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Abstract—In this paper we propose a SAT-based ATPG algo-
rithm for application-oriented FPGA testing. For this purpose,
a novel fault model is introduced which combines the stuck-at
fault model for interconnects testing with the bit-flip model for
LUT testing. The concept of SAT-based ATPG enables integrating
these two models easily. Fault coverage and fault dominance of
the two models is discussed in this paper, yielding suggestions
for using the proposed combined model.

I. INTRODUCTION

Testing of digital circuits has become increasingly impor-
tant. This is primarily due to higher ratios of faults occur-
ring in contemporary deep-submicron designs, transient and
intermittent faults caused by radiation [1], [2] and increasing
complexity of designs.

To test a circuit off-line, a test sequence is typically com-
puted by an Automatic Test Pattern Generation (ATPG) tool.
We are referring to structural, circuit-specific tests. Many
ATPG algorithms for gate-level structures were proposed since
the 1980’s [3], [4], [5]. However, as the complexity of designed
circuits increases immensely, new ATPG algorithms are being
developed [6], [7], [8] and hence the research in this field
remains active.

Two types of ATPG algorithms prevail today: structural and
SAT-based ones. Structural ATPGs are based on principles
of the original D-algorithm [9]. Many sophisticated features
have been developed, making them very efficient and scalable
[4], [5], [8]. However structural ATPGs suffer from two major
problems: their strong dependency on the fault model used,
and difficulty to discover test vectors for hard-to-test faults or
proving fault redundancy.

The second class of ATPGs is based on SAT (Boolean
satisfiability) problem solving – the SAT-based ATPGs. They
are more flexible in general, and are also very proficient in
discovering redundant faults [10], [6], [7].

Designs based on Field-Programmable Gate Arrays (FP-
GAs), rather than custom logic, have become popular due
to a relatively low price of FPGA chips and fast and cheap
design development. At the present time, FPGAs are used in
numerous end-product applications, not only for prototyping.
Therefore, testing of FPGAs is increasingly important.

Testing of FPGAs is a problem much different from custom
(ASIC) circuits testing. Typically, whole FPGA chips are
tested using dedicated tests targeting their regular structure
[11], [12], [13]. Particularly, the FPGA interconnect and look-
up tables (LUTs) are tested separately, without considering

the target application (the circuit implemented in the FPGA).
In this way, the whole FPGA device is always tested, inde-
pendently of its application. This approach is advantageous
for Manufacture-Oriented testing of FPGA chips. However,
an already programmed FPGA cannot be tested in this way,
as this testing requires reconfiguration (testing configurations
must be uploaded in place of the application) [14].

In Application-Oriented testing [14], [15], [16], [17], the
circuit implemented in FPGA is tested instead of the FPGA
fabric. In other words, the functionality of the logic pro-
grammed in FPGA is tested, not the device itself, and also
the unused parts of the FPGA chip are not tested. The FPGA
configuration is not modified for testing purposes here. For
more details on Application-Oriented testing, see [18].

Testing of FPGAs, however, requires a specific fault model;
it has been shown that the commonly used stuck-at fault
model is insufficient [15], [19]. Particularly, LUT contents,
interconnects, and device family specific features must be
tested specifically. Note that in many previously published
application-oriented FPGA testing approaches, standard stuck-
at or gate-level fault models are used [17], [18], [20].

In this paper we propose a simplified, but rather universal
fault model that can be used for application-oriented FPGA
testing. Single faults (be it stuck-at or bit-flips) are assumed
throughout the paper for simplicity, however, the model can
be readily extended to support multiple faults. For this fault
model, a SAT-based ATPG is presented and its properties are
discussed.

II. APPLICATION-ORIENTED FPGA TESTING

Since the FPGA fabric contains many different device-
specific features, fault models used for custom design (ASIC)
testing, such as the stuck-at fault model, are not suitable [15],
[19]. Most past and contemporary FPGAs consist of:

1) look-up Tables (LUTs) of different sizes, typically con-
tained in Configurable Logic Blocks (CLBs), together
with flip-flops,

2) device specific primitives, such as fast carry chains
(dedicated XOR gates) and multiplexers,

3) interconnects,
4) I/O and other communication blocks, and
5) special complex features, such as block-RAMs, DSP

blocks, CPUs, etc.
In this paper we will focus on the first three types only, as

their description can be generalised readily. Moreover, the last



two types typically require special approaches to their testing
[21], [11], [12], [22], [13], [23]. Also, only combinational cir-
cuits will be considered for simplicity; testing of flip-flops or
sequential circuits in general would require a sequential ATPG
process or a special design-for-testability (DFT) approach [24].

