
Towards AND/XOR Balanced Synthesis: Logic Circuits
Rewriting with XOR

Ivo Háleček, Petr Fǐser∗, Jan Schmidt∗

Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9,
Prague, Czech Republic

Abstract

Although contemporary logic synthesis performs well on random logic, it may

produce subpar results in XOR-intensive circuits. This indicated the need of

equal status of XORs and ANDs, with their respective Negation-Permutation-

Negation (NPN) equivalents in logic synthesis procedures. To test the hypothe-

sis of XOR importance, we introduced a novel logic representation with a native

support of XOR gates, the XOR-AND-Inverter Graph (XAIG). As the first test,

we implemented a rewriting algorithm in the logic synthesis and optimization

package ABC and compared it with the standard rewriting algorithm based on

the AND-Inverter Graph (AIG). The main experimental evaluation was per-

formed in the context of a complete logic synthesis process, particularly the

FPGA LUT mapping and mapping to standard cells. To eliminate algorith-

mic noise, input circuit descriptions were randomly modified while preserving

their semantics. In the FPGA mapping, the XAIG rewriting dominated the

AIG procedure in 8.6% of cases, while it was dominated in 1.6% of cases. For

the standard cells mapping, the respective percentages were 3% and 1.5%. We

conclude that the best rewriting is a combination of both approaches.

Keywords: Logic synthesis, rewriting, XOR, XOR-AND-Inverter Graph.

∗Corresponding author
Email addresses: halecivo@fit.cvut.cz (Ivo Háleček), fiserp@fit.cvut.cz (Petr

Fǐser), schmidt@fit.cvut.cz (Jan Schmidt)

Preprint submitted to Microelectronics Reliability November 30, 2017

1. Introduction

Logic synthesis is seen as a mature process, accepted by the electronic indus-

try. Yet there appeared example circuits, which lead to provably unacceptable

results [1], [2]. Although we proved that the loss of the original, designer-

conceived structure played a significant role [3], other aspects were found con-5

tributing. One of those aspects was the treatment and employment of XOR

operators during synthesis. We found that to introduce XORs at the technol-

ogy mapping phase is too late. If the result of logic synthesis is too large (as

a consequence of neglecting XORs), technology mapping does not have enough

power to rearrange the circuit. As current activities [4] show, the role and10

importance of XORs in logic synthesis algorithms is still an open topic.

Scalability is a primary requirement for logic synthesis. Contemporary pro-

cedures achieve scalability by iterative transformations of regions of the circuit.

Such an approach is called resynthesis. It must assume that even the original

circuit description has already some relevant structure. The number of itera-15

tions is limited by available computing time and by the ability of the procedure

to maintain convergence. Layered heuristics therefore help the procedure to

converge to an acceptable result within acceptable computing time.

For combinational synthesis to be scalable, the size of the region selected for

a transformation must not strongly depend on the circuit size, and the region20

must be small enough for the intended transformation. Optimum implementa-

tions can be stored for such small regions [5], or they can be computed using

exact synthesis [6], [7], [8], [9].

Various types of regions have been defined to suit particular transformations.

Windows are defined in terms of transitive fan-in and fan-out of a selected25

node. They form the base of the resubstitution algorithm [10]. Regions called

cuts come from FPGA technology mapping, originally intended to represent the

logic implemented by a Look-Up Table (LUT) [11], [12], [13]. They started to

be widely used for other purposes after efficient cut enumeration procedures had

been designed [12] [5], [14]. The rewriting algorithm in ABC [5] is a combination30

2

of cut enumeration with stored optimum implementations of the cut function.

The circuit representation underlying these and similar algorithms is in most

cases a restricted version of a Boolean network. The restriction lies in the

allowed repertory of node functions and in the fan-in of each node. For example,

NAND networks used in classical library-based technology mapping [15] permit35

only one node function with the fan-in of two.

While Boolean networks are important for building the structure of a cir-

cuit and for selecting transformed regions, a high-performance representation of

Boolean functions (without regard of the implementing structure) is sometimes

required. For this purpose, Binary Decision Diagrams (BDDs) [16], [17] are40

widely used. The structure of the circuit is then built using another represen-

tation [18], [19], [20], [21].

In Boolean networks with a single node function only (homogeneous net-

works), many operations, such as comparison, are of purely structural nature.

Instead of Boolean reasoning, graph algorithms are used. Also, a degree of45

canonicity can be achieved by structural means, that is, if a node intended for

insertion into the network has the same predecessors as another node, that node

can be used instead. In [22], this technique is called structural hashing.

There is a price to these advantages. The limited repertory of node functions

prevent some logic operators from being represented directly. They must be50

replaced by a sub-circuit built from permitted nodes. This may or may not

correspond to reality: the actual cost of the replaced operator may be less

than the total cost of the replacing nodes. An algorithm operating on such

a representation is biased towards operators that can be represented directly.

Circuit representation in purely homogeneous networks tended to be large55

with too many equivalent representations of a single circuit. Better expressivity

was achieved by introducing two edge types, namely, inverting and non-inverting

edges. All contemporary network types use this feature.

The most widespread network of this kind is And-Inverter Graph (AIG) [23],

[24], [25], [5]. The ABC system is a well-known implementation of numerous60

AIG-based algorithms [26]. In AIGs, an AND node with fan-in of two can,

3

in combination with negation on adjacent edges, express any member of the

NPN class comprising the AND operator [27], [24]. The other NPN classes

of two-input functions (XOR derivatives) can be represented only indirectly as

subgraphs.65

Another homogeneous network is Majority-Inverter Graph (MIG) [28], [6],

with majority of three variables as the node function. As AND is a specialization

of majority (with one input at 0), MIG can be viewed as a generalization of AIG.

Yet, majority is monotonic, which forces non-monotonic functions, such as XOR,

to be represented indirectly again.70

The bias introduced by homogeneous networks probably caused the shift

of focus towards heterogeneous networks, even at the cost of more complex

algorithms. MIGs were augmented to form XOR-Majority Graphs (XMG) [4].

In the ABC system, a facility implementing Boolean networks with AND, XOR

and MUX nodes together with negated edges, was established.75

We can see that the circuit representation can affect synthesis algorithms.

The bias towards directly represented elements has been already discussed. An-

other influence comes from the limited number of iterations explained above.

What is a single transformation of a heterogeneous network, can require mul-

tiple steps in other networks. Hence, with some representations, the procedure80

can converge slower or does not find a given solution at all.

Resynthesis algorithms can be formulated on many representations, both ho-

mogeneous such as MIG [29] or heterogeneous such as XMG [4]. The difference

from the original (e.g., AIG) formulation is that some operations which were

structural in homogeneous networks become functional (Boolean) [30]. There85

are already functional operations in homogeneous networks. For example, func-

tional hashing reuses a node already providing the required Boolean function of

primary inputs rather than constructs a new node. Despite its origin in AIGs,

functional hashing can be obviously used with any Boolean network.

In the above described networks, XORs are rarely represented directly, which90

could suggest certain algorithmic bias against them. To judge the role of XORs,

we need a representation where ANDs and XORs would be equally ‘first class

4

citizens’, with balanced roles. The structure must be simple enough to permit

adaptation of most base ABC algorithms, and as close as possible to AIGs for

fair comparison (which unfortunately, excludes XMGs). Also, the difficulties95

caused by making the network heterogeneous should be kept small.

We presented such structure, called XOR-AND-Inverter Graphs (XAIGs) in

[31] and [32]. We based its experimental implementation on existing heteroge-

neous network in ABC, that is, on the GIA Manager facility [30].

To obtain first partial answers to the question of XOR importance, we mod-100

ified one of ABC algorithms to use XAIGs. We have chosen rewriting, be-

cause the algorithm [5] is based on functional rather than structural matching,

and hence allows easy generalizations. We evaluated XAIG rewriting against

AIG rewriting experimentally, while screening the experiments from algorithmic

noise. We found that XAIGs can indeed bring better results, but that the best105

approach is to combine both procedures.

