of the coverage
For every t; the following equation must be valid:

24

Let

Ct) ={cy, Cz ..., C}, Wwhere0 < ¢ <sforal 1<i <u, sisthe number of
rowsinthe T matrix

and

M(t) = {m, mp, ..., m}, where m O {0, 1} for al i, r is the number of
columnsinthe T matrix.

Then for al elements { ¢, m} from the Cartesian product C(t;) x M(t;) there must be
T[c, j] =m.

Condition — completenessof the wverage

For the complete coverage of the T matrix all the ones in the matrix must be
generated by the couples of the Cartesian product C(t;) x M(t;).

u
4.2.1 lllugtrative Example

We will illustrate the whole CD-A process by a simple example. Let us have the
following T- and C-metrices:

A 10000 a 10000
B 11100 b 11100
C 00001 ¢ 01100
D 10101 d 01010
C = E 01111 T = e 00111
F 01001 f 00000
G 01110 g 00011
H 10110 h 01101
| 00110 i 10111
J 11010 j 10100

Figure5.2. The C- and T-matrices

In this phase we will find the coverage of the T matrix:

Figure 5.3. The coverage of the T matrix

25

This coverage contains 6 implicants ti-ts, the ones in the matrix that are covered by
the individual implicants are shown in Fig. 5.3. All the ones are covered, while no zero
is covered, thus this coverage is complete and valid. The coverage sets and coverage
masks are shown in the following Table. Note, that the rows of the matrix are labeled a
j instead of numbering, as later the numbers could be confusing.

Table 5.1. The coverage sets and masks

Implicant C(t) M(t:)
ty {eg,i} {0,0,0, 1, 1} =00011
to {b, c, h} {0,1, 1,0, 0} =01100
t3 {i, j} {1,0,1,0, 0} =10100
ta {d} {0,1,0, 1,0} =01010
ts {a, b} {1,1,0,0, 0} =11000
te {e h} {0,0, 1,0, 1} =00101

4.2.2 The Find Coverage Algorithm

Obviously, there exist many possible covers of a particular function. There are
several trivial solutions: one of them is the coverage, where each single one of the
matrix is covered by one coverage set. Thus, there are as many coverage sets, as there
areonesinthe T matrix. This solution is, however, extremely inefficient.

Another trivial solution is a coverage, in which each vector of the T matrix is covered
by exactly one coverage set (and thus by a single term). Then each of the sets contains
exactly one vector and their number is equal to the number of rows of the T matrix. As
al these coverage sets have empty intersections, it is always possible to find the
corresponding implicants and thus the size of such a coverage determines the upper
bound of the number of implicants (see the following Subsection).

The third special case is the situation where all the ones in a column of the T matrix
are covered by a single implicant. This corresponds to the column match discussed in
Section 3. Thus, the column matching method is just a special case of a CD-A.

Finding the minimum cover, i.e.,, the minimum number of implicants is a NP hard
problem, thus some heuristic must be used to generate the coverage sets. In praxis, we
use a heuristic that sequentially tries to find the coverage sets that cover the maximum
yet uncovered ones in the T matrix. At the beginning, the T matrix vector with the
maximum number of ones is selected and included into the first coverage set, while the
coverage mask is set equal to this vector. Next, we systematically try to add such
vectors to this set, so the number of ones covered by them is increasing. After
completing one set, another coverage set is constructed, until all the ones are covered.
Note that the corresponding coverage mask is being reduced after every inclusion of the
vector, and thus the number of covered ones may decrease after the vector selection.

26

4.3 Find Implicant Phase

Now, when the coverage of the T matrix is found, the implicants that have the
required coverage sets should be generated from the C matrix. Such implicants will be
denoted as implicants that fulfil this coverage. The properties of the implicants that fulfil
the coverage are studied in this section.

This phase is completely independent on the T matrix, only its coverage sets are
processed and only their structures are important. The implicant generation is based on
the following Definitions and Theorems.

In the following text the rows C[i] of the C matrix will be taken as minterms.

Definition
Let us introduce an inclusion function ¢(ti, t2) for two terms t; and t; of the same
dimension:

@(t1, tp) = Lif to O tg, thus tz isincluded ints.
¢(t1, t2) = 0 otherwise.

Theorem 1

The implicant t; fulfils the coverage C(t;) if the number of minterms in the C matrix
that are included in t; is equal to the size of the C(ti) s&t, i.e.:

p

Z¢(ti’c[j]):|c(tix

|=

Proof

If a minterm of the C matrix is included in a term t;, the term will have a value 1 for
the values of the input variables corresponding to this minterm. If exactly j minterms of
the C matrix are included in t;, the term will have a value 1 for j rows of the C matrix.
The size of the C(t;) set gives the number of rows of the T matrix, for which the term t;
has at least one value 1. Thus, if all the rows of the C matrix need to be assigned to the
rows of the T matrix, the relation stated above must be valid. In the final row
assignment the rows of the C matrix that are contained in t; will be assigned to the rows
of the T matrix included in the C(t;) set.

This condition for selecting the implicants is still not sufficient. It often happens that
one row of the T matrix is covered by more than one implicant. Thus, the terms
covering this row need to have a non-empty intersection. The number of the minterms
of the C matrix that are included in this intersection must be equal to the size of the set
that is an intersection of the corresponding coverage sets. Next, implicants that

27

correspond to the sets that have an empty intersection must also have an empty
intersection.

These observations can be concluded as follows: when we search for the implicants
that fulfil the coverage, first we determine all the intersections of the coverage sets.
Terms that fulfil the coverage requirements must have the same number of C matrix
minterms included in them as the sizes of the coverage sets are, as well as the number of
C matrix minterms included in their intersections must be equal to the sizes of their
corresponding coverage sets intersections.

4.3.1 lllugtrative Example

Now we will show the implicant generation phase in our continuing example. First,
we compute the intersections of the coverage sets:

C(ty) n C(ts) = {i}
C(ty) n Clte) = { &}
C(t2) n C(ts) = {b}
C(t2) n Clte) = {h}

Other set intersections than those listed above are empty.

We start, e.g., with the term t;. We try to find aterm that includes exactly 3 minterms
from the C matrix (because |C(t1)| = 3). The possible termis:

t, = (-01--)
Now the minterms that are contained in thisterm are assigned to it:

10000
11100
00001
10101 ->t,
01111
01001
01110
10110 ->t,
00110 -> t,
11010

O
I
C«CTIOTMMOoOOT>

Figure5.4

The term t; has to contain 3 minterms, while no vector assigned to t; must be
assigned to it, as C(t1) n C(tz) = 0. The possibility is:

28

t, = (--00-)

10000 -> t,
11100
00001 -> t,
10101 -> t,
01111
01001 -> t,
01110
10110 -> t,
00110 -> t,
11010

O
I
C«TIOTMmMOO®>

Figure5.5

The size of C(t3) is equal to 2 and |C(t1)) n C(t3)| = 1, thus exactly one minterm
assigned to t3 has to be assigned to t; as well, while the second one need not be assigned
yet. We will select:

ts = (--10-)

10000 -> t,
11100 -> t4
00001 -> t,
10101 -> t, tg
01111

01001 -> t,
01110

10110 -> t,
00110 -> t,
11010

O
I
CTIOTMMUO®>

Figure5.6

We continue this way, until all implicants are found. The result will be as follows:

A 10000 -> t, ts

B 11100 -> t4
ty = (-01--) C 00001 -> t, tg

_ D 10101 -> t, ts

t = (--00-) C= E 01111 -> t,
ty = (--10-) F 01001 -> t,

G 01110
ty = (---11) H 10110 -> t;

| 00110 -> t; te
ts = (1-0--) J 11010 -> ts
te = (00---)

Figure5.7. Theresulting terms

5.3.2 Implicant Generation Algorithm

Unlike the previous phase, where the solution can always be found, the implicant
generation phase may not succeed in finding a solution. Firstly, as the implicants are
being produced incrementally, it may happen that in some phase of the process the
appropriate implicant cannot be found. Then, we use a backtracking approach; one of
the previously constructed implicants is deleted and the search continues.