A. The Overall Algorithm (ATPG)

The SAT-based ATPG works by duplicating a part of a
circuit and modelling the fault in the duplicated part [10].
For the typical stuck-at fault model, the faulty signal is
duplicated and forced to have the stuck-at value. The rest of
the circuit that is dependent on this signal (output cone) is
also duplicated. The output of this duplicated circuit is then
XORed with the original circuit and the Circuit Satisfiability
Problem (CSAT) is then solved by reduction to a SAT instance,
which is then solved by a SAT solver [25], [10]. Any satisfying
variable assignment then represents a test vector. In the case
where no such variable assignment exists, the fault is identified
as redundant [10].

In addition to stuck-at faults, we are also considering
single bit-flips in LUTs [2], [19]. We model these faults by
duplicating a given LUT and injecting a fault in it, by flipping
one bit in its memory. Then we duplicate the output cone of
the affected LUT in the same way as with the stuck-at faults.

Not all faults need to be processed by a SAT solver, for
we can use the fault dropping technique. The idea behind
this technique is simple; one test vector usually covers more
than one fault, so we need not compute test vectors for faults
covered by this test vector. This not only decreases the testing
time, but also speeds up test generation, because simple logic
simulation is faster than solving, and especially generating the
SAT instance.

B. The Proposed Combined Fault Model

As it was denoted in the Introduction, we aim at application-
oriented testing. Thus, only the implemented circuit is tested,
disregarding the unused parts of the chip. This scenario allows
testing the interconnect using a standard stuck-at model, in
contrast to transistor-oriented FPGA interconnection testing,
where switching matrices, that are known only after the
place&route phase, must be considered [21], [11]. Simple
gates can also be tested using the stuck-at model. However,
the stuck-at model is not sufficient for LUT testing [15], [19].
Therefore, a single bit-flip fault model is used for this purpose.
This basically complies with the idea of [15], where stuck-at
faults in all LUT cells were considered. However, one half
of these faults were found redundant and had to be explicitly
removed from the fault list. The bit-flip fault model directly
eliminates this problem.

As shown in [14], [19], the initial circuit description (non-
mapped netlist) is not suitable for ATPG purposes. However,
the logic of the mapped circuit can be easily obtained from
commercial FPGA synthesis tools [20]. As a result, the
mapped netlist can be described as a multi-level Boolean
network, where nodes are described in a Sum of Products
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Fig. 1. Example of conceptual model of a bit-flip fault. The output of the
circuit must be 1 to detect the fault. Bit-flip is distinguished by italics

(SOP) form. This network can then be directly used for test
generation.

In this paper we describe the mapped logic by a network
of general nodes. By general nodes we understand arbitrary
single-output functions; however the approach can be easily
extended for multi-output functions too (for the case of con-
temporary 2-output LUTs, for example).

For the implementation purposes, the BLIF format [26],
where each node is described as a sum-of-products (SOP), is
well suitable. Essentially, two types of nodes can be present
in the mapped netlist:

1) a k-input LUT node, whose function (LUT content) can
be described by a sum of minterms (SOM),

2) any other simple function (XOR, MUX, etc.) that can
be described in a SOP form as well.

Summarised, the proposed fault model derived from the
multi-level network of SOP nodes consists of:

1) all single bit-flips in the LUT, i.e., 2k faults for a k-input
node,

2) single stuck-at-0 and stuck-at-1 at all inputs and outputs
of each node.

C. Generating Test for Different Fault Models

While the general ATPG algorithm remains the same, one
step in particular differs across the fault models – the gener-
ation of SAT instances.

The difference is in how we model the fault itself. A stuck-
at fault is modelled by disconnecting the faulty signal from
the fault-free circuit and setting its value using a unit clause
[10]. When modelling a bit-flip fault, there is no discontinuity
in the faulty circuit. Instead, we model this fault by flipping
the output for a particular LUT input vector.

For example, let us have a LUT described by 1-minterms
{000, 011, 100} and a bit-flip at address 110 which can be
described by adding a minterm {110}. This situation can be
seen in Figure 1.

D. Dominance between Stuck-at and Bit-Flip Faults

It can be shown that in a circuit with prevalent LUT nodes
all testable stuck-at faults, that are located at LUT inputs or
at the LUT output, are dominated by some bit-flip faults.

A stuck-at fault located at the output of a LUT may be not
covered by a bit-flip in the LUT, if and only if there is no such
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Fig. 2. Some stuck-at faults are always dominated by bit-flip faults (marked
by triangle), while for other faults there is no such guarantee (marked by
cross)

bit-flip, that would change the value of this signal in the same
way as the stuck-at fault (for any input vector). However, such
LUT would have a constant output, independent of its input,
thus it would be redundant and so would be the stuck-at fault.

