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ABSTRACT: In this paper we present a discussion on 
choosing the test lengths in our mixed-mode BIST 
technique. The BIST design method is based on the 
column-matching algorithm proposed before. The mixed-
mode strategy divides the test sequence into two disjoint 
phases: first the pseudo-random phase detects the easy-to-
detect faults, and the subsequent deterministic phase 
generates test vectors needed to fully test the circuit. The 
lengths of these two phases directly influence both the test 
time and the BIST area overhead, as well as the BIST 
design time. Some kind of trade-off has to be found, to 
design the BIST circuitry efficiently. The pseudo-random 
testability of the ISCAS benchmarks is studied here. The 
conclusions obtained here can be generalized to be applied 
to any circuit. 

1 Introduction 
As the complexity of present VLSI circuits rapidly 

grows, their testing using only external test equipment 
(ATE) is becoming impossible, mainly due to a huge 
amount of test vectors, long testing time and very 
expensive tester memory. Incorporating the Built-in 
Self-Test (BIST) becomes necessary. It requires no 
external tester to test the circuit, since all the circuitry 
needed to conduct a test is included in the very circuit. 
This is paid by an area overhead, long test time and often 
a low fault coverage. To achieve a complete stuck-at fault 
coverage, either a test time is prohibitively long 
(exhaustive test), or the area overhead is extremely large 
(when deterministic test patterns are stored in ROM). 
Thus, several compromise techniques were developed 
[1-7]. To the most efficient methods belong mixed-mode 
BIST techniques. Here the circuit-under-test (CUT) is 
being tested by several pseudo-random test patterns 
generated mostly by the linear feedback shift register 
(LFSR). These patterns cover the easy-to-detect faults. 
For the remainder of the faults deterministic patterns are 
generated, usually by modifying the non-detecting 
patterns [5-7]. 

Lately, we have proposed a mixed-mode BIST 
method based on a column-matching principle [8, 9]. 
Here the test is divided into two disjoint phases: the 
pseudo-random and the deterministic. Choosing proper 

lengths of these phases is of a key importance to design a 
good BIST, since the BIST area overhead highly depends 
on the lengths of both the phases. 

The influence of the test lengths on the area overhead 
is studied on ISCAS benchmarks. Some general 
conclusions can be made from the results, which help us 
to design a universal BIST design method. 

The paper is structured as follows: the principles of 
our mixed-mode BIST are described in Section 2. 
Section 3 shows the way how the length of the 
pseudo-random phase should be selected. The length of 
the deterministic phase is discussed in Section 4. 
Section 5 presents a comparison of our method with 
others. Section 6 concludes the paper. 

2 Mixed-Mode BIST 
Our mixed-mode BIST technique is intended for 

combinational or full-scan circuits. It is designed for 
a test-per-clock testing, thus the test vectors are fed to the 
CUT in parallel. The basic structure of the BIST is 
shown in Fig. 1. The test pattern generator (TPG) 
consists of the LFSR, the combinational Decoder and the 
Switch. In general, the Switch is an array of multiplexers, 
alternating between the two phases. At the beginning the 
circuit is tested by unmodified LFSR patterns. This 
enables us to detect the majority of faults. After that we 
switch to the deterministic phase and test the yet 
undetected faults by pre-computed test patterns. These 
are generated by the Decoder. 

The logic needed to drive the switching signal 
represents a negligible area overhead. It can be 
implemented either as a counter or a LFSR pattern 
analyzer, thus with a constant area overhead. 
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Figure 1. Mixed-mode BIST structure 



The Decoder logic is synthesized using our 
column-matching algorithm [8]. The Decoder is a 
combinational block transforming some of the LFSR 
patterns into deterministic patterns pre-computed by an 
ATPG. Our aim is to design the decoder to be as small as 
possible. Its design is based on “matching” maximum of 
the decoder outputs with its inputs. Particularly, when 
the test vectors are reordered and assigned to the LFSR 
vectors in such a way that the values in the respective 
matched columns (i.e., input and output variables) are 
equal, the matched output will be implemented as a wire, 
without any logic. Since the BIST is designed for 
combinational circuits, any reordering can be freely done. 
Moreover, the deterministic test can be much longer than 
the computed test sequence. Only few of the LFSR 
patterns produce the required test vectors and the rest 
represent the non-testing “gaps”. This gives us a big 
freedom how to select the appropriate matches. For more 
details see [8]. The values of the non-matched outputs 
have to be synthesized by some Boolean minimizer, i.e. 
BOOM [10, 11]. 

The algorithm was then slightly modified to support 
the mixed-mode BIST. Originally, when a column match 
is found, no decoder logic is needed, however the 
multiplexer has to be present in the Switch. The only 
case where absolutely no logic is necessary to implement 
an output is when an i-th output variable is matched with 
an i-th input variable. Then the values of the i-th output 
will be copied from the i-th input in both the phases. 
Such a special case of a column match will be denoted as 
a direct column match. These should be preferred by the 
algorithm. For more details see [9]. 