Let us note that the evaluation of XOR importance was the leading motive

rather than achieving superior results. Furthermore, the modification of the

rewriting algorithm is a pilot experiment to show whether other algorithms

shall also be adapted.110

Even though both XMGs and ABC GIA AND-XOR-MUX-Inverter graphs

are generalizations of XAIGs, they are not suitable for our purposes; the ques-

tion we seek an answer for, is whether treating XORs and ANDs in a balanced

way will improve the performance of logic synthesis. Therefore, the set of oper-

ators must be restricted to AND and XOR nodes only. Next, MIGs (and thus115

also XMGs) could be inefficient for “conventional” technology mapping [33],

which could disturb the experimental comparison.

This paper is a continuation of [31] with more relevant evaluation experi-

ments and extended discussion. The paper is organized as follows: after the

Introduction and some preliminaries in Section 2, the proposed XAIG structure120

is described in Section 3, with implementation issues presented in Section 5.

The newly introduced rewriting algorithm based on the XAIG structure is pre-

sented in Section 4. Section 6 contains experimental results. Section 7 discusses

5

the benefits and difficulties of the XAIG approach and Section 8 concludes the

paper.125

2. Preliminaries

2.1. And-Inverter Graphs

And-Inverter Graphs (AIGs) [23], [24], [5], are directed acyclic graphs with

one or more roots, where nodes are two-input AND gates and edges represent

connections between them. Edges may be inverted, meaning that the respective130

subgraph is negated. This can be understood as an inverter presence on the

connection.

In such a formalism, even simple Boolean functions can have many represen-

tations. To achieve some degree of canonicity, the ABC system enforces several

rules for AIGs.135

AIGs are constructed from primary inputs to primary outputs, assigning to

each node a unique index in increasing order. This ensures parent nodes to have

higher index than their children. The node with a lower index is always the left

child of its parent. Due to this rule, nodes with the same pair of predecessors

are structurally identical and can be recognized.140

Apart from that, upon node creation, a hash is calculated from hashes of

its children. If a node with the same hash is already present in the graph, this

existing node is used by the reference instead of creating a new node. This pro-

cess is called structural hashing (“strashing”) [23]. When used systematically, it

ensures that no two subgraphs will have the same structure, but that the single145

occurrence will be reused instead.

Structural hashing still does not discover functionally equivalent subgraphs

with different structures. ABC provides functionally reduced AIGs, FRAIGs

[34]. If this approach is used in addition to structural hashing, also functional

hashing of small subgraphs is performed, ensuring that there will be no func-150

tionally equivalent subgraphs in the AIG.

6

a)

a b

O

3

1 2

b)

a b

O

3

1 2

c)

a b

O

4

1

2 3

Figure 1: XOR structures in AIG.

2.2. Representation of XOR Gates in AIG

A two-input XOR gate can be represented in AIG by several structurally

different ways. The minimum XOR implementation consists of three AND gates,

and there are two such implementations, as shown in Figure 1a, b. Even though155

it is possible to construct a single XOR gate using more AND nodes, as shown

in Figures 1c, such redundant structures will not be assumed here.

2.3. The Cut Enumeration Procedure

Most of scalable logic optimization algorithms work iteratively with some

small subsets of the network [5], [22], [27], [10], [6], [29], [35]. For this purpose,160

a cut of a network node has been introduced [11], [12], [13], [5], [14].

A cut of a root node N is a set of nodes (called leaves), for which it holds

that every path from primary inputs to the node N leads through at least one

leaf. A cut is K-feasible if the number of leaves does not exceed K.

Circuit-wise, the leaves lie on the boundary of a sub-circuit, which is able165

to derive the logic function of the root node solely from the values of the leaf

signals.

7

A cone of a cut node N is a transitive fan-out of the cut nodes, up to the

node N. In other words, the cone of the cut is the subgraph induced by the cut

[12].170

For the purpose of the rewriting algorithm presented in Section 4.1, max-

imum K -feasible cuts of all nodes must be enumerated [5]. As described in

Listing 1, for a node N, the set of cuts C is created recursively, by merging cut

sets of both node N children, and the trivial cut consisting of the node N itself:

C = merge(child1CutSet(C), child2CutSet(C)) ∪ {N}

Two cut sets are merged by creating a Cartesian product of the two sets,175

resulting the set of unions of all pairs from both sets. The feasibility is checked

for each cut, so it does not exceed K:

merge(C1, C2) = {c1 ∪ c2|c1 ∈ C1, c2 ∈ C2, |c1 ∪ c2| ≤ k}

Cut set of a primary input is defined as a cut consisting of the primary input

itself.

A 3-feasible cut {6, 7, 11} of the node 12 can be seen in Figure 2. This cut180

has been created by merging the cut {6, 7} of node 8 and a trivial cut {11} of

node 11.

3. The XAIG Structure and its Properties

XAIG is a directed acyclic graph, where nodes are two-input ANDs or XORs,

while edges can be inverted. As seen in Figure 3, XOR is described by 3 AND185

nodes in AIG, which can make it more difficult for algorithms to utilize it. In

XAIGs, XOR is represented as a single node.

XAIGs are a generalized form of AIGs; every AIG can be considered as an

XAIG with no XOR nodes. Therefore, XAIG (just like AIG) can implement

any logic function.190

The AIG techniques for partial canonicity (structural hashing) apply to AIGs

as well. Functional reduction (see Subsection 2.1) can be applied to any Boolean

8

Listing 1: Cut enumeration algorithm

void NetworkKFeasibleCuts (Graph g , i n t k) {

f o r each primary output node n o f g {

NodeKFeasibleCuts (n , k) ;

}

}

c u t s e t NodeKFeasibleCuts (Node n , i n t k) {

i f (n i s primary input) re turn {{n }} ;

i f (n i s v i s i t e d) re turn NodeReadCutSet (n) ;

mark n as v i s i t e d ;

c u t s e t Set1 = NodeKFeasibleCuts (NodeReadChild1 (n) , k) ;

c u t s e t Set2 = NodeKFeasibleCuts (NodeReadChild2 (n) , k) ;

c u t s e t Result = MergeCutSets (Set1 , Set2 , k) ∪ {n } ;

NodeWriteCutSet (n , Result) ;

r e turn Result ;

}

c u t s e t MergeCutSets (c u t s e t Set1 , c u t s e t Set2 , i n t k) {

c u t s e t Result = {} ;

f o r each cut Cut1 in Set1 {

f o r each cut Cut2 in Set2 {

i f (| Cut1 ∪ Cut2 | <= k) {

Result = Result ∪ {Cut1 ∪ Cut2 } ;

}

}

}

r e turn Result ;

}

9

po0

14

13 8 11

9 10

pi0pi1 pi2pi3

12

6 7

Figure 2: Cut example.

0

9

8

4

67

5

3 1 2

0

7

6

4

5

31 2

Figure 3: Logic function F = x1 + x2 ⊕ x3 · x4 in AIG and XAIG. Circle nodes represent

AND nodes, hexagon an XOR node. Dashed edges are inverted.

network. Any node can be replaced by another node providing the same func-

tion with respect to primary inputs, without affecting the function of primary

outputs. Structural hashing is only a special case, characterized by identical195

predecessors and, in the case of heterogeneous Boolean network, by a given

node function.

10

po0

10

9

4

87

5

3 1 2

po0

7

6

4

5

31 2

6

Figure 4: XAIG based rewriting example.

4. XAIG-Based Rewriting Algorithm

In order to make logic synthesis and optimization work more efficiently with

XOR gates, probably all algorithms employed should be modified accordingly.200

As the first step towards the balanced synthesis [36] and to demonstrate whether

synthesis actually needs to be capable of a native work with XOR gates, we

introduced an XAIG rewriting algorithm based on AIG rewriting presented

in [5].

