
Influence of the Test Lengths on Area Overhead in Mixed-Mode BIST

Petr Fišer, Hana Kubátová

Czech Technical University in Prague
Dept. of Computer Science & Engineering

Karlovo nám. 13, CZ-121 35, Prague 2, Czech Rep.
E-mail: fiserp@fel.cvut.cz, kubatova@fel.cvut.cz

ABSTRACT: In this paper we present a discussion on
choosing the test lengths in our mixed-mode BIST
technique. The BIST design method is based on the
column-matching algorithm proposed before. The mixed-
mode strategy divides the test sequence into two disjoint
phases: first the pseudo-random phase detects the easy-to-
detect faults, and the subsequent deterministic phase
generates test vectors needed to fully test the circuit. The
lengths of these two phases directly influence both the test
time and the BIST area overhead, as well as the BIST
design time. Some kind of trade-off has to be found, to
design the BIST circuitry efficiently. The pseudo-random
testability of the ISCAS benchmarks is studied here. The
conclusions obtained here can be generalized to be applied
to any circuit.

1 Introduction
As the complexity of present VLSI circuits rapidly

grows, their testing using only external test equipment
(ATE) is becoming impossible, mainly due to a huge
amount of test vectors, long testing time and very
expensive tester memory. Incorporating the Built-in
Self-Test (BIST) becomes necessary. It requires no
external tester to test the circuit, since all the circuitry
needed to conduct a test is included in the very circuit.
This is paid by an area overhead, long test time and often
a low fault coverage. To achieve a complete stuck-at fault
coverage, either a test time is prohibitively long
(exhaustive test), or the area overhead is extremely large
(when deterministic test patterns are stored in ROM).
Thus, several compromise techniques were developed
[1-7]. To the most efficient methods belong mixed-mode
BIST techniques. Here the circuit-under-test (CUT) is
being tested by several pseudo-random test patterns
generated mostly by the linear feedback shift register
(LFSR). These patterns cover the easy-to-detect faults.
For the remainder of the faults deterministic patterns are
generated, usually by modifying the non-detecting
patterns [5-7].

Lately, we have proposed a mixed-mode BIST
method based on a column-matching principle [8, 9].
Here the test is divided into two disjoint phases: the
pseudo-random and the deterministic. Choosing proper

lengths of these phases is of a key importance to design a
good BIST, since the BIST area overhead highly depends
on the lengths of both the phases.

The influence of the test lengths on the area overhead
is studied on ISCAS benchmarks. Some general
conclusions can be made from the results, which help us
to design a universal BIST design method.

The paper is structured as follows: the principles of
our mixed-mode BIST are described in Section 2.
Section 3 shows the way how the length of the
pseudo-random phase should be selected. The length of
the deterministic phase is discussed in Section 4.
Section 5 presents a comparison of our method with
others. Section 6 concludes the paper.

2 Mixed-Mode BIST
Our mixed-mode BIST technique is intended for

combinational or full-scan circuits. It is designed for
a test-per-clock testing, thus the test vectors are fed to the
CUT in parallel. The basic structure of the BIST is
shown in Fig. 1. The test pattern generator (TPG)
consists of the LFSR, the combinational Decoder and the
Switch. In general, the Switch is an array of multiplexers,
alternating between the two phases. At the beginning the
circuit is tested by unmodified LFSR patterns. This
enables us to detect the majority of faults. After that we
switch to the deterministic phase and test the yet
undetected faults by pre-computed test patterns. These
are generated by the Decoder.

The logic needed to drive the switching signal
represents a negligible area overhead. It can be
implemented either as a counter or a LFSR pattern
analyzer, thus with a constant area overhead.

LFSR

Decoder

Switch

CUT

MISR

TPG

mode

Figure 1. Mixed-mode BIST structure

The Decoder logic is synthesized using our
column-matching algorithm [8]. The Decoder is a
combinational block transforming some of the LFSR
patterns into deterministic patterns pre-computed by an
ATPG. Our aim is to design the decoder to be as small as
possible. Its design is based on “matching” maximum of
the decoder outputs with its inputs. Particularly, when
the test vectors are reordered and assigned to the LFSR
vectors in such a way that the values in the respective
matched columns (i.e., input and output variables) are
equal, the matched output will be implemented as a wire,
without any logic. Since the BIST is designed for
combinational circuits, any reordering can be freely done.
Moreover, the deterministic test can be much longer than
the computed test sequence. Only few of the LFSR
patterns produce the required test vectors and the rest
represent the non-testing “gaps”. This gives us a big
freedom how to select the appropriate matches. For more
details see [8]. The values of the non-matched outputs
have to be synthesized by some Boolean minimizer, i.e.
BOOM [10, 11].