29

Second, and the most serious problem is that for a given coverage and the C matrix a
solution need not exist. In this case a new coverage must be generated, i.e., the previous
phase must be re-run.

Until now we have not yet explained the way in which the appropriate implicants are
looked for. The method is based on finding proper supercubes of the minterms of the C
matrix. In our example, when the t 3 term is being searched for after t; and t , were
selected, it has to contain one minterm contained int 5 (i.e., D, H or |) and one minterm,
which is not yet contained in any previously created terms (i.e., B, E, Gor J). Thus, t 3
must be a supercube of any two minterms from these two sets. We find the minimum
supercubes of all the pairs of minterms from these two sets and try to find the
appropriate term among them or their supercubes (expanded terms). Note that the found
supercubes need not meet the requirements for the searched term; they only meet the
requirements for minimum number of contained minterms, however they can contain
more terms than needed and thus they are rejected. The minimum supercubes of the (D,
H, 1) and (B, E, G, J) minterm couples are listed below:

D-B: 1-10- HB: 1-1-0 l-B: --1-0
DE --1-1 HE --11- l-E: 0-11-
DG --1-- HG --110 -G 0-110
D-J: 1---- HJ: 1--10 l-J: ---10

Figure5.8. Candidatesfor the implicants

We can see that thetermt 3 = (--10-) was created by expansion of the supercube
of the D and B minterms. Similarly, the termt ; was created by expansion of one of the
supercubes of any three minterms.

5.4 The Final Phase

After the implicants are produced, the only thing we need to do is to assign these
implicants to the outputs, i.e.,, to create the PLA matrix. This can be done simply by
joining these implicants with their coverage masks found in the Find Coverage phase.
The final PLA matrix and the SOP forms of the example circuit are shown below.

-01-- 00011 Yo = XoX3'
--00- 01100 Vi = XX+ XoXeh Koo
--10- 10100 e o

Y2 = X X3+ XXz + Xo X1
---11 01010

= X' Xot + XoXo'

1-0-- 01010 Ya = X X 0T X0
00--- 00101 Ya = X' X+ Xo' X1

Figure5.9. Thefinal result

30

5.5 Assignment of Rows

As was said before, in this method it is not necessary to determine which C matrix
rows are assigned to which rows of the T matrix, as this knowledge is not needed to
produce the final circuit. However, sometimes we may want to know the order in which
the test patterns are generated and then the row assignment must be found.

For the following discussion the term of a reduced coverage set has to be introduced.

Definition
The reduced coverage set C' (ti) of a coverage set C(ti) will be defined as follows:

cf)=ct)-Uck)nch)

J#i

where k is the total number of coverage sets.

By this definition, the reduced coverage set contains only those vedors, that are not
included in any intersedion of the C' (t;) with any other set(s).

After computing all the reduced coverage sets and the reduced coverage sets of all
their intersedions each vedor of the T matrix is contained in exadly one of the
resulting sets (or in none). The reduced sets and the assignment of the vedors to the sets
in our example is shown below:

Table5.2. Thefinal result

C'(t1) = {9} T matrix row contained in

C(t) ={c} a C'(ts)

C'(ta) = {j} b C(t) n C(ts)

C (ta) = {d} c C (t2)

C(ts) ={a} d C (ta)

C'(te) =0 e C(t) n Clte)

C(ty) n C(ts) = {1} f -

C(ty) n Clte) ={€} g C (tw)

C(tz) n C(ts) = { b} h C(t2) n C(te)

C(t2) n C(te) ={h} i C(t1) n C(ts)
] C(ts)

Now we have to find the asignment of the C matrix rows to the reduced coverage
sets and the set intersedions. This assgnment can be easily observed from the
assignment of the terms to the C matrix rows after the implicant generation phase; the

31

rows are covered by the terms and their intersections in order to meet the coverage
requirements:

Table 5.3. Assignment of the C matrix rows

Set C matrix row
A 10000 -> t, ts C (t1) H
B 11100 -> tg
C 00001 -> t, tg C (t2) F
D 10101 -> t, t ,
C= EOLLLL -> ts C'(ts) B
F 01001 -> t ,
G 01110 i C'(t) E
H 10110 -> t, C (ts) J
| 00110 -> t; tg
J 11010 -> ts C (to) -
C(tl) N C(t3) D
C(tl) N C(te) |
C(tz) N C(t5) A
C(tz) N C(te) C
none G

Then, the final row assignment is done by simple joining the two assignments to the
coverage sets. If the C matrix rows are ordered the same way as they are produced by a
PRPG, the order of the T matrix rows in this assignment determines the order in which
the test patterns are fed into the CUT.

Table 5.4. Thefinal assignment

Set C matrix row | T matrix row

C'(ta) H g

A 10000 b 11100

C(t2) F c B 11100 | 10100

, C 00001 h 01101

C(ta) B j D 10101 i 10111

, E 01111 d 01010

C'(ta) E d F 01001 ¢ 01100

, G 01110 f 00000

C'(ts) J a H 10110 g 00011

C (to) i i | 00110 e 00111

6 J 11010 a 10000
C(t1) n C(ta) D i
C(t1) n C(te) | e
C(t2) n C(ts) A b
C(t2) n C(te) C h
none G f

32

5.6 Generalized Coverage-Directed Assignment

Aswell as the column matching based method, also the CD-A approad can be eaily
modified for alonger PRPG run, when there ae more C matrix rows than the T matrix
rows (p >). Again, only the suitable C matrix rows are asigned to al the T matrix
rows, while the remaining rowsin C are ignored.

Let us remark, that this CD-A modificaion consists only in altering the Implicant
Generation phase, as the Find Coverage phase is completely independent on the C
matrix. Thus, even if the number of the C matrix rows is greaer than recessry, the
number of implicants in the final solution cannot be reduced dredly — it is determined
purely from the Find Coverage phase. However, as was said before, the Implicant
Generation phase need not always be successful for a given coverage. So, the
improvement consists in the fad, that there may exist a better coverage of a given T
matrix that cannot be implemented in the standard way (the Implicant Generation phase
fails for this coverage), but we can find the gopropriate implicants when the generalized
CD-A method is used. The second improvement is that often “bigger” implicants can be
found, containing fewer literals.

The modification consists above all in modifying Theorem 1. As not al C matrix
minterms will be included in the solution, the wndition of equality of the size of the
coverage set and the number of minterms covered by the seached term is not required,;
the term may cover more minterms, while the excessive ones are omitted in the final
solution. Thus, the equation from Theorem 1 is modified to:

gqb(ti,c[j]mc(tq

Similarly, this modification applies also to the intersedions of the cmverage sets,
except of the fact that some C matrix vectors can be asdgned to non-existent
coverage set intersedions. These vedors will also be omitted in the final assgnment.

However, these conditions are not yet sufficient — it may happen that the candidate
term contains © many C matrix minterms, that there ae not enough “free” minterms
for the not yet processed coverage sets. So the additional condition must apply:

p—iqb(ti,ch'])2

jopP jopP

Jek)-Uek)
where P isthe set of the already processed implicants.

5.6.1 Generalized CD-A Example

The principles of the Generalized CD-A can be illustrated with an example. The T
matrix is kept the same & before, and the previously found coverage is also retained.
The new C matrix has 20 vectors and 5 variables — thus it is representing a 5-stage
PRPG running for 20 cycles:

33

01111
01101
00011
01011
00001
10001
11001
01110
01000
11000
10111
11010
00100
10011
00010
01001
00000
01100
S 00101
T 10100

O
I
TOTVOZZErAR“—"IOTMUO®>

Figure5.10. The C matrix

We will give the solution without explaining the particular steps, as the procedure
is very similar to the classical CD-A algorithm. Figure 5.11 shows the resulting terms
with the C matrix rows covered by them. Note that some minterms are contained in
the intersections of terms that do not correspond to any coverage set intersections.
Those minterms represent the idle cycles of the PRPG.