Rewriting is a technique of replacing AIG (XAIG, in our case) subgraphs205

with K leaves (K -feasible cut cones [14]) by smaller, functionally equivalent

precomputed structures. This algorithm can also remove functionally equivalent

subgraphs from the AIG, unlike the structural hashing can. An example of a

XAIG subgraph replacement can be seen in Figure 4.

4.1. The Basic Rewriting Algorithm210

As described in Listing 1, the newly introduced algorithm &rewrite goes

through XAIG nodes in topological order from defined starting node. For each

node, cuts are enumerated using the algorithm presented in [14], described in

Subsection 2.3 and Listing 1 (the NetworkKFeasibleCuts function). For each

node cut, a truth table of the function of its leaves is calculated by simulation.215

This truth table is then converted to a canonical form described by a 16-bit

integer value (for 4-feasible cuts), which is stored in a precomputed table for

11

Listing 2: Rewriting over XAIG network.

Rewrite (network XAIG, hash t ab l e PrecomputedStructures , bool

UseZeroCost)

{

f o r each node N in t o p o l o g i c a l order {

bestXAIG = NULL; BestGain = −1;

f o r each 4− input cut C o f node N computed us ing cut

enumeration {

F = Boolean func t i on o f N in terms o f the l e a v e s o f C

// get bes t cut implementat ions

b e s t C i r c u i t s [] = HashTableLookup (PrecomputedStructures , F) ;

f o r each b e s t C i r c u i t {

// get XAIG with cut r ep laced by best c i r c u i t

rwrXAIG = ReplaceCutByBestCircuit (XAIG, be s tC i r cu i t , cut) ;

Gain = NetworkCost (XAIG) − NetworkCost (rwrXAIG) ;

// keep track o f bes t p o s s i b l e r e w r i t i n g f o r the cur rent

node

i f (Gain > 0 | | (Gain = 0 && UseZeroCost)) {

i f (bestXAIG = NULL | | BestGain < Gain) {

bestXAIG = rwrXAIG ; BestGain = Gain ;

}

}

}

}

i f (bestXAIG != NULL) {

r e turn Rewrit ing (bestXAIG , PrecomputedStructures ,

UseZeroCost) ;

}

e l s e {

cont inue ;

}

r e turn XAIG;

}

}

12

each possible function, so are the permutations of inputs and negations of inputs

and outputs needed for this conversion. Conversion to the canonical form is

done by the same conversion table already available in ABC for the original220

AIG-based rewriting. For every truth table in a canonical form, there are one

or more precomputed “best circuits” (see Subsection 4.3).

Note that for 4-feasible cuts, there are 216 possible functions, but every

possible cut can be converted by permutation of inputs and negation of inputs

and the output to one of 222 NPN equivalent classes [27], [5]. Therefore, using225

4-feasible cuts for rewriting is a good compromise between the efficiency of the

algorithm and its memory demands. 4-feasible cuts are also used in the original

AIG-based rewriting algorithm.

The node cut cone is then tried for replacement by each precomputed “best

circuit”. After each temporary replacement, the total network cost is calculated.230

If this cost is better than the cost of the original network, the replacement is

made permanent.

The cost is computed as a weighted sum of nodes costs, where for each

node type (AND and XOR) a cost is specified. The cost can be adjusted with

respect to the expected target technology. For example, for a gate-level library235

targeted, the (relative) cost of 2 for AND and 5 for XOR node can be set, to

reflect different sizes of the gates. When FPGA (LUT) mapping is targeted, the

same cost for both node types can be set.

The UseZeroCost parameter in Listing 1 has been introduced for compati-

bility with the original ABC rewriting algorithm. When it is set to true, even240

replacements yielding zero cost improvement are accepted.

The rewriting procedure can not only reduce the number of nodes for a

particular cut, also new sharing can be found in the whole network, by struc-

tural hashing. “Dissolving” of XORs is performed to find even more structural

sharing, see Subsection 4.2.245

13

4.2. XOR Transformations

The presence of XOR gates in the rewriting process imposes additional pos-

sibilities of choice. Particularly, XOR gates, either present in the original XAIG

or newly introduced by cut replacement, may or may not be “dissolved” into

the two 3-AND structures shown in Figures 1a, b. By this dissolving, structural250

sharing of XOR internal AND nodes with the rest of the network can be found.

Therefore, the algorithm performs three replacement alternatives in each rewrit-

ing step (no dissolving, the structure from Figure 1a., and the structure from

Figure 1b). These alternatives are compared and the one yielding the lowest

total network cost is used. If such a sharing is found and it is found to reduce255

the total network cost, the dissolution is made permanent. Otherwise, the XOR

is collapsed back to a single node.

Apart from the basic dissolving, a duplication technique can be used in

addition. When the XOR cost is less or equal to x -times the cost of the AND

node, x inner nodes of this XOR may be duplicated without negatively affecting260

the total cost. In particular, one or both inner AND nodes of the XOR function

may be duplicated to preserve inputs for nodes outside the cut.

An example of XOR dissolving and duplication can be seen in Figure 5.

An XOR function has been found inside the cut (network a), but one of its

inner nodes (3) has an edge which leads outside the cut. This part of the cut265

can either be replaced by an XOR node and the inner AND node (3) must be

duplicated to preserve the input to the node 4 (network b). Another option

is to preserve the XOR representation by 3 ANDs, so the node 3 will not be

duplicated. However, if the XOR cost is equal to the AND cost, this alternative

yields higher cost.270

For experimental purposes, the XOR dissolving can be controlled by a pa-

rameter. As it was documented in [32], enabling this option produces better

results in most of cases. Therefore, this option was enabled in all experiments.

14

Figure 5: Duplication of AND nodes after cut replacement.

4.3. Replacement structures generation

For each of the 222 NPN equivalent classes of cut functions mentioned above,275

all optimal structures were pre-generated using exact synthesis [9]. Basically,

the problem of finding the optimum representation of a K-input function (the

Minimum circuit problem [37]) was transformed to the Satisfiability problem

(SAT) and solved by MiniSAT [38]. In order to assume different XOR gates

costs, Pseudo-Boolean optimization (PBO) was employed instead of SAT and280

solved by MiniSAT+ [39]. Enumeration of all solutions was used to generate all

cost-optimal solutions. For details see [9].

For the sake of the rewriting process, the precomputed replacement struc-

tures should be “optimal”. In the original AIG rewriting [5], the optimality

criterion was purely the number of AND nodes. Typically, there exist more285

than one such “optimal” implementations of a function. From the rewriting

point of view, replacing an AIG subgraph with an arbitrary minimum graph

does not guarantee optimality at all, because of structural sharing (see Section

2). Therefore, multiple structures (circuits) are precomputed, “hard-wired” in

the algorithm, tried for replacement, and the most efficient one is taken, as given290

in Subsection 4.1.

Several ways to generate these structures have been proposed in the past. In

[5], the optimum replacement structures were generated by an undocumented

branch&bound technique. A limited number of such structures was implemented

in ABC, based on experience. In [6], [7], and [8], single optimum replacement295

15

structures are generated on-line, by solving an SMT problem. In [29], multiple

replacement structures are generated by SMT. In [35], single replacements were

generated by SAT, on-line as well.

The optimality of replacement structures can be judged by numerous aspects.