The algorithm was then slightly modified to support
the mixed-mode BIST. Originally, when a column match
is found, no decoder logic is needed, however the
multiplexer has to be present in the Switch. The only
case where absolutely no logic is necessary to implement
an output is when an i-th output variable is matched with
an i-th input variable. Then the values of the i-th output
will be copied from the i-th input in both the phases.
Such a special case of a column match will be denoted as
a direct column match. These should be preferred by the
algorithm. For more details see [9].

The BIST design process is divided into four phases:
1. Simulate several PR pseudo-random patterns for

the CUT and determine the undetected faults (by
a fault simulator).

2. Compute deterministic test patterns for these
faults by an ATPG tool.

3. For the following Det pseudo-random LFSR
patterns and the deterministic tests do the column
matching.

4. Synthesize the unmatched decoder outputs by
BOOM.

3 The Pseudo-Random Phase
The aim of the pseudo-random phase is to cover as

many faults as possible, while keeping the test time
acceptable. Two aspects play role here: the LFSR
polynomial and seed and the test length. Computing a
LFSR polynomial and seed in order to achieve a good
fault coverage is an extremely computationally
demanding problem, thus we select it at random and
evaluate the effectiveness.

Selection of a LFSR and a seed might significantly
influence the fault coverage. The frequency distribution

of covering a particular number of faults is illustrated
by Fig. 2. Here sets of 50, 100, 500 and 1000 LFSR
patterns were applied to the c3540 circuit, 1000 samples
for each test size (i.e., 4 curves in Fig. 2). Each LFSR
and its seed were selected randomly. The distribution of
the number of faults, which remained undetected, is
shown. We can see that it follows the Gaussian
distribution. For a low number of patterns many faults
are left undetected, while also their number varies a lot.
With an increase of the number of the test patterns the
number of undetected faults rapidly decreases, while the
variation of this number decreases as well. This means
that when a high fault coverage is obtained by a long test
sequence, the influence of the LFSR and seed on the fault
coverage is negligible.

0 200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

800

50 patterns

100 patterns

500 patterns

1000 patterns

c3540

F
re

qu
en

cy

Undetected Faults

Figure 2. Pseudo-random fault coverage

The number of the covered faults as a function of the

number of LFSR cycles applied to the CUT follows the
well-known curve shown in Fig. 3 (for the c3540 circuit).
First few vectors detect the majority of faults, and then
the fault coverage increases only slightly. The total
number of detectable stuck-at faults is 3428. This number
was not reached even after applying 50 000 LFSR cycles.

0 1000 2000 3000 4000 5000 6000 7000 8000

500

1000

1500

2000

2500

3000

3500

c3540

C
ov

er
ed

 F
au

lt
s

Cycles

Figure 3. Fault coverage saturation curve

From these two graphs the following conclusion can

be made: in order to reach a satisfactory fault coverage in
the first phase, we should determine the fault coverage
saturation curve for the CUT by simulation. The length
of the PR phase can be easily observed from it. The
pseudo-random phase should be stopped when the fault
coverage is not improving for a given number of cycles.

This number can be freely adjusted, according to the
application specific requirements (the trade-off between
the test time and area overhead). Usually, we set this
threshold to 1000 cycles. Thus, for the c3540 benchmark
we determine PR = 2500 cycles (see Fig. 3).

After the length of the pseudo-random phase (PR) is
determined we repetitively select a LFSR polynomial and
seed at random, and simulate the fault coverage. For each
LFSR and seed the run of the PR cycles is simulated, to
ensure a satisfactory period. From all the random LFSRs
we pick out the one that covers the maximum of faults.

To illustrate the importance of properly choosing the
parameters of the pseudo-random phase we have
designed a BIST structure for several ISCAS benchmarks
[12, 13]. We have varied the length of the pseudo-
random phase, while the length of the deterministic
phase was kept constant, 1000 cycles. As a fault
simulator FSIM was used, as an ATPG we have used
Atalanta [14]. The results are shown in Table 1. The
benchmark name and the number of its inputs are shown
in the first two columns. The “PR” column indicates the
length of the pseudo-random phase, the “UD” column
shows the number of s-a faults that were left undetected
by this phase. “vct.” gives then the number of
deterministic vectors testing these faults. The “M”
column shows the total number of column matches
obtained, “DM” the number of direct column matches.
The next column describes the complexity of the Switch
and the Decoder, in terms of the gate equivalents [15].
The time needed to complete the column-matching
procedure is indicated in the last column. The runtimes
of the fault simulation and Boolean minimization were
negligible comparing to the column-matching runtimes.
The experiment was run on a PC with Athlon CPU,
on 1 GHz, Windows XP.