01111 -> t t, ts
01101 -> t, ts
00011 -> t, ts
01011 -> t t, ts
00001 -> t, tsg
10001 -> t, tg
11001 -> t, t, te
01110 -> t t,
01000 -> t, t,
11000 -> t, t, te
10111 -> t; tg
11010 -> t, tg
00100

10011 -> tq ts
00010 -> t;

01001 -> t, t, ts
00000 -> t,

01100 -> t,

00101 -> tg

10100 -> t,

—
N
1

— —+
a b
[

—
w
| 1
NN AN NN N
=
1 1

0V VOTVOZZIrX«~"ITOTMMOO®T>

Figure5.11. Assignment of the C matrix rows to the terms

The following Table shows the resulting assignment of the C matrix rows to the
reduced coverage sets and to the T matrix rows:

Table 5.5. Thefinal assignment

Set C matrix row | T matrix row é 81131
C'(ta) O 9 C 00011
C'(t2) Q C D 01011

C (ta) T J E 00001 b 11100

c R q F 10001 h 01101
(ta) G 11001
C'(ts) S a H 01110
C (tG) _ _ | 01000
J 11000

C(t) n C(ts) K ' K 10111 i 10111

Ct)nCle} N e M 00200 f 00000

C(t2) n C(ts) E b N 10011 e 00111

C(t2) n C(te) F h O 00010 g 00011
P 01001

none M f Q 00000 ¢ 01100

R 01100 d 01010

S 00101 a 10000

T 10100 i 10100

35

6 TheBOOM Minimizer

Aswas sid before, after the column matching and the row assignment, the logic of
the output decoder has to be minimized to obtain the final PLA circuit. However, in
most cases this is not atrivial problem to solve, as the numbers of inpu and output
variables are often quite large. The aurrent Boolean minimizers often were not able to
complete the minimization in a reasonable time. The number of prime implicants of
such functions is extremely large, and thus performing the exad minimizaion [McC56]
is not possible & all. Thus, an efficient heuristic Boolean minimizer had to be used. The
seoond fedure required for such a minimizer is the caability to handle functions with a
large portion of don't cares (highly unspecified functions) without enumerating them —
only the on-sets and off-sets of the functions are explicitly defined.

The systematic Boolean minimization methods mostly copy the structure of the
original method by Quine and McCluskey [Qui52, McC56], implementing the two basic
phases known as prime implicant (Pl) generation and covering problem (CP) solution.
Some more modern methods, including the well-known ESPRESSO [Bra84, Hac96],
try to combine these two phases and thus all the Pls need not be evaluated.

One of the most successful Boolean minimizaion methods is ESPRESSO and its
later improvements. The original ESPFRESSO generates nea-minimal solutions,
ESPRESSO-EXACT [Rud87 was developed in order to improve the quality of the
results, mostly at the expense of longer runtimes. Finally, ESPFRESSO-SIGNATURE
[McG93] was developed, acclerating the minimizaion by reducing the number of
prime implicants to be processed by introducing the concept of a “signature”, which is
an intersedion of all primes covering one minterm. This in turn was an alternative name
given to the concept of “minimal implicants’” introduced in [Ngu87].

A sort of combination of Pl generation with solution of the CP, leading to areduction
of the total number of PlIs generated, is also used in our BOOM (BOOlean Minimizer)
approach used here. An important difference between the gproacies of ESPRESSO
and BOOM is the way they work with the on-set reaived as a function definition.
ESPFRESSO uses it as an initial solution, which hes to be modified (improved) by
expansions, reductions, etc. BOOM, on the other hand, uses the input sets (on-set and
off-set) only as a reference that lead the algorithm to the @rred solution. The second
main difference is the top-down approach in generating implicants. Instead of
expanding the source abes in order to obtain better coverage, BOOM reduces the
universal n-dimensional hypercube until it no longer interseds the off-set, while it
covers the most terms of the source function. Some features of the proposed method
were pubished in several conference procealings[1-7].

6.1 BOOM Structure
When minimizing a single-output function, the BOOM system uses the following
threephases:

1. Coverage-Directed Search (CD-Seach) that generates implicants needed to cover
the function

2. Implicant Expansion (IE) expands those implicants into primes (PIs)
3. Solution of the covering problem (CP).

36

For multi-output functions, instead of phase 3, phases 4, 5 and 6 are exeauted:
4. Prime Implicant Reduction (IR) generates the group implicants from the PIs
5. Solution of the group covering problem

6. Output Reduction (OR), which eliminates redundant implicants of individual
outputs (partially corresponding to ESPRESSO's MAKE_SPARSE procedure
[Brad4]).

All these parts will be briefly described in the following Subsections. Fig. 6.1 shows
the block schematic of the BOOM system:

CD-Search

T
Implicants
pdr

Implicant Expansion

Pls

Implicant Reduction

Group implicants

Covering Problem Solution

I
[\Jecessaryilmplicants

Output Reduction

— T
rvhnlmuT Cover

Figure6.1. Structure of BOOM

6.2 Coverage-Directed (CD) Search

The ideaof confining the implicant generation to those redly needed gave rise to the
CD-Seach method, which is the most innovative fedure of the BOOM system. It
consists in a direded seach for the most suitable literals that should be alded to some
previously constructed term in order to convert it into an implicant of the given
function. Thus instead of increasing the dimension of an implicant starting from a
1-minterm (or any other 1-term given in the function definition), we reduce the n-
dimensional hypercube by adding literals to its term, until it becomes an implicant of
the given function. This happens at the moment when this hypercube does not intersed
with any O-term any more.

The implicant generation method aims at finding a hypercube that covers as many 1-
terms as possible. We start by seleding the most frequent input literal from the given
on-set. The seleded literal describes an n-1 dimensional hypercube, which may be an

37

implicant, if it does not intersect with any O-term. If there are some O-minterms covered,
we add one more literal and verify whether the new term already corresponds to an
implicant. After each literal selection we temporarily remove from the on-set the terms
that cannot be covered by any term containing the selected literal - the terms containing
that literal with the opposite polarity. In the remaining on-set we repetitively find the
most frequent literal and include it into the previously found product term until it is an
implicant. Then we remove from the original on-set the terms covered by this implicant.
Thus we obtain a reduced on-set containing only uncovered terms. Now we repeat the
procedure from the beginning and apply it to the uncovered terms, selecting the next
most frequently used literal, until the next implicant is generated. In this way we
generate new implicants, until the whole on-set is covered. The algorithm that takes the
on-set (F) and offset (R) as an input and produces a set of product terms (H) covering all
1-terms and intersecting no O-term can be described by the following pseudo-code:

Algorithm 6.1
CD _Search (F,R) {
H=10
do
F =F
t =true
do
v = most_frequent_literal(F ")
t =t ANDv

F =F’—cubes_not_ including(t)
while(t n R# 0)
H=H Ot
F=F -F
until (F == 0)
return H

6.2.1 CD-Search Example

Let us have a partially defined Boolean function of ten input variables Xo..xg and ten
defined minterms given by atruth table in Tab. 6.1. The 1-minterms are highlighted.

Table6.1

var: 0123456789

0 0000000010 1
1 1000111011 1
2 0000011001 1
3. 11110110000

4. 10110011000

5. 1111000100 1
6. 01000101000

7. 00110110110

8 0010111100 1
9 1110111000 1

38

As the first step we count the occurrence of literals in the 1-minterms. The “0”-line
and “1”-line in Tab. 6.2 gve ounts of X' and x; literals respedively. In this table we
seled the most frequent literal.

Table6.2

var: 0123456789
0: 3435322444
1: 3231344222

The most frequent literal is x3* with five occurrences. This literal alone describes a
function that is a superset of an implicant, because it covers the 6™ minterm (O-minterm)
in the original function. Hence another literal must be added. When searching for the
next literal, we can reduce the scope of our seach by suppressng 1-minterms
containing the seleded literal with the opposite polarity (in Tab. 6.3 shaded dark). An
implicant containing a literal xs* cannot cover the 5™ minterm, because it contains the xs
literal. Thus, we temporarily suppress this minterm. In the remaining 1-minterms we
find the most frequent literal.