In [35], the cut inputs arrival times are taken into account, to minimize the300

delay. When more complex (i.e., more costly) nodes, like XORs, are to be

present in the structure, the total area becomes of importance. Therefore, we

have implemented a novel SAT and PBO-based procedure assuming different

AND and XOR costs (see 4.3). Description of this method is out of the scope

of this paper, for details see [9].305

Because XOR dissolving is performed in the rewriting algorithm (see Sub-

section 4.2), structures with such dissolved XORs are not generated; all AND

sub-structures describing an XOR gate are collapsed to a single gate. This sig-

nificantly reduces the number of produced structures; since there are two ways

of each XOR dissolving, the number of all possible dissolved structures grows ex-310

ponentially with the number of XORs (2#XORs circuits). However, by applying

on-line dissolving, one structure with single-gate XORs suffices, and moreover

it is processed in linear time, as described in Subsection 4.2.

The statistic on all 222 NPN-equivalent 4-input replacement circuits gener-

ated is shown in Table 1. Here the maximum and average numbers of gates315

(total and XORs) and levels are given, for different AND:XOR cost ratios and

the case where only AND gates were allowed (“No XORs”). The maximum,

average, and total counts of replacement circuits generated for each XOR cost

option are shown in the last three columns. Note that the XOR structures

collapsing was also applied to the “No XORs” case, producing XOR gates.320

Since XORs recognized by our algorithm consist of 3 AND nodes, the recog-

nized XORs in the “No XORs” structures consist of exactly 3 AND nodes. As

a consequence, the “No XORs” structures fully correspond to the case of the

AND:XOR cost ratio 1:3. Thus, these two replacements sets are equal.

In order to prove this, we have generated the replacement structures for both325

the “No XORs” and AND:XOR cost ratio 1:3 variants. The results were equal.

16

Table 1: The statistic on all generated 222 NPN-equivalent 4-input replacement circuits.

AND:XOR

cost

Gates XORs Levels Count

Max. Avg. Max. Avg. Max. Avg. Max. Avg. Total

1:1 7 6.60 5 2.78 7 4.67 7 401 144.86 32 160

1:2 8 6.38 3 1.41 7 4.41 2 436 42.58 9 453

2:5 9 7.18 3 0.32 7 4.51 762 30.92 6 864

1:3

= No XORs

10 8.02 3 0.23 8 4.87 3056 95.45 21 190

Therefore, there is no reason for differenciating them.

We can see that with the increasing XOR cost, the total number of gates

increases, the number of XOR gates decreases and the number of levels increases.

Even though this conclusion is intuitive, the main purpose of Table 1 is to330

illustrate how much the XOR cost influences the result.

Approximately 70 replacement circuits on average have been generated for

each function, except of the case of AND:XOR cost ratio 1. Significantly more

solutions were generated here, compared to the other cost ratios. This is the first

hint of the strength of the XOR gate; when AND and XOR gates can be used335

with the same cost, a function can usually be optimally implemented in many

more different ways, while the solutions usually comprise XORs, even though

solutions of the same cost and without XORs exist. This is illustrated in Fig. 6.

The minimum implementation of the example function (negation of majority

of three) consists of four gates. There are 6 structurally different optimum340

solutions without XOR nodes, while there are 222 optimum implementations

when XORs are allowed too.

Compared to the first XAIG rewriting version presented in [31], two major

improvements have been made in the replacement circuits generation: 1) using

exact synthesis ensures that the generated structures are optimal in terms of345

the cost function mentioned above, 2) instead of using only one replacement

structure per function, all optimal structures are tried for replacement, which

17

a b

c

F

7

4

5

6

ab

c

F

7

4

5 6

abc

F

7

4 5

6

Figure 6: Three examples of optimum implementations of a function F = āb̄ + b̄c̄ + āc̄.

can lead to more intensive structural sharing with the rest of the graph at the

cost of a higher run time.

5. Implementation of XAIGs in ABC350

5.1. The ABC GIA Manager

The ABC9 package features a new manager for AIG manipulation, the GIA

manager, as an alternative to the standard AIG manager [30]. The purpose of

this manager is mostly experimental. Compared to the AIG manager, it is more

memory-efficient and provides a faster way to search for certain structural pat-355

terns, therefore it is used mostly for the purpose of conversion between different

logic representations. On the other hand, it is less effective in performing AIG

modifications.

The GIA manager provides a possibility to optionally use AND-XOR-MUX-

Inverter graphs, instead of standard AIGs. Here it is possible to use XOR and360

MUX nodes in addition to standard AND nodes. Therefore, we have used this

package and GIA as a manager for XAIGs. A network can be converted between

the managers by the command &get to convert it from the original AIG manager

to GIA and &put to convert it back.

18

5.2. The XIAG File Format365

For the need of storing XAIGs in a file with unchanged structure, we defined

the XAIGER file format based on the AIGER format [25] and implemented its

support to ABC9 network reading and writing commands, &r and &w. The

header of XIAG is described as follows:

xaig M I L O A X, where370

• M = I + L + A + X,

• I stands for the number of inputs,

• L stands for the number of latches,

• O stands for the number of outputs,

• A stands for the number of ANDs,375

• and X stands for the number of XORs.

The nodes themselves are defined in the same way as in the original AIGER,

XORs are distinguished from ANDs by having the left child node index higher

than the right one, which is forbidden in the original AIG. As an example, a

circuit comprised of one XOR can be described in the XAIGER format in the380

following way:

xa ig 3 2 0 1 0 1

2

4

6

6 2 4

There is also a possibility to convert XAIG to the original AIG manager

with the command &put, store it to a BLIF file [40] and later reconstruct it by

loading and converting back to GIA by the already existing XOR-supporting385

structural hashing (ABC command &st -m). However, this will not only re-

construct XOR nodes already present in the XAIG, it would also convert XOR

19

functions represented by ANDs to XOR nodes. Therefore, this new format is

necessary if we want to keep exactly the same structure and distinguish an XOR

represented by a single node and an XOR represented by three AND nodes.390

5.3. Recognizing XOR Gates

XOR identification was already available in the ABC9 package and could be

performed by structural hashing (command &st -m -L 1). While the parameter

-m enables conversion to “large” gates (XOR, MUX), the parameter -L sets the

reference limit for enabling generation of MUX nodes. Setting this option to 1395

disables MUX creation completely, but still allows XOR nodes creation.

This procedure identifies XOR gates represented by 3 ANDs as shown in

Figures 1a, b. However, if an XOR is described by a more complex structure

(i.e., Figure 1c), the &st command is too weak to identify it and synthesis will

be unable to use it, unless it finds it by a different way, e.g., by a functional400

checking of a subtree, which we implemented in our &rewrite command.

6. Experimental Results

As a comparison of the AIG-based synthesis performance with the XAIG-

based synthesis, we have run both rewriting algorithms over a set of more than

700 benchmark circuits obtained as a mix of different benchmarks: LGSynth‘91405

[41], IWLS‘93 [42], ISCAS‘85 [43], ISCAS‘89 [44], ITC‘99 [45], LEKO/LEKU

benchmarks [1], EPFL [46] and IWLS 2005 [47] – available from [48].

6.1. Influence of the XOR Cost

There are two places where the XOR cost can be set and where it influences

the result. The first point is the optimum replacement circuits generation (see410

Subsection 4.3). The other one is the rewriting process itself (see Subsection

4.1). Here we will investigate how combinations of these parameters influence

the total number of gates and XORs after rewriting. We have processed more

than 700 circuits by the &rewrite command with different parameters setting

20

Table 2: The influence of different AND:XOR cost ratios in replacement structures and during

rewriting.

&rewrite 1:1 &rewrite 1:2

Generated for Nodes XORs Cost Nodes XORs Cost

AND:XOR cost 1:1 505 571 22 371 505 571 510 427 13 892 524 319

AND:XOR cost 1:2 509 393 17 259 509 393 511 760 13 618 525 378

AND:XOR cost 2:5 510 898 16 375 510 898 512 692 13 507 526 199

AND:XOR cost 1:3 = No XORs 510 630 16 195 510 630 512 937 13 448 526 385

&rewrite 2:5 &rewrite 1:3

Generated for Nodes XORs Cost Nodes XORs Cost

AND:XOR cost 1:1 513 190 11 012 529 708 517 607 8 560 534 727

AND:XOR cost 1:2 514 423 10 614 530 344 519 074 8 126 535 326

AND:XOR cost 2:5 515 242 10 651 531 219 519 775 8 241 536 257

AND:XOR cost 1:3 = No XORs 515 531 10 559 531 370 519 933 8 185 536 303

and summarized the numbers of resulting nodes and XORs. The results are415

shown in Table 2.