4 The Deterministic Phase
In the deterministic phase we try to synthesize the

deterministic vectors from some of the LFSR patterns
that follow after the pseudo-random phase. With
increasing number of LFSR patterns the chance of
finding more column matches increases as well. This is
due to having more freedom for selecting the LFSR
vectors to be assigned to the deterministic vectors.
However, the design runtime rapidly increases with the
number of vectors.

This is illustrated by Table 2. Its format is retained
from Table 1, the “Det.” column indicates the length of
the deterministic phase.

It can be observed that a trade-off between the test
time and area overhead can be freely adjusted here too,
according to the demands of the BIST designer.

The lengths of both the phases significantly influence
the BIST design time as well. The design process is
being sped up when increasing the length of the pseudo-

random phase, since the number of deterministic vectors
is being reduced this way. On the other hand, an
increasing length of the deterministic phase slows down
the process.

5 Comparison of the Results

We have compared our results with two
state-of-the-art methods, namely the bit-fixing method
[5] and the row matching method proposed in [7]. The
comparison is shown in Table 3. The “TL” columns
indicate the total length of the test, the “GEs” columns
give the number of gate equivalents of the BIST
combinational circuits. The column-matching GEs in
bold indicate that our method was better than both the
other methods, in terms of the complexity of the
transforming combinational logic. Let us note here, that
a special kind of a PRPG is used in the row-matching
approach [7]. Such a circuit causes quite a large area
overhead in most cases, for many XOR gates present.
This overhead is not included in the table. Our method is
independent on a PRPG used, in general, thus in all the
cases we have used an LFSR with two XOR gates only,
independently on its width. Thus, sometimes bigger area
overhead of our method could be compensated by a small
area of a PRPG used. The empty cells indicate that the
data for the respective circuit was not available to us.

Table 3. Comparison results
 Column-

matching
Bit-fixing Row-matching

Bench TL GEs TL GEs TL GEs
c880 1 K 10.5 1 K 27 1 K 21
c1355 2 K 15 3 K 11 2 K 0
c1908 3 K 7.5 4 K 12 4.5 K 8
c2670 5 K 172 5 K 121 5 K 119
c3540 5.5 K 1.5 4.5 K 13 4.5 K 4
c7552 8 K 586 10 K 186 8 K 297
s420 1 K 24.5 1 K 28 - -
s641 4 K 15 10 K 12 10 K 6
s713 5 K 16.5 - - 5 K 4
s838 6 K 130 10 K 37 - -
s1196 10 K 6 - - 10 K 36

6 Conclusions

We have proposed a study of the influence of the test
lengths on the resulting circuitry for our mixed-mode
column-matching based BIST method. The test is divided
into two phases, the pseudo-random and deterministic.
The lengths of both the phases might be freely adjusted,
to find a trade-off between the test time and area
overhead. We have shown that the length of the pseudo-
random phase has a crucial impact on the result and
present a methodology for choosing its length efficiently.

The length of the deterministic phase influences the
result as well, however not too significantly. The impact

of the test lengths on the duration of the BIST design
process is considered as well.

Our present experiments are intended to expand our
conclusions to other the pseudo-random based BIST
design methods.

Acknowledgement

This research was supported by a grant GA 102/04/2137
and MSM 212300014

References
[1] S. Hellebrand, et al., “Built-In Test for Circuits with Scan

Based on Reseeding of Multiple-Polynomial Linear
Feedback Shift Registers”. IEEE Trans. on Comp., vol. 44,
No. 2, February 1995, pp. 223-233

[2] S. Hellebrand, H. Liang, H.J. Wunderlich, “A Mixed Mode
BIST Scheme Based on reseeding of Folding Counters”.
Proc. IEEE ITC, 2000, pp.778-784

[3] G. Kiefer, H. Vranken, E.J. Marinissen, H.J. Wunderlich,
“Application of deterministic logic BIST on industrial
circuits”. Proc. Int. Test Conf. (ITC’00), Atlantic City, NJ,
Oct. 2000, pp. 105-114.