The BIST design process is divided into four phases: 
1. Simulate several PR pseudo-random patterns for 

the CUT and determine the undetected faults (by 
a fault simulator). 

2. Compute deterministic test patterns for these 
faults by an ATPG tool. 

3. For the following Det pseudo-random LFSR 
patterns and the deterministic tests do the column 
matching. 

4. Synthesize the unmatched decoder outputs by 
BOOM. 

3 The Pseudo-Random Phase 
The aim of the pseudo-random phase is to cover as 

many faults as possible, while keeping the test time 
acceptable. Two aspects play role here: the LFSR 
polynomial and seed and the test length. Computing a 
LFSR polynomial and seed in order to achieve a good 
fault coverage is an extremely computationally 
demanding problem, thus we select it at random and 
evaluate the effectiveness. 

Selection of a LFSR and a seed might significantly 
influence the fault coverage. The frequency distribution 

of covering a particular number of faults is illustrated 
by Fig. 2. Here sets of 50, 100, 500 and 1000 LFSR 
patterns were applied to the c3540 circuit, 1000 samples 
for each test size (i.e., 4 curves in Fig. 2). Each LFSR 
and its seed were selected randomly. The distribution of 
the number of faults, which remained undetected, is 
shown. We can see that it follows the Gaussian 
distribution. For a low number of patterns many faults 
are left undetected, while also their number varies a lot. 
With an increase of the number of the test patterns the 
number of undetected faults rapidly decreases, while the 
variation of this number decreases as well. This means 
that when a high fault coverage is obtained by a long test 
sequence, the influence of the LFSR and seed on the fault 
coverage is negligible. 
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Figure 2. Pseudo-random fault coverage 

 
The number of the covered faults as a function of the 

number of LFSR cycles applied to the CUT follows the 
well-known curve shown in Fig. 3 (for the c3540 circuit). 
First few vectors detect the majority of faults, and then 
the fault coverage increases only slightly. The total 
number of detectable stuck-at faults is 3428. This number 
was not reached even after applying 50 000 LFSR cycles. 
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Figure 3. Fault coverage saturation curve 

 
From these two graphs the following conclusion can 

be made: in order to reach a satisfactory fault coverage in 
the first phase, we should determine the fault coverage 
saturation curve for the CUT by simulation. The length 
of the PR phase can be easily observed from it. The 
pseudo-random phase should be stopped when the fault 
coverage is not improving for a given number of cycles. 



This number can be freely adjusted, according to the 
application specific requirements (the trade-off between 
the test time and area overhead). Usually, we set this 
threshold to 1000 cycles. Thus, for the c3540 benchmark 
we determine PR = 2500 cycles (see Fig. 3). 

After the length of the pseudo-random phase (PR) is 
determined we repetitively select a LFSR polynomial and 
seed at random, and simulate the fault coverage. For each 
LFSR and seed the run of the PR cycles is simulated, to 
ensure a satisfactory period. From all the random LFSRs 
we pick out the one that covers the maximum of faults. 

To illustrate the importance of properly choosing the 
parameters of the pseudo-random phase we have 
designed a BIST structure for several ISCAS benchmarks 
[12, 13]. We have varied the length of the pseudo-
random phase, while the length of the deterministic 
phase was kept constant, 1000 cycles. As a fault 
simulator FSIM was used, as an ATPG we have used 
Atalanta [14]. The results are shown in Table 1. The 
benchmark name and the number of its inputs are shown 
in the first two columns. The “PR”  column indicates the 
length of the pseudo-random phase, the “UD”  column 
shows the number of s-a faults that were left undetected 
by this phase. “vct.”  gives then the number of 
deterministic vectors testing these faults. The “M”  
column shows the total number of column matches 
obtained, “DM”  the number of direct column matches. 
The next column describes the complexity of the Switch 
and the Decoder, in terms of the gate equivalents [15]. 
The time needed to complete the column-matching 
procedure is indicated in the last column. The runtimes 
of the fault simulation and Boolean minimization were 
negligible comparing to the column-matching runtimes. 
The experiment was run on a PC with Athlon CPU, 
on 1 GHz, Windows XP. 

4 The Deterministic Phase 
In the deterministic phase we try to synthesize the 

deterministic vectors from some of the LFSR patterns 
that follow after the pseudo-random phase. With 
increasing number of LFSR patterns the chance of 
finding more column matches increases as well. This is 
due to having more freedom for selecting the LFSR 
vectors to be assigned to the deterministic vectors. 
However, the design runtime rapidly increases with the 
number of vectors. 

This is illustrated by Table 2. Its format is retained 
from Table 1, the “Det.” column indicates the length of 
the deterministic phase. 

It can be observed that a trade-off between the test 
time and area overhead can be freely adjusted here too, 
according to the demands of the BIST designer. 