It can be observed that both parameters influence the process, even though

the rewriting gate cost setting has higher significance. This can be easily un-

derstood; this parameter controls the whole rewriting flow and decides on the

choice of replacement circuits to minimize the total network cost. Conversely,420

even though the replacement circuits contain, e.g., less XOR nodes in general

(in case of high XOR costs), this fact just slightly influences the decisions.

6.2. Comparison of Rewriting Algorithms for Different XOR Costs

A comparison of the original AIG-based rewriting algorithm with the XAIG-

based rewriting algorithm is presented in this subsection. Particularly, ABC425

commands rewrite and &rewrite were compared. The counts of resulting nodes

(AND, XOR) and the numbers of circuit levels were measured.

The results are shown in Table 3. After the circuit name, nodes, XOR

and levels count statistics are shown for the original AIG-based rewriting (the

21

Table 3: Comparison of the AIG-based rewriting (rewrite) and XAIG-based rewriting

(&rewrite) with different AND:XOR cost settings.

rewrite + &st &rewrite, AND:XOR cost 1:1 &rewrite, AND:XOR cost 1:2 &rewrite, AND:XOR cost 1:3

name Nodes XORs Levels Nodes XORs Levels Nodes XORs Levels Nodes XORs Levels

g625 [1] 9 148 2 204 24 9 000 2 500 24 9 008 1 500 24 9 383 1 125 24

s35932 [44] 7 722 694 11 6 973 901 11 7 338 886 12 7 850 630 12

b21.1 [45] 7 780 740 64 8 631 661 87 8 713 592 88 8 930 424 87

sin [46] 4 731 449 219 4 650 453 202 4 644 430 219 4 846 258 222

s38417 [44] 7 808 399 27 7 964 406 28 7 994 384 28 8 342 156 29

s38584.1 [44] 10 032 311 25 9 824 509 23 9 961 340 24 10 226 156 26

DMA [47] 21 330 254 18 21 147 349 24 21 184 310 24 21 336 205 24

c7552 [43] 1 080 294 24 1 056 326 27 1 105 295 23 1 167 179 28

adder [46] 764 255 255 637 257 256 764 255 255 1 018 1 255

b14 [45] 4 770 331 60 4 939 340 73 4 997 247 76 5 086 186 76

mem ctrl [47] 13 156 236 35 13 030 269 36 13 040 245 36 13 221 100 36

bigkey [41] 3 510 341 11 3 396 343 12 3 397 229 11 3 848 226 12

g125 [1] 1 369 337 18 1 375 375 18 1 381 225 18 1 431 175 18

b14.1 [45] 3 885 313 57 4 000 286 61 4 048 212 69 4 096 193 69

s15850.1 [44] 2 690 204 37 2 588 246 36 2 606 203 35 2 869 52 39

Total 606 851 18 772 12 877 598 802 25 510 13 035 603 772 17 195 13 096 613 691 10 438 13 281

ABC command rewrite) and XAIG-based rewriting (the new ABC command430

&rewrite). Results for only 15 circuits with the highest number of XORs rec-

ognized by &rewrite with the 1:1 AND:XOR cost ratio are shown, while the

sums over all circuits (more than 700) are shown in the last table row (“Total”).

The AIG-based rewriting results were converted to XAIGs by structural hash-

ing (the &st command), in order to extract XOR gates from the AIG structure.435

Note that this involves just simply replacing 3 AND nodes by one XOR node,

where appropriate structures were found (see Figures 1a, b). The &rewrite com-

mand was run with different AND:XOR cost settings, the XOR node costs in

the rewriting structures were set accordingly (see the AND:XOR ratios in the

column labels). The AND:XOR cost ratio 2:5 was not included in the results440

for the lack of space, but the results were, as expected, between the ratios 1:2

and 1:3. XORs were always tried for dissolving (see Subsection 4.2).

We can see that when higher XOR nodes costs are assumed, the algorithm

prefers AND nodes over XORs, and the total number of nodes naturally in-

creases, ending up even in a situation where the number of nodes was increased445

w.r.t. the original rewriting, see the columns corresponding to the 1:3 ratio

(where no XORs were produced in the replacement structures explicitly).

The minimum total number of nodes and also maximum of XORs was ob-

22

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

XA
IG

/AI
G

rew
riti

ng
 ra

tio
 of

 th
e n

um
be

r o
f n

od
es

C i r c u i t #

Figure 7: Comparison of XAIG-based rewriting to AIG-based rewriting by the number of

nodes. Values below 1 are positive for XAIG rewriting.

tained for the XOR cost set to 1, e.g., equal to the AND cost. Particularly, the

rewriting with the AND:XOR cost ratio 1:1 lead to less nodes than the converted450

AIG result in 351 cases (50%), while to more nodes in 124 cases (18%), out of

total 708 circuits. This is also illustrated in Figure 7. The graph is composed

of vertical lines, one for each circuit, with the length of the corresponding ratio,

sorted in ascending order. Values below 1 indicate a better result for the XAIG

rewriting (less nodes).455

These results may seem to be quite obvious, however they fully expose the

“strength” of the XOR operator; when XORs are allowed in addition to ANDs,

the circuits can be implemented using less gates. This result confirms the theo-

retical reasoning on circuit complexity [49] and it justifies (and emphasizes) the

XOR usefulness in synthesis.460

6.3. The Overall Synthesis Process – FPGA Mapping

The previous experiment indicates that XOR introduction may benefit the

synthesis process. To obtain more relevant results, both variants should be

compared in the more realistic context of complete synthesis. First, technology

mapping should be included. Second, the standard ABC command sequences465

23

Table 4: Comparison of the XAIG-based rewriting to AIG-based rewriting in terms of area

after FPGA mapping. Results for only 15 largest circuits are shown.

rewrite &rewrite 1:1 &rewrite 1:2 &rewrite 1:3

name LUTs Levels LUTs Levels LUTs Levels LUTs Levels

arbiter [46] 4 053 30 4 053 30 4 053 30 4 053 30

s38417 [44] 3 008 9 2 932 9 2 945 10 2 942 9

apex2 [42] 1 696 7 1 690 7 1 679 7 1 679 7

bigkey [42] 1 695 3 1 789 3 1 898 3 1 901 3

too large [42] 1 475 8 1 504 8 1 377 9 1 377 9

mainpla [41] 1 419 10 1 394 10 1 403 10 1 391 10

dsip [42] 1 360 3 909 3 908 3 908 3

misex3 [42] 1 358 6 1 296 7 1 285 7 1 285 7

bar [46] 1 349 6 1 349 6 1 349 6 1 349 6

des [42] 1 347 6 1 289 7 1 349 6 1 331 6

xparc [41] 1 316 11 1 319 11 1 319 11 1 330 11

spi [47] 1 252 10 1 237 10 1 246 10 1 254 10

des [41] 1 249 6 1 219 7 1 284 6 1 252 6

wb dma [47] 1 246 8 1 230 11 1 231 11 1 233 11

g216 [1] 1 198 6 1 174 6 1 186 6 1 212 7

Total 126 258 3 619 124 066 3 700 124 789 3 673 125 016 3 676

are iterative, with more than 10 iterations of basic commands such as rewrite

recommended in ABC manual [26]. We have compared both algorithms by the

number of LUTs and levels after FPGA (4-LUT) mapping. The sequence of

commands used for the AIG-based process was rewrite; balance; if; mfs. In

order to obtain solutions that most likely converged to a local optimum, the470

sequence was iterated 20-times. The same sequence of commands was used for

the XAIG-based process, except of using &rewrite instead of rewrite.