For stuck-at faults that are located at input signals of a LUT
to be not covered by some bit-flip would mean that there exists
no logical assignment of remaining LUT inputs, that would
cause observable change at the LUT output for different values
of the faulty signal. That would mean that the output of the
circuit is independent of the signal value and thus the stuck-at
would be redundant.

There is, however, no guarantee of dominance for stuck-at
faults that are not adjacent to any LUT, be it at signals between
two non-LUT elements or at signals after or before branching.
Examples of such stuck-at faults are shown in Figure 2.

III. EXPERIMENTAL RESULTS

For our experiments, we used 279 circuits from benchmarks
MCNC, LGSynth’91 [27], LGSynth’93 [28], ISCAS’85 [29],
ISCAS’89 [30] and IWLS 2005 [31]. For sequential circuits,
combinational parts were extracted. The circuits were then
synthesised by Xilinx Vivado 2015.2, for the Artix-7 architec-
ture. After the synthesis step, we extracted the circuit structure
from the EDIF format to BLIF [26].

We have measured the ratio of stuck-at faults that are
covered by bit-flip faults, and the ratio of bit-flip faults that are
covered by stuck-at faults. Results for several selected circuits
can be seen in Table I; average values obtained from all the
tested circuits are shown in the last row.

We have found, that almost all stuck-at faults are dominated
by bit-flip faults. An example of a circuit, where there are
stuck-at faults that are not dominated by a bit-flip fault,
is circuit barrel16a, which contains primitives, such as
multiplexers.

For bit-flip faults, we have observed a dominance by stuck-
at faults ranging from 17% to 100%, with the average of 69.4%
and the median of 72.6%.

We have found a surprisingly large set of redundant faults;
the observed average ratio of redundant faults was 0.33% for
stuck-at faults, 10.15% for bit-flip faults and 7.42% for all
faults, as can be seen in Table I. Such a high amount of
redundant bit-flip faults is due to a smaller controllability and
observability of these faults, i.e., the probability that such
test vector exists, so all inputs of a given LUT are set to
excite the fault and it is propagated to a primary output. Note
that propagation to an output is equivalent to stuck-at faults

propagation, but excitation needs more signals to be set to a
specific value.

We have also examined how do the final test lengths differ,
for the two fault models and for different orderings of faults.
Results of measurements for few selected circuits can be seen
in Table II. We have found that the ordering of faults has
a small impact on the number of testing vectors. When we
look at the ratio of these two orderings, we see that it ranges
from 0.81 up to 1.11, with the average of 0.97 and standard
deviation of 0.04. This means that there is no significant
difference between these two orderings; the difference is just
due to the algorithmic noise [32].

IV. CONCLUSIONS

In this paper, we have demonstrated a SAT-based ATPG
capable of directly working with the bit-flip fault model in
addition to the usual stuck-at model.

We have examined the two fault models in the context
of application-oriented FPGA testing and their interaction in
respect to their mutual dominance. We have found that most of
stuck-at faults are dominated by bit-flip faults. The cases where
stuck-at faults are not dominated include FPGA primitives,
such as multiplexers. Bit-flip faults, on the other hand, are
generally dominated by stuck-at faults to much smaller degree,
ranging from as low as 17%.

We conclude, that for a complete coverage of these two fault
models, both must be considered. However, most of stuck-
at faults are dominated by bit-flip faults. These are easily
identifiable from the circuit structure, as they are adjacent
to LUTs and their dominance is independent of the circuit
function. They constitute majority of stuck-at faults, thus their
omission may lead to a significant ATPG speed-up. To reach
a complete fault coverage, structurally not dominated stuck-
at faults must be considered too, since some of them are not
covered by bit-flip faults (they are not dominated functionally).

We have also examined the overall lengths of test generated
with the fault-dropping technique for two orderings of faults
and have found no significant impact of fault ordering on the
number of generated test vectors.

ACKNOWLEDGEMENT

This work was partially supported by the grant GA16-
05179S of the Czech Grant Agency, “Fault Tolerant and
Attack-Resistant Architectures Based on Programmable De-
vices: Research of Interplay and Common Features” (2016-
2018). Computational resources were provided by the Meta-
Centrum under the program LM2010005 and the CERIT-SC
under the program Centre CERIT Scientific Cloud, part of the
Operational Program Research and Development for Innova-
tions, Reg. no. CZ.1.05/3.2.00/08.0144. This research has been
in part supported by CTU grant SGS16/121/OHK3/1T/18.