Table 6.3

0123456789

0000000010 1
1000111011 1
0000011001 1
1111011000 O
1011001100 O
1111000100 1
0100010100 O
0011011011 O
0010111100 1
1110111000 1

<8}
=

CoNoO~wNMROS

0123456789
3@3- 21133
212- 30122

Asthere ae several literals with maximum frequency of occurrence4 (x1', Xs, Xs, X7'),
the seond seledion criterion must be gplied. We use these literals tentatively as
implicant builders and creae four product terms using the previously selected literal xs':
X3'X1', X3'Xs, X3'Xs, X3'X7". Then we ched which of them are already implicants. The
term xs'Xs is not an implicant (it covers the 6™ minterm), so it is discarded. Now one of
the remaining 3terms representing implicants must be chosen. We should choose aterm
covering the maximum of yet uncovered 1-minterms (in Tab. 6.3 shaded lightly). As
each of these implicants covers four 1-minterms, we can seled randomly — e.g. Xs'Xe.
Thisimplicant is gored and the seach continues.

R OoO<
T
=

The seach for literals of the next implicants is described in Tab. 6.4. We omit
minterms covered by the seleded implicant x3'xs (dark shading) and seled the most
frequent literal in the remaining minterms.

38

Table6.4

ar: 0123456789

0000000010 1
1000111011 1
0000011001 1
1111011000 O
1011001100 O
1111000100 1

0100010100 O
0011011011 O

0010111100 1
1110111000 1
0123456789

11117FA118
1111000110

CONOUAWNEROS

o<
)
=

R

As en in the lower part of Tab. 6.4, we have four equal possibilities, so we toose
one randomly — e.g. xs'. In a similar way we an find another literal (Xs') needed to
creae an implicant covering the remaining two 1-minterms.

The resulting expresson covering the given function IS Xz Xg+ Xs' X' .

6.3 Implicant Expansion (1 E)

The implicants generated duing the CD-Seach neel not be prime. To make them
prime, we have to increase their size by IE, which means by removing literals
(variables) from their terms. When o literal can be removed from the term any more,
we get a Pl. The epansion of implicants into Pls can be done by several methods
differing in complexity and quality of results obtained. We tested several approades,
from the simplest sequential seach (which is linea) to the most complex exhaustive
(exponential) seach.

A sequential Search systematicdly tries to remove from each term all literals one by
one, whereas the first literal is chosen randomly. Every removal is made permanent if
no O-minterm is covered. Only one Pl is generated from each implicant, even if it could
yield more PIs. A Sequential Seach obviously does not reduce the number of product
terms. On the other hand, experimental results show that it reduces the number of
literals by approximately 25%.

With a Multiple Sequential Search we try all possible starting positions within an
implicant, which thus expands into several Pls. This method produces more primes than
a Sequential Search, while the time complexity is acceptable.

Even the Multiple Sequential Search algorithm cannot expand an implicant into all
possible Pls. To do so, an Exhaustive Implicant Expansion must be used. Using
reaursion or queue, al possible literal removals are then tried until all primes are
obtained. Unfortunately, the complexity of this algorithm is exponential.

All these expansion strategies have been tested and evaluated from the point of view
of runtime and result quality. Finally the Multiple Sequential Search was seleded as the
best method for standard problems.

The Implicant Expansion phase is more thoroughy described in [3].

40

6.4 Solution of the Covering Problem

The quality of the final solution strongly depends on the CP solution algorithm. An
efficient CP solution algorithm has to be used especially in connection with the iterative
minimization (see Subsection 6.6). With a large number of Pls an exact solution is
impossible and some heuristic must be used. Here the large number of implicants may
misguide the CP solution algorithm and thereby lead to a non-minimal solution.

An exact CP solution is mostly rather time-consuming, especially when it is
performed after several iterations during which many implicants were accumulated. In
this case, a heuristic approach is the only possible solution. Out of several possible
approaches we used two. The first one, denoted as the LCMC cover (Least Covered,
Most Covering) is a common heuristic algorithm for solution of the covering problem.
The implicants covering minterms covered by the lowest number of other implicants are
preferred. If there are more than one such implicants, implicants covering the highest
number of yet uncovered 1-minterms are selected.

More sophisticated heuristic methods for CP solution are based on computing the
contributions (scoring functions) of terms as a criterion for their inclusion into the
solution [Ser75, Rud89, Cou94, 6]. This means that a weight is assigned to every
implicant, which expresses its potential contribution to the minimal solution. For every
term to be covered the weight of each unity entry is computed as a reciprocal value of
the number of ones. The weights of all ones connected with one implicant are then
summed up and assigned to the implicant as its weight. The implicant with the highest
weight is then selected for the solution.

6.5 Minimization of M ulti-Output Functions

6.5.1 Prime Implicant Reduction

When minimizing a multi-output function, each of the output functions is first treasted
separately. After performing the CD-search and IE phases we have a set of Pls
sufficient for covering all the output functions. However, to obtain the minimum
solution we may need group implicants, i.e.,, implicants of more than one output
function that are not primes of any.

During the implicant reduction all obtained primes are tried for reduction (by adding
some literals) in order to become implicants of more output functions. The method of
implicant reduction is similar to a CD-Search. Literals are repetitively added to each
term until there is no chance that the implicant will be used for more functions. We
prefer literals that prevent intersecting with most of the O-terms of all functions. When
no further reduction yields any possible improvement, the reduction is stopped, the
implicant is recorded and assigned to al functions, whose off-set it does not intersect.

6.5.2 Solution of the Group Covering Problem

After assigning implicants to the output functions the group covering problem is
solved. The solution in this case is a set of implicants needed to cover al output
functions. For each output we may find all implicants that do not intersect the off-set of
the output function.

41

To generate the required output values, some of these implicants may not be
necessary. These implicants would create redundant inputs into the output OR gates.
Sometimesthisis harmless (e.g., in PLAS), or it can even prevent hazards. Nevertheless,
for hardware-independent minimization the redundant outputs should be removed. This
is done at the end of the minimization by solving covering problems for each of the
output functions separately.

6.6 Iterative M inimization

When selecting the most frequent literal during the CD search, it may happen that
two or more literals have the same frequency of occurrence. When no other criterion
can be applied to select one literal, the BOOM system chooses at random. Thus there is
a chance that repeated application of the same procedure to the same problem would
yield different solutions.

The iterative minimization concept takes advantage of the fact that each iteration
produces a new set of implicants satisfactory for covering all minterms. The newly
created implicants are added to the previous ones and the covering problem is solved
using all of them. The set of implicants gradually grows until a maximum reachable set
is obtained. The typical growth of the size of a Pl set as a function of the number of
iterations is shown in Fig. 6.2 (thin line). This curve plots the values obtained during the
solution of a problem with 20 input variables and 200 minterms. Theoretically, the more
primes we have, the better the solution that can be found, but the maximum set of
primes is often extremely large. In reality, the quality of the final solution improves
rapidly during the first few iterations and then remains unchanged, even though the
number of PIs grows further. This fact can be observed in Fig. 6.2 (thick line).

s

ho}
c
5]
L
=
£
®
E
[a 8

Iterations

Figure 6.2. Growth of PI number and decrease of SOP length during iterative
minimization

When the solution meets the requirements, the minimization is stopped. The whole
iterative minimization process can be illustrated by the following algorithm. The inputs
are the on- and off-sets of the source multioutput function, the output of the algorithm is
aminimizad SOP form G meeting the st op condition.