The results for different XOR costs are shown in Table 4. Only 15 largest

circuits are shown there, with summary values for all circuits shown in the last

row. We can see that the XOR cost equal to 1 produced the best results, in terms475

of the area (LUTs count). Particularly, better results than the AIG rewriting

were obtained in 290 cases (43%), worse results in 146 cases (21%), out of 682.

24

6.4. Algorithmic Noise

The differences shown in Table 3 and Figure 7 are comparable with variation

caused by algorithmic noise [50], [51]. From previous work, we know that the480

implementations of the tested algorithms are sensitive to declaration order in the

input description. This ordering does not have any meaning from the perspective

of the described circuit. In the following experiment, we neutralized this source

of variance by averaging at least 40 runs (substantially more for smaller circuits)

with randomly permuted declarations of inputs and outputs.485

We found 53 cases where the XAIG-based algorithm dominated the AIG-

based (that is, was systematically better than the other one). On the other

hand, in 10 cases the AIG-based algorithm dominated. In all other cases, there

were permutations where the XAIG-based algorithm was better, and others

where it was not. The performance ratios shown in Fig. 8 were computed from490

average values and should not be affected by algorithmic noise. In this graph,

the &rewrite-based synthesis exhibited a better area compared to the rewrite-

based synthesis for 44% of the circuits and the opposite for 15% of the circuits.

For the rest of circuits, the average areas were equal (the ratio was 1). In the

corresponding results shown in Table 4 (the column “&rewrite 1:1”, where the495

algorithmic noise was not suppressed, the respective percentages were 43% and

21%. Such similar values indicate, that the effect of the algorithmic noise has

been heavily suppressed by the number of circuits exercised, and the results

presented in the previous tables and graphs are credible enough.

The cases where either algorithm dominated exhibited very little or no al-500

gorithmic noise and the separation of the algorithms was clear. This further

confirms that those values in Table 4 that are important for our conclusions

are reliable even without noise elimination. Two cases, where dominance either

exists or does not, but yet average values are significantly different, are shown

in Figure 9.505

From these experiments it is apparent that sometimes a better solution was

found, sometimes worse, and here this could not be attributed to the algorithmic

noise. Thus, generally speaking, XAIG-based rewriting may bring benefits for

25

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

XA
IG

/AI
G

rew
riti

ng
 ra

tio
 of

 th
e n

um
be

rs
of

LU
Ts

C i r c u i t #

Figure 8: Comparison of XAIG-based rewriting to AIG-based rewriting in terms of area after

LUT mapping. Algorithmic noise eliminated. Values below 1 indicate a better result for

XAIG-based rewriting.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0

Fre
qu

en
cy

L U T s

 r e w r i t e
 & r e w r i t e

C i r c u i t : e x 4 p
5 5 4 3 p e r m u t a t i o n s

9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0
0

5 0 0
1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
3 5 0 0
4 0 0 0
4 5 0 0
5 0 0 0
5 5 0 0
6 0 0 0

Fre
qu

en
cy

L U T s

 r e w r i t e
 & r e w r i t e

C i r c u i t : s 8 3 8 . 1
9 7 6 2 p e r m u t a t i o n s

Figure 9: Histograms of result quality frequency for both algorithms and the ex4p [41] and

s838.1 [44] circuits.

26

some circuits, while for some circuits it does not help.

6.5. A Combined Synthesis Procedure510

When keeping this in mind, we can suggest a general synthesis procedure,

that always produces equal of better results than the original AIG rewriting

based one: to run both synthesis procedures simultaneously (e.g., by employing

two CPU cores) and pick the better result. However, we will show that even

that is not necessary; half of the above mentioned iterations is usually sufficient515

to obtain better results in most of cases. This can be explained by the fact, that

the iterative process (rewrite-based or &rewrite-based) quickly gets stuck in a

local optimum and does not further improve much with later iterations.

This is documented in Figure 10. Here results of the rewrite-based process

run iteratively 40-times are compared to 20 iterations of both processes (rewrite-520

based and &rewrite-based) with the better result taken (a choice is made).

Thus, the total run times of both complete processes were approximately equal.

Since the 1:1 AND:XOR cost ratio setting led to best results in the previous

experiment, only this option was used here. The initial theory was confirmed –

the combined process gave better results in most of cases. There were only 10525

circuits for which the combined process gave slightly worse results.

6.6. Standard Cells Mapping

For completeness, we have performed a mapping into the standard MCNC

gate library [52], similarly to the LUT mapping in Subsection 6.3. Particularly,

the script rewrite; balance; map; mfs iterated 20-times was used for the origi-530

nal AIG-based rewriting, &rewrite instead of rewrite was used for the XAIG-

based synthesis. This technology library comprises simple gates like AND, OR,

NAND, NOR, XOR, XNOR, and also complex gates (AOI, OAI), with their

sizes (area) and delays provided.

Since the 2-input NAND (NOR) gates cost is 2 and the XOR (XNOR) cost535

is 5 in this library, the AND:XOR cost 2:5 setting seems to be natural to use

27

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

LU
Ts

 ra
tio

 fo
r c

om
bin

ed
 XA

IG
/AI

G
rew

riti
ng

co
mp

are
d t

o A
IG

 re
wr

itin
g

C i r c u i t #

Figure 10: Comparison of the combined XAIG/AIG-based synthesis with AIG based synthesis.

for experiments. Apart from this, we have also tried out the 1:1 ratio, just for

comparison.

The total areas and delays were measured (by ABC) and compared for the

AIG- and XAIG-based synthesis processes, for AND:XOR cost ratios 1:1 and540

2:5. The results for the 15 largest circuits are shown in Table 5, with the

summary values over all processed 405 circuits shown in the last table row. The

algorithmic noise (Subsection 6.4) has been eliminated in the experiment, by

averaging results from at least 40 runs (substantially more for smaller circuits)

with randomly permuted declarations of inputs and outputs. Therefore, Table 5545

contains average values.

One may (incorrectly) observe, that there are only very small size and delay

differences bvetween the AIG-based and XAIG-based rewriting, slightly benefit-

ing the XAIG-based rewriting in area. Particularly, the areas and delays differ

by less than 1% on average, for both AND:XOR cost ratios. The 2:5 AND:XOR550

cost ratio surprisingly gives worse results than the 1:1 one.

But still, XAIG-based rewriting (1:1 ratio) produced better results in 254

cases (63%), the AIG-based rewriting in 133 cases (33%). In the sense of

algorithmic noise (Subsection 6.4), the XAIG-based rewriting dominated the

28

Table 5: Comparison of the XAIG-based rewriting to AIG-based rewriting in terms of area

and delay after standard cells mapping. Results for only 15 largest circuits are shown.

rewrite &rewrite 1:1 &rewrite 2:5

name Area Delay Area Delay Area Delay

arbiter [46] 18 815.5 70.7 18 815 70.7 18 814 70.7

des area [47] 9 277.69 22.23 9 058 22.2 8 717 23.3

bigkey [42] 8 737.77 7.63 8 383.3 7.49 7 836.5 9.5

des [41] 7 778.8 13.63 7 319.11 13.72 7 312.5 13.95

spi [47] 6 121.69 22.5 6 091.22 23.01 6 144.5 24.67

wb dma [47] 6 010.85 16.53 6 000.86 17.27 6 047 16.3

bar [46] 5 737.75 10.99 5 765.54 11.02 5 744.5 11.2

misex3 [42] 5 574.63 11.94 5 495.19 12.13 5 481.11 12.24

apex2 [42] 5 532.84 14.01 5 325.7 13.93 5 267.55 13.98

s15850 [44] 5 387.19 30.32 5 388.84 29.84 5 498 30.12

xparc [41] 5 310.02 25.98 5 255.62 25.45 5 304.5 25.05

dsip [41] 5 290.7 7.74 5 119.81 7.72 6 050.18 7.58

s15850.1 [41] 5 269.88 30.3 5 282.5 29.77 5 379.57 30.14

too large [42] 5 219.68 14.8 5 113.23 15.09 5 085.35 15.2

prom2 [41] 5 007.68 13.81 5 059.58 13.75 4 889 13.6

Total 500 626.83 5 992.48 496 361.99 6 015.85 498 254.34 6 213.72

29

0 1 0 0 2 0 0 3 0 0 4 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

XA
IG

/AI
G

rew
riti

ng
 ra

tio
 fo

r s
tan

da
rd

ce
lls

ma
pp

ing
 (a

rea
)

C i r c u i t #

Figure 11: Comparison of XAIG-based rewriting to AIG-based rewriting in terms of area after

mapping to MCNC standard cells. Algorithmic noise eliminated. Values below 1 indicate a

better result for XAIG-based rewriting.