The lengths of both the phases significantly influence 
the BIST design time as well. The design process is 
being sped up when increasing the length of the pseudo-

random phase, since the number of deterministic vectors 
is being reduced this way. On the other hand, an 
increasing length of the deterministic phase slows down 
the process. 

5 Comparison of the Results 

We have compared our results with two 
state-of-the-art methods, namely the bit-fixing method 
[5] and the row matching method proposed in [7]. The 
comparison is shown in Table 3. The “TL”  columns 
indicate the total length of the test, the “GEs”  columns 
give the number of gate equivalents of the BIST 
combinational circuits. The column-matching GEs in 
bold indicate that our method was better than both the 
other methods, in terms of the complexity of the 
transforming combinational logic. Let us note here, that 
a special kind of a PRPG is used in the row-matching 
approach [7]. Such a circuit causes quite a large area 
overhead in most cases, for many XOR gates present. 
This overhead is not included in the table. Our method is 
independent on a PRPG used, in general, thus in all the 
cases we have used an LFSR with two XOR gates only, 
independently on its width. Thus, sometimes bigger area 
overhead of our method could be compensated by a small 
area of a PRPG used. The empty cells indicate that the 
data for the respective circuit was not available to us. 

Table 3. Comparison results 
 Column-

matching 
Bit-fixing Row-matching 

Bench TL GEs TL GEs TL GEs 
c880 1 K 10.5 1 K 27 1 K 21 
c1355 2 K 15 3 K 11 2 K 0 
c1908 3 K 7.5 4 K 12 4.5 K 8 
c2670 5 K 172 5 K 121 5 K 119 
c3540 5.5 K 1.5 4.5 K 13 4.5 K 4 
c7552 8 K 586 10 K 186 8 K 297 
s420 1 K 24.5 1 K 28 - - 
s641 4 K 15 10 K 12 10 K 6 
s713 5 K 16.5 - - 5 K 4 
s838 6 K 130 10 K 37 - - 
s1196 10 K 6 - - 10 K 36 

6 Conclusions 

We have proposed a study of the influence of the test 
lengths on the resulting circuitry for our mixed-mode 
column-matching based BIST method. The test is divided 
into two phases, the pseudo-random and deterministic. 
The lengths of both the phases might be freely adjusted, 
to find a trade-off between the test time and area 
overhead. We have shown that the length of the pseudo-
random phase has a crucial impact on the result and 
present a methodology for choosing its length efficiently. 

The length of the deterministic phase influences the 
result as well, however not too significantly. The impact 



of the test lengths on the duration of the BIST design 
process is considered as well. 

Our present experiments are intended to expand our 
conclusions to other the pseudo-random based BIST 
design methods. 
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Table 1. Influence of the pseudo-random phase on the result 
bench inps PR UD vct. M DM GEs Time [s] 

c2670 233 1000 309 86 193 173 90 + 109.5 = 199.5 166 
  2000 306 86 192 175 87 + 102.5 = 189.5 166 
  5000 216 73 198 164 103.5 + 91 = 194.5 143 
  10000 154 69 199 178 82.5 + 84 = 166.5 123 
c3540 50 300 165 66 38 29 31.5 + 78 = 109.5 10.26 
  500 92 42 44 29 31.5 + 25 = 56.5 3.88 
  1000 36 26 49 32 27 + 1 = 28 1.02 
  2000 9 9 50 41 13.5 + 0 = 13.5 0.19 
  5000 1 1 50 49 1.5 + 0 = 1.5 0.02 
s1196 32 200 228 104 26 25 10.5 + 100 = 110.5 5.05 
  500 141 79 27 23 13.5 + 63.5 = 77 3.87 
  1000 90 51 27 24 12 + 38.5 = 50.5 2.00 
  2000 52 37 28 23 13.5 + 23.5 = 37 1.20 
  5000 23 17 29 25 10.5 + 6.5 = 17 0.48 
  10000 9 4 32 28 6 + 0 = 6 0.04 

Table 2. Influence of the deterministic phase on the result 
bench inps PR Det. vct. M DM GEs Time [s] 

c3540 50 1000 200 26 48 31 28.5 + 5.5 = 34 0.32 
   500  49 31 28.5 + 1 = 29.5 0.52 
   1000  49 32 27 + 1 = 28 1.02 
   2000  50 39 16.5 + 0 = 16.5 1.47 
   5000  50 45 7.5 + 0 = 7.5 2.93 
s1196 32 5000 200 23 27 22 15 + 10.5 = 25.5 0.17 
   500  29 20 18 + 7 = 25 0.32 
   1000  29 25 10.5 + 6.5 = 17 0.48 
   2000  29 26 9 + 8 = 17 1.52 
   5000  31 27 7.5 + 1.5 = 9 2.16 
   10000  32 29 4.5 + 0 = 4.5 5.83 

 