42

Algorithm 6.2

BOOM F[1.. m], R1.m]) {
G=10
do

for (i =1, i <=m i++)
I' = CD_Search(F[i] , RIi])
Expand(1’, Ri])
Reduce(l’, R1. m])
I =1 01
G = Goup_cover(l, F[1. m])
Reduce_out put (G, F[1.. m])
if (Better(G, Q) then G=G
until (stop)
return G

6.7 Experimental Results

Many experiments have been made to evaluate the performance and applicability of
the BOOM system. The tests were amed above all at the problems of a very large size
especially for problems with a large number of input variables and an extremely high
number of implicit don't caes — i.e.,, with only a few terms gecified. For these
problems the BOOM was found to be extremely efficient, as it highly overwhelms the
other minimization methods like ESPRESSDO.

The system was programmed in C++ Builder and tested on AMD Athlon 900MHz
PC with 256 MB RAM. Some of the results are shown in following subsedions.

6.7.1 The BOOM Benchmarks — Comparison with ESPRESSO

The effediveness of the algorithm was tested on a set of artificial benchmarks we
have developed for testing Boolean minimizers and ather function manipulation tools
cgpable of handling large Boolean functions. As the benchmarks were made in order to
test the caabilities of the BOOM minimizer, we have named them BOOM Benchmarks
[8]. The arrent benchmark set consists of 720 test problems of various sizes and with
various portions of don't cares in their terms. For ead problem size ten benchmarks
were produced. The benchmark files are specified in a standard Berkeley PLA file
format (seethe Appendix ?), where the on-sets and off-sets of the function are specified,
the don’t care sets are not explicitly defined (type fr). Let us note that this format fully
corresponds to the truth table specification of a highly unspecified Boolean function
obtained, e.g., after the column matching algorithm. The BOOM benchmarks can be
downloaded from the aldress[BENCH].

In this subsedion we present a comparison of the BOOM minimizer with the
ESPRES SO performed on a subset of these benchmarks. The test functions contain in
the average 20% of don't cares in the input arrays of the cae terms and 5 outputs. The

43

number of input variables (n) and the number of care terms (p) vary from 50 to 200.
First, ESPRESSO was run in order to minimize each of the benchmark files and then
BOOM was run iteratively until the result of the same of better quality in terms of the
minimality was obtained. Then the runtimes of BOOM and ESPRESSO were compared.
We can see from Table 6.5 that in most cases BOOM obtained even better results in a
much shorter time than ESPRESSO did. Such cases are highlighted by shading. The
quality of aresult was measured by the total sum of the literals in the SOP form and the
output cost (number of ones in the output PLA matrix), as it nearly exactly represents
the number of 2-input gates (AND-OR or NAND, NOR) needed to implement the
function. For each problem size 10 benchmarks were performed, the table contains the
average values.

Table 6.5. Comparison of BOOM and ESPRESSO

p/n 50 100 150 200

50 170/0,64 (12) |145/1,89 (21) 131/14,52 (73) 126/3,26 (25)
176/3,89 149/10,29 133/24,87 128/41,99

100 388/7,15 (23) | 313/25,5 (48) 291/38,91 (56) 273/86,51 (83)
393/19,31 315/77,07 293/199,17 275/246,21

150 631/20,38 (25) |506/153,84 (70) | 456/374,68 (105) 427/1186,51 (161)
639/54,76 509/282,8 458/646,20 429/1066,14

200 890/71,97 (31) |697/467,63 (86) | 625/1026,28 (149) 582/1759,27 (220)

Table entry forn95/162820M redlis/ FdPiter al s+ olpBtIEHEB 650l ti on ti mepSP/IFBARi & ations)
ESPRESSO results: #of literals+output cost / solution time[s]

6.7.2 Time Complexity Evaluation

As for most heuristic and iterative algorithms, it is difficult to evaluate the time
complexity of the proposed algorithm exactly. We have observed the average time
needed to complete one pass of the algorithm for various sizes of input truth table. The
truth tables were generated randomly, while in this case only the single-output functions
were studied and the input matrix contained only minterms. Fig. 6.3 shows the growth
of an average runtime as a function of the number of care minterms (20-300) where the
number of input variables is changed as a parameter (20-300). The curves in Fig. 6.3
can be approximated with the square of the number of care minterms. Fig. 6.4 shows the
runtime growth depending on the number of input variables (20-300) for various
numbers of defined minterms (20-300). Although there are some fluctuations due to the
low number of samples, the time complexity is aimost linear. Fig. 6.5 shows a three-
dimensional representation of the above curves.

These observations can be concluded as follows: when the BOOM minimizer is used
in connection with the column matching algorithm (or another output decoder design
method that requires a Boolean minimization at the end of the process), the number of
the PRPG stages do not affect the design runtime significantly, while the length of the
test affects the runtime to some extent, however not exponentially.

Time[s]

0,80
0,75 4
0,70 4
0,65 4
0,60 4
0,55 4
0,50 4
0,45 4
0,40 4
0,35 4
0,30 4
0,25 4
0,20 4
0,15 4
0,10 4
0,05 4

0,00

Terms

Figure 6.3 Time complexity (1)

0,80 q
0,75 4 300
0,70 4
0,65
0,60 4
0,55 4 260
0,50 4

_, 045

2, 0,40]

.Gé 035] 220

" 030
0,25 4 180
0,20 4
0,15 4 140
0,10 4 100
0,05 4 60,,
0,00 T T T T T T

0 50 100 150 200 250 300

Input variables

Figure 6.4 Time complexity (2)

Time[s]

0,8
0,7
0,6
0,5
04
0,3
0,2
01

20§

260
180
100 i
20 Input variables
(=3 =3 =3 =3 =4 (=3 =3
© =1 = = N © =3
- - - ™~ ~N ™
Terms

Figure 6.5 Time complexity (3)

45

7 Conclusions

A new test-per-clock BIST method for combinational circuits was described in this
thesis. The pseudorandom patterns are generated by a PRPG and then transformed into
test patterns that are pre-computed by an ATPG toadl. In the method proposed here eat
of the test patterns has to be asigned to some of the PRPG patterns in order to generate
the required test patterns by the test pattern generator. This transformation is done by a
combinational block denoted as an output decoder. The method aims at simplifying this
deader as much as possible by proper assigning the test patterns to the PRPG patterns.
However, the cmplexity of the decoder is grictly determined by the given test patterns.
The asignment problem is trested as a general combinatorial problem and the
algorithms can be exploited also in other areas of logic design.

Both the LFSR and cellular automata were tried to use & a PRPG and it was $iown
that the properties of the PRPG do dot influence the final solution significantly. Thus,
both the LFSR generating polynomial and seed can be randomly chosen. Of course,
such a generating polynomial must be dosen so that the LFSR produces the required
number of code words, however, the polynomial needs not be irreducible. One
possibility to improve the final result is to run the asignment algorithm repeaedly,
while in eadch cycle different LFSR polynomial and/or seel is chosen. This principle
was tested experimentally, but only a slight improvement was reated.

Two general assgnment methods were proposed in this thesis: the mlumn matching
method and the novel coverage-direded assignment method. In the wlumn matching
method as many outputs of the deaoder as possible ae tried to diredly match to the
inputs, which minimizes the combinational logic needed to produce the matched outputs
to zero. The logic producing the values of the unmatched output variables has to be
synthesized by some Boolean minimizer. The principles of column matching algorithm
were presented in [9].

Several approadies based on the decomposition into set systems and approaches
based on the scoring matrix were proposed. The method is applicable to one-to-one
matching where the PRPG runs only the most necessary number of cycles, as well as to
the situation where idle PRPG cycles are inserted. The number of PRPG hits (stages)
can be also freely chosen, as far as the PRPG produces the required umber of different
code words. The test patterns can be presented as vedors containing don’'t care sates, as
well asin their compacted form, where the test patterns are in the form of minterms and
their number is reduced to minimum.

It was $rown experimentally, that the more cycles the PRPG runs, the better solution
in terms of the complexity of the combinational logic can be found. However, the length
of atest should be reduced to minimum too, thus a trade-off has to be found. Similarly,
increasing the width of a PRPG (number of PRPG stages) reduces the output decoder
logic, but not significantly.

The method was tested on a set of combinational |SCAS benchmarks whose mmplete
test sets were generated by an ATPG tool and the anount of logic needed to implement
the output decoder was determined.