[4] J. Hartmann, G. Kemnitz, “How to Do Weighted Random
Testing for BIST”. Proc. of International Conference on
Computer-Aided Design (ICCAD), pp. 568-571, 1993

[5] N.A. Touba, “Synthesis of mapping logic for generating
transformed pseudo-random patterns for BIST”. Proc. of
International Test Conference, pp. 674-682, 1995

[6] N.A. Touba, E.J. McCluskey, “Altering a Pseudo-Random
Bit Sequence for Scan-Based BIST”. Proc. of International
Test Conference, 1996, pp. 167-175

[7] M. Chatterjee, D.K. Pradhan, “A BIST Pattern Generator
Design for Near-Perfect Fault Coverage”. IEEE
Transactions on Computers, vol. 52, no. 12, December
2003, pp. 1543-1558

[8] P. Fišer, J. Hlavi�ka, H. Kubátová, “Column-Matching
BIST Exploiting Test Don't-Cares”. Proc. 8th IEEE
European Test Workshop (ETW'03), Maastricht (The
Netherlands), 25.-28.5.2003, pp. 215-216

[9] P. Fišer, H. Kubátová, “An Efficient Mixed-Mode BIST
Technique”. DDECS'04, Tatranská Lomnica, SK, 18.-
21.4.2004, pp. 227-230

[10] P. Fišer, J. Hlavi�ka, “BOOM - a Heuristic Boolean
Minimizer”. Proc. International Conference on Computer-
Aided Design ICCAD 2001, San Jose, California (USA),
4.-8.11.2001, pp. 439-442

[11] P. Fišer, J. Hlavi�ka, “BOOM - A Heuristic Boolean
Minimizer”. Computers and Informatics, Vol. 22, 2003,
No. 1, pp. 19-51

[12] F. Brglez, H. Fujiwara, “A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target Translator
in Fortan”. Proc. of International Symposium on Circuits
and Systems, pp. 663-698, 1985

[13] F. Brglez, D. Bryan, K. Kozminski, “Combinational
Profiles of Sequential Benchmark Circuits”. Proc. of
International Symposium of Circuits and Systems, pp.
1929-1934, 1989

 [14] H.K. Lee, D.S. Ha, “Atalanta: an Efficient ATPG for
Combinational Circuits”. Technical Report, 93-12, Dep't of
Electrical Eng., Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, 1993

[15] G. De Micheli, “Synthesis and Optimization of Digital
Circuits”. McGraw-Hill, 1994

Table 1. Influence of the pseudo-random phase on the result
bench inps PR UD vct. M DM GEs Time [s]

c2670 233 1000 309 86 193 173 90 + 109.5 = 199.5 166
 2000 306 86 192 175 87 + 102.5 = 189.5 166
 5000 216 73 198 164 103.5 + 91 = 194.5 143
 10000 154 69 199 178 82.5 + 84 = 166.5 123
c3540 50 300 165 66 38 29 31.5 + 78 = 109.5 10.26
 500 92 42 44 29 31.5 + 25 = 56.5 3.88
 1000 36 26 49 32 27 + 1 = 28 1.02
 2000 9 9 50 41 13.5 + 0 = 13.5 0.19
 5000 1 1 50 49 1.5 + 0 = 1.5 0.02
s1196 32 200 228 104 26 25 10.5 + 100 = 110.5 5.05
 500 141 79 27 23 13.5 + 63.5 = 77 3.87
 1000 90 51 27 24 12 + 38.5 = 50.5 2.00
 2000 52 37 28 23 13.5 + 23.5 = 37 1.20
 5000 23 17 29 25 10.5 + 6.5 = 17 0.48
 10000 9 4 32 28 6 + 0 = 6 0.04

Table 2. Influence of the deterministic phase on the result
bench inps PR Det. vct. M DM GEs Time [s]

c3540 50 1000 200 26 48 31 28.5 + 5.5 = 34 0.32
 500 49 31 28.5 + 1 = 29.5 0.52
 1000 49 32 27 + 1 = 28 1.02
 2000 50 39 16.5 + 0 = 16.5 1.47
 5000 50 45 7.5 + 0 = 7.5 2.93
s1196 32 5000 200 23 27 22 15 + 10.5 = 25.5 0.17
 500 29 20 18 + 7 = 25 0.32
 1000 29 25 10.5 + 6.5 = 17 0.48
 2000 29 26 9 + 8 = 17 1.52
 5000 31 27 7.5 + 1.5 = 9 2.16
 10000 32 29 4.5 + 0 = 4.5 5.83