AIG-based one in 12 cases (3%), in 6 cases (1.5%) the AIG-based rewriting555

dominated.

The performance ratios of XAIG/AIG-based rewriting for area is shown in

Fig. 11. The AND:XOR cost ratio was set to 1:1.

Similarly to the FPGA LUT mapping, sometimes a better solution was

found, sometimes worse. The same conclusion can be made here as well: XAIG-560

based rewriting may bring benefits for some circuits, while for some circuits it

does not help. In order to reach superior results in general, a combined synthesis

process, as presented in Subsection 6.5, can be used.

6.7. Influence of Using Multiple Replacement Structures per Function

Finally, we will illustrate the importance of using multiple replacement cir-565

cuits in the rewriting process. The results presented in [31] were inferior to

the original ABC rewriting in terms of total gates counts and also in the area

after the LUT mapping. This was because of using just a single replacement

circuit for each function in &rewrite, which was not the case of the original ABC

rewrite. Thus, we will present a comparison of XAIG rewriting processes with570

30

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

Mu
ltip

le/
sin

gle
 re

pla
ce

me
nt,

 no
de

s r
ati

o

C i r c u i t #

Figure 12: Comparison of XAIG-based rewriting using single and multiple replacement cir-

cuits, in terms of the number of nodes. Values below 1 indicate the benefit for multiple

replacements.

and without using multiple replacements. Let us remind that 70 replacement

circuits were used for each function on average.

The histogram of results is shown in Fig. 12, for &rewrite with XOR nodes

cost set to 1. We can see that multiple replacements almost always resulted in

better area. There were only 7 circuits, for which one replacement gave slightly575

better results.

7. Discussion

7.1. Compared procedures and replacements

To answer the question of XOR importance experimentally, two procedures

should be compared, one with XORs and one without, but identical otherwise.580

This represents the comparison A in Figure 13. There are other factors, however,

which affect the comparison.

The first one is the number of replacements. In [31], we used a single re-

placement for each NPN class, yielding the comparison B in Figure 13. The

results were negatively affected, so that the comparison could not be fair. The585

31

Figure 13: Factors influencing the experiments

experiment in Subsection 6.7, positioned as comparison D in Figure 13, also

confirms this fact.

7.2. Replacement structures

ABC rewriting uses what can be seen as a complete set of replacements

from the result quality point of view [5], [30]. NPN classes and replacements590

within classes are reduced only to the extent avoiding quality loss. Therefore,

the replacements used in the experiments can be seen as equivalent.

The experiments in Subsection 6.1 were designed to investigate if strict cor-

respondence of costs in replacement generation and in rewriting is necessary.

The most important result, however, is that the cost of the results improves595

with the amount of XORs in replacements. This in part confirms our conjec-

ture. Moreover, it permits to use the replacements generated for the AND:XOR

ratio 1:1 universally, even for standard cells mapping, where the XOR cost is

higher than the AND cost. This phenomenon can be explained by the fact,

that the mapping process may benefit from the XOR presence, no matter what600

the XOR cost in the target library is. Note that the generation of structures

32

with the AND:XOR ratio 1:1 is easier as it does not require a PBO solver (see

Subsection 4.3.

7.3. XAIG properties

XAIGs are heterogeneous networks, having more than one node type. In605

contrast, AIGs are homogeneous. As a consequence, purely structural methods

are applicable in AIGs. For example, possible reuse of a node within the replace-

ment can be used with little effort through structural hashing. For XAIGs, more

complicated methods have to be used. One possibility is to dissolve XORs into

ANDs and thus to obtain a homogeneous structure. Another way is to build pos-610

sible transformations into replacement evaluation, as suggested by Mishchenko

[30].

Heterogeneous comparison is, naturally, not needed in ABC rewriting, but

can be considered an organic component of XAIGs rewriting. Thus, we see that

it is actually the comparison C in Figure 13 that we want to make.615

7.4. An XOR as an implicit representation

AIGs are, as mentioned earlier, a logically complete system. Nodes of any

newly introduced type can be therefore replaced by subgraphs with AND nodes

only. In our case, there are two distinct 3-AND subgraphs replacing an XOR.

This has several consequences.620

The two representations can be interpreted in the sense an XOR in XAIG

implicitly represents two different AND-based structures. This is especially

important for the number of replacement structures produced, and subsequently

for the rewriting run-time. Particularly, if all XOR structures were explicitly

generated as replacement circuits, their number will be exponential with the625

number of XORs (2#XORs). However, by representing XOR structure implicitly

by one node, the rewriting time complexity is linear with their number, as XORs

are processed one-by-one, without any dependence of previously made decisions

on their dissolving.

33

Rewriting algorithms are based on cut generation [14], which is a purely630

structural procedure. When “macro” XOR nodes are introduced, less cuts can

be constructed and considered for replacement, leading to worse result. This

can be a possible explanation of the results in Subsection 6.2. However, as

Subsection 6.5 indicates, a combined procedure can bring the advantages of

both approaches.635

8. Conclusion

A novel circuit representation structure – the XOR-AND-Inverter Graph

(XAIG) was proposed in this article, together with a rewriting algorithm based

on this representation. The algorithm was implemented in the framework of

logic synthesis and optimization tool ABC. The XAIG-based rewriting algorithm640

was compared to the original AIG-based rewriting already implemented in ABC.

The results indicate that the new algorithm is stronger in XOR identification

and in reducing the number of nodes than the XOR-aware structural hashing,

already implemented as a command &st in ABC.

XOR nodes in XAIG-based synthesis bring new decisions, which need to be645

done, for example whether to create an XOR node even at expense of adding

additional AND nodes. Most importantly, an XOR gate can also have different,

target technology dependent cost than AND, i.e., it might be beneficial to have

multiple AND nodes instead of one XOR node in the network. Apart from the

version presented in [31], we have implemented new options, which are config-650

urable through &rewrite parameters and their influence to the final network

structure has been examined. A big improvement in the XAIG rewriting results

has been achieved by using all optimal replacement structures for each function

as well as using exact synthesis for generation of those structures.

The impact of the XAIG-based rewriting process to a complete synthesis,655

particularly FPGA LUT and standard cells mapping, has been studied. When

compared with the standard AIG-based rewriting process, better results have

been obtained in most cases. Next, an iterative process where AIG and XAIG-

34

based rewriting are combined has been proposed. Better results, compared to

the AIG-based rewriting process run equal time, have been obtained in a vast660

majority of cases.

Summarized, the newly proposed XAIG-based rewriting algorithm offers a

possibility of discovering new XOR structures in a network, compared to the

state-of-the-art. These XORs may be utilized in further network processing

algorithms. Discovery of new XORs also yields better synthesis results in a665

number of cases, mostly in XOR-intensive circuits, while for the rest of circuits,

comparable results are obtained. A combined procedure with superior results

was demonstrated. Therefore, we can conclude that efficient and balanced han-

dling with XORs in synthesis is useful for improving synthesis results.