The mverage-direded assignment method produces the very implicants of the output
deaoder, thus no minimizaion is required. First, the coverage of the test matrix is
determined, and then the implicants fulfilling this coverage ae looked for. The
assignment of the PRPG code words to the test patterns can be wmputed, however,

46

performing this processis not necessary for the synthesis of the output decoder. This
method is the most general approach to the logic synthesis and it can be used in many
other areas of logic design. Further reseach will be driven towards exploiting the
method in a minimizaion of Boolean functions and generation of logic design
benchmarks with defined properties.

The problem of finding the implicants fulfilling the required coverage is very
complex. For larger problems finding the solution is very time-consuming and often the
solution even may not exist. In this case another coverage has to be found and the
processis repedaed in order to obtain a result. The method fails for most of the ISCAS
benchmarks far and thus the results are not presented in the thesis. The development
of algorithms that will allow us to handle more complex problemsis yet in progress

In connedion with the pattern assignment methods an efficient Boolean minimizer
BOOM was developed. Its most important feaures are its applicability to functions with
several hundreds of inpu variables and very short minimizaion times for sparse
functions, i.e., functions with only several cae terms defined. The function to be
minimized is described by the truth table where the on-set and off-set of the function is
defined, whereas the dont care set neal not be specified explicitly. The entries in the
truth table may be minterms or terms of higher dimensions. The implicants of the
function are mnstructed by reduction of n-dimensional cubes;, hence the terms
contained in the original truth table ae not used as a basis for the final solution.

The properties of the BOOM minimization tool were demonstrated on examples. Its
application is advantageous above all for problems with large dimensions and a large
number of dont cae states where it beds other methods, like ESFRESSO, both in
minimality of the result and in runtime. The implicant generation method is very fast,
hence it can easily be used in an iterative manner.

The principles of BOOM were puldished in many conference proceeadings — see[1-7].

The BOOM minimizer together with the tool performing the pattern assignment using
the proposed methods is provided along with this thesis, the usage of the tools is
described in the Appendices.

47

Refer ences

[Aga81] Agarwal, V .K., - Cerny, E.: Store and Generate Built-In Testing Approad,
Proc. of FTCS-11, pp. 35-40, 1981

[Aga93] Agarwal, V.K. —Kime, C.R. - Saluja: A tutorial on BIST, part 1: Principles.
|[EEE Design & Test of Computers, vol. 10, No.1 March 1993 pp.73-83, part 2:
Applicaions, No.2 June 1993 pp.69-77

[Alo93] Aloke, K. — Chaudhuri, D.P.: Vector SpaceTheoretic Analysis of Additive
Cellular Automata and Its Application of Pseudoexhaustive Test Pattern Generation,
|[EEE Transadions on Computers, Vol. 42, No. 3, March 1993 pp. 340-352

[AIS94] AlShaibi, M.F. - Kime, C.R.: Fixed-Biased Pseudorandom Built-In Self-Test
for Random Pattern Resistant Circuits, Proc. of International Test Conference, pp.
929938 1994

[Bra84] Brayton, R.K., et a.: Logic minimizaion algorithms for VLS| synthesis.
Boston, MA, Kluwer Academic Publishers, 1984

[Bar87] Bardell, P.H. —McAnney, W.H. — Savir, J.: Buit-In Test for VLSI:
Pseudorandom Techniques, New York: Wiley, 1987

[Brg84 Brglez F. - Fujiwara, H.: A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortan, Proc. of International Symposium on
Circuits and Systems, pp. 663698, 1985

[Cha95] Chatterjeg M. - Pradhan, D.J.: A novel pattern generator for nea-perfed fault
coverage. Proc. of VLS| Test Symposium 1995 pp. 417-425

[Cou94] Coudert, O.: Two-level logic minimizaion: an overview, Integration, the VLSI
journal, 17-2, pp. 97-140, Oct. 1994

[Gar79] Gary, M. — Johnson, D.: Computers and Interadibility: A guide to the theory of
NP Completenes, Freeman, 1979

[Gir99] Girard, P. et a.: A test vedor inhibiting tednique for low energy BIST design.
|IEEE VLS| Test Symposium, May 1999 pp. 407-412.

[Hac96] Hadhtel, G.D - Somenzi, F.: Logic synthesis and verificaion algorithms,
Boston, MA, Kluwer Academic Publishers, 1996 564 p.

[Har93] Hartmann, J. - Kemnitz, G.: How to Do Weighted Random Testing for BIST,
Proc. of International Conference on Computer-Aided Design (ICCAD), pp. 568
571, 1993

[Hel92] Hellebrand, S. - Tarnick, S. - Rajski, J.: Generation of Vedor Patterns Through
Resealing of Multiple-Polynomial Linear Feedbadk Shift Registers, Proc. of
International Test Conference pp. 120-129, 1992

[Hel95] Hellebrand, S. et al.: Built-In Test for Circuits with Scan Based on Resealing
of Multiple-Polynomial Linea Feedback Shift Registers. IEEE Trans. on Comp., vol.
44, No. 2, February 1995 pp. 223-233

[Hel96] Hellebrand, S. - Wunderlich, H-J. - Hertwig, A.: Mixed Mode BIST Using
Embedded Processors. Proc. of IEEE ITC, 1996

[HelOQ] Hellebrand, S. — Liang, H. — Wunderlich, H: A Mixed Mode BIST Scheme
Based on reseading of Folding Counters, Proc. IEEE ITC, 2000, pp.778784

[Koe91] Koenemann, B.: LFSR — Coded Test Patterns for Scan Designs. Proc. Europ.
Test Conf., Munich, Germany, 1991, pp. 237-242

[McC56] McCluskey, E.J: Minimization of Boolean functions, The Bell System
Tednical Journal, 35, No. 5, Nov. 1955, pp. 1417-1444

48

[McC84] McCluskey, E.J.: Pseudo-Exhaustive Testing for VLS| Devices, CRC
Tedhnical Report No. 84-6, Dept. of Eledrical Engineaing and Computer Science,
Stanford University, USA, August 1984

[McC85] McCluskey, E.J.: BIST techniques. IEEEDesign & Test of Compuiters, vol. 2
No.2 Apr. 1985, pp.21-28, BIST structures. vol. 2 No.2 Apr. 1985 pp. 29-36

[McG9O3] McGea, P. et a.. ESFRESSO-SIGNATURE: A new exact minimizer for
logic functions, In Proc. of the Design Automation Conf.’93

[Nee93] Nedbel, D.J. - Kime, C.R.: Inhomogeneous Cellular Automata for Weighted
Random Peattern Generation, Proc. of International Test Conference, pp. 1013-1022
1993

[Ngu87 Nguyen, L. — Perkowski, M. - Goldstein, N.: Palmini — fast Boolean minimizer
for personal computers, In Proc. of the Design Automation Conf.’87, pp.615621

[Nov98] Novak, O. — Hlavicka, J.: Design of a Cellular Automaton for Efficient Test
Pattern Generation. Proc. IEEE ETW 1998 Barcelona, Spain, pp. 30-31

[Nov99] Novak, O.: Weighted Random Patterns for BIST Generated in Cellular
Automata, Proc. of 5-th IOLTW, Rhodes, Greece July 1999 pp. 72-76

[NovO1] Nov&k, O. —Hlawiczka, A. at a.: Low Hardware Overhead Deterministic
Logic BIST with Zero-Aliasing Compador, Proc. IEEE Design and Diagnostics of
Eledronic Circuits and Systems Workshop (DDECS 01), Gyor (Hungary), 18
20.4.2001, pp. 291-298

[Pom93] Pomeranz, |.- Reddy, S.M.: 3-Weight Pseudo-Random Test Generation
Based on a Deterministic Test Set for Combinational and Sequential Circuits, IEEE
Transadions on Computer-Aided Design, Vol. 12, No. 7, pp. 10501058, July 1993

[Qui52] Quine, W.V.: The problem of simplifying truth functions, Amer. Math.
Monthly, 59, No.8, 1952, pp. 521-531