REFERENCES

[1] R. Velazco, P. Fouillat, and R. Reis, Radiation Effects on Embedded
Systems. Springer Netherlands, 2010.

[2] M. Nicolaidis, Soft Errors in Modern Electronic Systems, ser. Frontiers
in Electronic Testing. Springer US, 2010.



TABLE I
REDUNDANT FAULTS AND COVERAGE OF NON-REDUNDANT FAULTS IN SELECTED CIRCUITS

stuck-at bit-flip total
circuit # redundant [%] testable covered [%] # redundant [%] testable covered[%] # redundant [%]
alu4 2484 0.85 2463 100 9060 17.27 7495 68 11544 13.7
barrel16a 1246 0 1246 91.1 3208 1.5 3160 90.8 4454 1.08
cm42a 136 0 136 100 160 0 160 100 296 0
cmb 162 0.62 161 100 342 13.16 297 31 504 9.13
dalu 2492 6.86 2321 100 8056 35.74 5177 87.4 10548 28.9
des 6626 0.09 6620 100 15960 20.4 12704 95.6 22586 14.4
dsip 8960 0 8960 100 17944 0 17944 87.5 26904 0
mux 118 0 118 100 320 0 320 23.1 438 0
s9234 5098 0.53 5071 98.9 10584 17.01 8784 82.2 15682 0
average 0.33 99.6 10.15 69.5 7.42

TABLE II
LENGTH OF TEST FOR DIFFERENT FAULT ORDERING

circuit stuck-at bit-flip SA,BF BF,SA SA,BF
BF,SA

alu4 413 2844 2866 2871 0.998
barrel16a 112 766 745 804 0.927
cm42a 16 16 16 16 1
cmb 24 227 218 228 0.956
dalu 158 1181 1165 1190 0.979
des 296 2232 1944 2214 0.878
dsip 313 4190 4052 4212 0.962
mux 33 306 297 306 0.971
s9234 375 2649 2618 2647 0.989
average 0.971

[3] P. Goel, “An implicit enumeration algorithm to generate tests for
combinational logic circuits,” IEEE Transactions on Computers, vol.
C-30, no. 3, pp. 215–222, March 1981.

[4] H. Fujiwara and T. Shimono, “On the acceleration of test generation
algorithms,” IEEE Transactions on Computers, vol. C-32, no. 12, pp.
1137–1144, Dec 1983.

[5] M. Schulz, E. Trischler, and T. Sarfert, “SOCRATES: a highly effi-
cient automatic test pattern generation system,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 7, no. 1,
pp. 126–137, Jan 1988.

[6] S. Eggersglüß and R. Drechsler, “Robust algorithms for high quality test
pattern generation using Boolean satisfiability,” in IEEE International
Test Conference, Nov. 2010, pp. 1 –10.

[7] H. Chen and J. Marques-Silva, “A two-variable model for SAT-based
ATPG,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 12, pp. 1943–1956, Dec 2013.

[8] R. Ubar, L. Jurimagi, E. Orasson, G. Josifovska, and S. Oyeniran,
“Double phase fault collapsing with linear complexity in digital circuits,”
in Euromicro Conference on Digital System Design (DSD), Aug 2015,
pp. 700–705.

[9] J. Roth, “Diagnosis of automata failures: A calculus and a method,” IBM
Journal of Research and Development, vol. 10, no. 4, pp. 278–291, July
1966.

[10] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 11, no. 1, pp. 4–15, Jan. 1992.

[11] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, “Built-in
self-test of FPGA interconnect,” in International Test Conference, Oct
1998, pp. 404–411.

[12] M. Renovell, J. Figueras, and Y. Zorian, “Test of RAM-based FPGA:
methodology and application to the interconnect,” in 15th IEEE VLSI
Test Symposium, Apr 1997, pp. 230–237.

[13] M. Renovell, J. Portal, J. Figuras, and Y. Zorian, “Minimizing the
number of test configurations for different FPGA families,” in 8th Asian
Test Symposium (ATS’99), 1999, pp. 363–368.

[14] M. Renovell, M. Portal, J., P. Faure, J. Figueras, and Y. Zorian,
“Analyzing the test generation problem for an application-oriented test
of FPGAs,” in IEEE European Test Workshop, May 2000, pp. 75–80.

[15] M. Rebaudengo, S. Reorda, Matteo, and M. Violante, “A new functional

fault model for FPGA application-oriented testing,” in 17th IEEE Inter-
national Symposium on Defect and Fault Tolerance in VLSI Systems,
2002, pp. 372–380.
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