[Rud87 Rudell, R.L. - Sangiovanni-Vincentelli, A.L.: Multiple-valued minimization
for PLA optimization, IEEE Trans. on CAD, 6(5): 725-750, Sept.1987

[Rud89 Rudell, R.L: Logic Synthesis for VLSI Design, Ph.D. Thesis, UCB/ERL
M89/49, 1989

[Ser75] Servit, M.: A Heuristic method for solving weighted set covering problems,
Digital Processes, vol. 1. No. 2, 1975, pp.177-182

[Tou94 Touba, N.A. - McCluskey, E.J.: Transformed Pseudo-Random Petterns for
BIST, CRCTednical Report No. 94-10, 1994

[Tou95a] Touba, N.A. - McCluskey, E.J.: Transformed Pseudo-Random Patterns for
BIST, Proc. of VLSI Test Symposium, pp. 410-416, 1995

[Tou95] Touba, N.A. : Synthesis of mapping logic for generating transformed pseudo-
random patterns for BIST, Proc. of International Test Conference, pp. 674-682 1995

[Tou9q Touba, N.A. - McCluskey, E.J.: Altering a Pseudo-Random Bit Sequence for
Scan-Based BIST, Proc. of International Test Conference, 1996 pp. 167-175

[Tro96] Trouborgt, P.: LFSR Resealing as a Component of Board Level BIST. Proc.
Int' |. TesConf. 1996 Washington, D.C., pp. 58-67

[Wun87] Wunderlich, H.J.: Self-Test Using Unequiprobable Random Patterns, Proc. of
FTCS-17, pp. 258-263, 1987

[Wun88] Wunderlich, H.J.: Multiple Distributions for Biased Random Test patterns,
Proc. of International Test Conference, pp. 236-244, 1988

[ZaQ5] Zacharia, N. — Rajski, J. — Tyszer, J.: Decompression of Test Data Using
Variable-Length Seed LFSRs. Proc. VLSI Test Symp., pp. 426433 1995

49

[ATOM] http://www.crhc.uiuc.edu/IGATE/

[BOOM] http://service.felk.cvut.cz/vlsi/prj/BOOM/

[BENCH] http://service.felk.cvut.cz/vlsi/prj/BoomBench/
[ESPRESSO] http://eda.seodu.co.kr/~chang/ download/espresso/
[ISCAS] http://www.crhc.uiuc.edu/IGATE/

[1] Hlavicka, J. - FiSer, P.: Algorithm for Minimization of Partial Boolean Functions,
Proc. |EEE Design and Diagnostics of Electronic Circuits and Systems (DDECS00)
Workshop, Smolenice (Slovakia), 5-7.4.2000, pp.130-133

[2] FiSer, P. - Hlavicka, J.: Efficient Minimization Method for Incompletely Defined
Boolean Functions, Proc. 4™ Int. Workshop on Boolean Problems, Freiberg
(Germany), Sept. 21-22, 2000, pp. 91-98

[3] Figer, P. - Hlavicka, J.: Implicant Expansion Method used in the BOOM Minimizer.
Proc. |EEE Design and Diagnostics of Electronic Circuits and Systems Workshop
(DDECS'01), Gyor (Hungary), 18-20.4.2001, pp. 291-298

[4] Hlavicka, J. - FiSer, P.: A Heuristic method of two-level logic synthesis. Proc. The
5th World Multiconference on Systemics, Cybernetics and Informatics SCI' 2001,
Orlando, Florida (USA) 22-25.7.2001, pp. 283-283, vol. I

[5] Fiser, P. - Hlavicka, J.: On the Use of Mutations in Boolean Minimizaion. Proc.
Euromicro Symposium on Digital Systems Design, Warsaw (Poland) 4.-6.9.2001,
pp. 300-305

[6] Figer, P. - Hlavicka, J.. BOOM - aBoolean Minimizer. Reseach Report DC-2001
05, Prague, CTU Publishing House, June 2001, 37 pp.

[7] Hlavicka, J. - FiSer, P.. BOOM - a Heuristic Boolean Minimizer, Proc. ICCAD-
2001, San Jose, Cal. (USA), 4-8.11.2001, pp. 439-442

[8] Fiser, P. - Hlavicka, J.: A Set of Logic Design Benchmarks, Proc. |EEE Design and
Diagnostics of Eledronic Circuits and Systems Workshop (DDECS02), Brno (Czeth
Rep.), 17.-19.4.20Q2, pp. 324-327 (poster)

[9] Fiser, P. - Hlavicka, J.: Column-Matching Based BIST Design Method, Proc. 7th
| EEE Europian Test Workshop (ETW'02), Corfu (Greec@, 26.-29.5.2002(pogter, in

print)

50

APPENDIX A

The BOOM M inimizer User‘s Manual

BOOM 1.3 Manual

BOOM (BOOlean Minimization) is a tool for minimizing two-valued Boolean
functions. The output is a nea-minimal or minimal two-level disjunctive (SOP) form.
The input and output of BOOM are compatible with Berkeley standard PLA format (see
Appendix B).

BOOM 1.3 runsasa Win32 console gplicaion.
Minimum reguirements:

* Microsoft Windows 95 or higher

* Intel Pentium procesor or higher

Command line syntax

BOOM [opti ons] source [destination]

OPTIONS

-CMn Define CD-search mutations ratio n (0-100

-RMn Define implicant reduction mutations ratio n (0-100)

-Ex Seled implicant expansion type:
0 —Sequential seach

1 —Distributed multiple I1E

2 —Distributed exhaustive |E
3 —Multiple |E (default)

4 - Exhaustive |E

-CPx Seled the covering problem solution algorithm:
0-LCMC

1 - Contributive seledion (default)

2 - Contributive removal

3-Exad

-Sxn

Define stopping criterion x of value n:
t - stop after n seconds (floating point number is expaded)
| - stop after n iterations (default is Sil)
n - stopping interval equal to n

the minimization is sopped when there is no improvement of
the solution for n-times more iterations than it was needed for
the last improvement

g - stop when the quality of solution medsn
more aiteria an be speafied at the same time

_QX

Define quality criterion x:
t - number of terms
| - number of literals
0 - output cost
b - number of literds + output cost (default)

-Mn

Specify the mutation rate for the CD-seach in percents. An integer number
in the range 0-100is expeded. Default is 0.

Choose the Implicant Expansion method:
0 - Sequential Search (default)
1 - Distributed Multiple Expansion
2 - Distributed Exhaustive Expansion
3 - Multiple Implicant Expansion
4 - Exhaustive Expansion

-endcov

Cover a the end only

-single

Use single-output minimization only (good for PALS)

Chedks the input function for consistence, i.e., chedks if the off-set doesn't
intersed the on-set.

CD-Search Mutations

This argument specifies the ratio of forced randomness of the CD-seach. In some
cases, by increasing this value the better solution can be reached faster. For more
detailed description see[5].

IR Mutations

This argument specifies the ratio of forced randomness of the IR phase. In some
cases, by increasing this value the better solution can be reached faster. For more
detailed description see[5].

I mplicant Expansion Method

You can specify the implicant expansion method. For more detailed description see

13].

Covering Problem Solution

This switch selects the covering problem solution algorithm. For more detailed
description see [6].

Stopping Criteria Specification

BOOM performs an iterative minimization. The more iterations are processed, the
better the result that can be archieved. The number of iterations can be specified by the
user.

Quality Criteria Specification

During iterative minimization the best result found so far is remembered. The
measure of the quality can be specified by the user.

Cover at the End Only

When this option is selected, the covering problem is solved only once at the end of
the minimizaion process. This option cannot be combined with optimization criteria
based stopping condition.

Source

The source for minimization will be a PLA file. Type .fr is required (on-set and off-
set specified).

Destination

The output of BOOM is a PLA file type .fd. This corresponds to the physical PLA
representation of the function. When no destination is specified, the function is printed
to the standard outpui.

EXAMPLE

We have a Boolean function of 4 input variables and 3 output variables described by
the following Karnaugh maps:

R=|olo
RR|klo
R=|olo

o|o|o|o
o|r|olr
X|O|k| X

X|©|o| X
X|O| k| X

o|k|k|r

Rlo|olr
o|k|k|-

O|O|O|

This function can be described by a PLA file as follows:

14

.0 3

.p 14
.type fr
1100 010
1011 010
0100 000
1110 000
1000 010
1111 111
0000 100
0011 101
0110 011
0101 010
0111 110
1101 011
0001 110
1001 101
. e

This will be an input for the BOOM minimizer. This function can be minimized by
the following command:

BOOM fnct. pl a

The function will be minimized to the minimal form:

-111 110
00-- 100
1-00 010
0-10 011
001- 001
1-11 010
11-1 011
0-01 010
1001 101

APPENDIX B

The PLA Format Description

PLA Format Accepted by BOOM

BOOM accets as an inpu and also produces in the output a two-level description of
a Boolean function. This is described as a charader matrix (truth table) with keywords
embedded in the input to spedfy the size of the matrix and the logical format of the

inpu function.

KEYWORDS

The following keywords are reagnized by BOOM. The list shows the probable order
of the keywords in a PLA description. The symbol d denotes a dedmal number and s
denotes a text string. The minimum required set of keywords is .i, .0 and .e. Both
keywords .i and .0 must precale the truth table.

id Specifies the number of inpu variables (obligatory)

od Specifies the number of output functions (obligatory)

Absls2. .. Gives the names of the binary valued variables. This must come after .i.
There must be a many tokens following the keyword as there ae input
variables

obsls2. .. Gives the names of the output functions. This must come after .0. There
must be @& many tokens following the keyword as there are output
variables

types Sets the logicd interpretation of the charader matrix. This keyword (if
present) must come before any product terms. s is either fr or fd (which
is default)

pd Specifies the number of product terms

.e(.end) Marks the end of the PLA description

LOGICAL DESCRIPTION OF A PLA

When we speek of the ON-set of a Boolean function, we mean those minterms which
imply the function value is a 1. Likewise, the OFF-set are those terms which imply the
function isa 0, and the DC-set (don't care set) are those terms for which the function is
unspecified. A function is completely described by providing its ON-set, OFFset and
DC-set. Note that al minterms lie in the union of the ON-set, OFFset and DC-set, and
that the ON-set, OFFset and DC-set share no minterms.

A Boolean function can be described in one of the following ways:

1. By providing the ON-set. In this case the OFFset can be computed as the
complement of the ON-set and the DC-set is empty.

2. By providing the ON-set and DC-set. The OFF-set can be computed as the
complement of the union of the ON-set and the DC-set. This is indicated with the
keyword .type fd in the PLA file. This Boolean function specification uses
BOOM as the output of the minimization algorithm.

3. By providing the ON-set and OFF-set. In this case the DC-set can be computed as
the complement of the union of the ON-set and the OFF-set. It is an error for any
minterm to belong to both the ON-set and OFF-set. This error may not be
detected during the minimization, but it can be checked with the "consistency
check" option. This type is indicated with the keyword .type fr in the input file.
This isthe only possible Boolean function specification for the input of BOOM.

SYMBOLSIN THE PLA MATRIX AND THEIR
INTERPRETATION

Each position in the input plane corresponds to an input variable where a 0 implies
that the corresponding input literal appears complemented in the product term, a 1
implies that the input literal appears uncomplemented in the product term, and - implies
the input literal does not appear in the product term.

With type .fd (the default), for each output, a 1 means this product term belongs to
the ON-set, a 0 means this product term has no meaning for the value of this function.

With type .fr, for each output, a 1 means this product term belongs to the ON-set, a0
means this product term belongs to the OFF-set, and a - means this product term has no
meaning for the value of this function.

Regardless of the type of PLA, a ~ implies the product term has no meaning for the
value of this function.

EXAMPLE

A two-bit adder which takes in two 2-bit operands and produces a 3-bit result can be
described completely in minterms as:

i 4

.0 3

.p 16

0000 000
0001 001
0010 010
0011 011
0100 001
0101 010
0110 011
0111 100
1000 010
1001 011
1010 100
1011 101
1100 011
1101 100

1110 101
1111 110
. €

Note that BOOM does not accept all features of the current Berkeley PLA format.
When any fatures of this format not described here are used, they are ignored or the
error is returned.

APPENDIX C

The ASSGN Program User‘s Manual

ASSIGN 1.0 Manual

The ASSGN is a program that performs the row assignment between the C matrix
and T matrix rows. The input formats are the pattern files, the output is a PLA file
describing the resulting Boolean function.

ASSGN 1.0 runs as a Win32 console gplication.
Minimum requirements:
e Microsoft Windows 95 or higher

* Intel Pentium processor or higher

Command line syntax

ASSI GN [options] C-matrix_source T-matri x_source
[destination]

OPTIONS

-Tx | Seled assignment type:

0 - Scoring Matrix

1 - Column Matching - random selection

2 - Column Matching - heuristic seledion (default)
3 - Column Matching —exad

4 - Column Matching - with DCs

5-CD-A

-X Extract column matches

-l Forbid inverse matching

The Source Matrices

As the source matrices the pattern files are accepted. The pattern file consists of the
listed petternsin each row only. For example the pattern file of a C matrix from the CD-
A example looks as follows:

10000
11100
00001
10101
01111
01001
01110
10110
00110
11010

The Dedtination File

The destination file is a PLA file that represent the resulting function. If this
parameter is omitted, the output will be written to the standard outpuit.

Assignment Type

Y ou can seled by this option the asignment method:

0 — the scoring matrix approad (see Subsection 3.2). No column matches are
being looked for, the asignment is performed in order to smplify the
resulting PLA function. It cannot be used for atest containing don't cares. It
can be used only for one-to-one matching.

1- The olumn matching approach with a random column match seledion. It is
suitable for most of cases. It cannot be used for atest with don't cares.

2- The olumn matching wsing a heuristics to find a proper column match.
Sometimes it readies the optimal result in a shorter time. It cannot be used for
atest containing don't cares.

3- The exad column matching aways finds the maximum number of column
matches, however it is ometimes extremely time-demanding. It cannot be
used for atest containing don’'t cares.

4 - The olumn matching method exploiting don’t cares. A heuristic is used to
find the @wlumn matches.

5- The Coverage-Direded Assignment method. This method cannot be used for
a test containing don't cares. Unlike in other methods the output of this
algorithm is a final PLA file (type fd), thus the post-process minimization is
not required.

Extract Exact Matches

When this switch is present, the output variables that were matched with some inpus
are omitted from the result, as they can be implemented as simple wires. Using this
option sometimes significantly reduces the time nealed to minimize the function. It is
applicable to the asignment methods 1-4.

Forbid I nverse Matches

This option restricts the inverse @wlumn matching. Use it in a situation when the
PRPG outputs have not their inverse value provided. It is applicable to the asignment
methods 1-4.

Successfulness of the M ethod

Let us mention that all the assignment methods are driven by some heuristic that is
often dependent on random events. Thus it may happen that the repeaed exeaution of
the program may yield in better results.

Moreover, some of the asignment methods — namely the clumn matching method
exploiting dn't caes and the Coverage-Direded Assignment method (4 and 5)
sometimes need not be successful at al. In this case the failure is announced and no
PLA fileis produced.

Example

Let us have the two pattern filesC.pat and T.pat describingthe C and T matrices.
To design an output decoder the assignment of the rows has to be performed first by a
command:

ASSIGN C.pat T.pat assig.pla

The assig.pla file will contain the resulting function described by its on-set and
off-set. Now it hasto be minimized by BOOM:

BOOMassig.pla result.pla

Now the result.pla file contains the final PLA logic to implement the output
deaoder.

If the CD-A method is used, no minimizaion is required, as the ASSGN program
diredly produces the minimized form (the impli cants):

ASSIGN -T5 C.pat T.pat result.pla