Acknowledgment670

This research has been partially supported by the grant GA16-05179S of

the Czech Grant Agency, “Fault-Tolerant and Attack-Resistant Architectures

Based on Programmable Devices: Research of Interplay and Common Features”

(2016–2018) and by the grant SGS17/213/OHK3/3T/18.

Computational resources were provided by the CESNET LM2015042 and the675

CERIT Scientific Cloud LM2015085, provided under the programme “Projects

of Large Research, Development, and Innovations Infrastructures”.

Last, but not the least, numerous thanks to Alan Mishchenko, for his valu-

able comments and discussions with him.

References680

[1] J. Cong, K. Minkovich, Optimality study of logic synthesis for LUT-based

FPGAs, in: 14th International ACM Symposium on Field-Programmable

Gate Arrays, 2006, pp. 33–40.

[2] P. Fǐser, J. Schmidt, Small but nasty logic synthesis examples, in: 8th. Int.

Workshop on Boolean Problems (IWSBP), 2008, pp. 183–189.685

35

[3] P. Fǐser, J. Schmidt, The observed role of structure in logic synthesis exam-

ples, in: Proceedings of the International Workshop on Logic and Synthesis

2009, 2009, pp. 210–213.

[4] W. Haaswijk, M. Soeken, L. Amaru, P.-E. Gaillardon, G. De Micheli, A

novel basis for logic rewriting, Tech. rep., Integrated Systems Laboratory,690

EPFL, Lausanne, Switzerland (2017).

[5] K. Brayton, Robert, A. Mishchenko, S. Chatterjee, DAG-aware AIG rewrit-

ing: a fresh look at combinational logic synthesis, in: 43rd ACM/IEEE

Design Automation Conference, ACM, 2006, pp. 532–535.

[6] L. Amaru, P.-E. Gaillardon, G. De Micheli, Boolean logic optimization in695

majority-inverter graphs, in: 52nd ACM/EDAC/IEEE Design Automation

Conference (DAC), 2015, pp. 1–6. doi:10.1145/2744769.2744806.

[7] W. Haaswijk, M. Soeken, L. Amaru, P.-E. Gaillardon, G. De Micheli, LUT

mapping and optimization for Majority-Inverter Graphs, in: International

Workshop on Logic and Synthesis, 2016, p. 8.700

[8] M. Soeken, L. Amaru, P.-E. Gaillardon, G. De Micheli, Exact synthesis

of Majority-Inverter Graphs and its applications, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 36 (11) (2017)

1842–1855.

[9] I. Háleček, P. Fǐser, J. Schmidt, SAT-based generation of optimum function705

implementations with XOR gates, in: 20th Euromicro Conference on Dig-

ital System Design, Architectures, Methods and Tools, 2017, pp. 163–170.

[10] A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, S. Jang, Scalable don’t-

care-based logic optimization and resynthesis, ACM Trans. Reconfigurable

Technology and Systems (TRETS) 4 (4).710

[11] J. Cong, Y. Ding, FlowMap: an optimal technology mapping algorithm for

delay optimization in lookup-table based FPGA designs, IEEE Transac-

36

http://dx.doi.org/10.1145/2744769.2744806

tions on Computer-Aided Design of Integrated Circuits and Systems 13 (1)

(1994) 1–12.

[12] P. Pan, C.-C. Lin, A new retiming-based technology mapping algorithm715

for LUT-based FPGAs, in: International ACM Symposium on Field-

Programmable Gate Arrays, 1998, pp. 35–42.

[13] J. Cong, C. Wu, Y. Ding, Cut ranking and pruning: enabling a general

and efficient FPGA mapping solution, in: 7th ACM/SIGDA international

symposium on Field programmable gate arrays, 1999, pp. 29–35.720

[14] A. Mishchenko, S. Chatterjee, K. Brayton, Robert, X. Wang, T. Kam,

Technology mapping with Boolean matching, supergates and choices, Tech.

rep., ERL Technical Report, EECS Dept., UC Berkeley (March 2005).

[15] K. Keutzer, DAGON: Technology binding and local optimization by DAG

matching, in: Design Automation, 1987. 24th Conference on, 1987, pp.725

341–347. doi:10.1109/DAC.1987.203266.

[16] S. B. Akers, Binary decision diagrams, IEEE Transactions on Computers

27 (6) (1978) 509–516. doi:10.1109/TC.1978.1675141.

[17] R. E. Bryant, Graph-based algorithms for Boolean function manipulation,

IEEE Transactions on Computers 35 (8) (1986) 677–691. doi:10.1109/730

TC.1986.1676819.

[18] K. Karplus, Using if-then-else DAGs for multi-level logic minimization, in:

Proc. of Advance Research in VLSI, C. Seitz Ed, MIT Press, 1989, pp.

101–118.

[19] Y.-T. Lai, M. Pedram, S. B. K. Vrudhula, BDD based decomposition of735

logic functions with application to FPGA synthesis, in: Proceedings of the

30th International Design Automation (DAC’93), ACM, New York, NY,

USA, 1993, pp. 642–647. doi:10.1145/157485.165078.

37

http://dx.doi.org/10.1109/DAC.1987.203266
http://dx.doi.org/10.1109/TC.1978.1675141
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1145/157485.165078

[20] C. Yang, M. Ciesielski, BDS: a BDD-based logic optimization system, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-740

tems 21 (7) (2002) 866–876.

[21] N. Vemuri, P. Kalla, R. Tessier, BDD-based logic synthesis for LUT-based

FPGAs, ACM Transactions on Design Automation of Electronic Systems

7 (4) (2001) 501–525.

[22] K. Brayton, Robert, A. Mishchenko, Scalable logic synthesis using a simple745

circuit structure, in: International Workshop on Logic and Synthesis, 2006,

pp. 15–22.

[23] A. Kuehlmann, V. Paruthi, F. Krohm, M. Ganai, Robust Boolean rea-

soning for equivalence checking and functional property verification, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-750

tems 21 (12) (2001) 1377–1394.

[24] P. Bjesse, A. Borlv, DAG-aware circuit compression for formal verifica-

tion, in: IEEE/ACM International Conference on Computer-Aided Design,

2004, pp. 42–49.

[25] A. Biere, AIGER, http://fmv.jku.at/aiger/ (2007).755

[26] A. Mishchenko, et al., ABC: A system for sequential synthesis and verifi-

cation (2012).

URL http://www.eecs.berkeley.edu/~alanmi/abc

[27] Z. Huang, L. Wang, Y. Nasikovskiy, A. Mishchenko, Fast Boolean match-

ing based on NPN classification, in: International Conference on Field-760

Programmable Technology (FPT), 2013, pp. 310–313. doi:10.1109/FPT.

2013.6718374.

[28] L. Amaru, P.-E. Gaillardon, G. De Micheli, Majority-inverter graph: A new

paradigm for logic optimization, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 35 (5) (2015) 806–819.765

38

http://fmv.jku.at/aiger/
http://www.eecs.berkeley.edu/~alanmi/abc
http://www.eecs.berkeley.edu/~alanmi/abc
http://www.eecs.berkeley.edu/~alanmi/abc
http://www.eecs.berkeley.edu/~alanmi/abc
http://dx.doi.org/10.1109/FPT.2013.6718374
http://dx.doi.org/10.1109/FPT.2013.6718374
http://dx.doi.org/10.1109/FPT.2013.6718374

[29] M. Soeken, L. Amaru, P.-E. Gaillardon, G. De Micheli, Optimizing

Majority-Inverter Graphs with functional hashing, in: Design, Automation

and Test in Europe, 2016, pp. 1030–1035.

[30] A. Mishchenko, Personal communication (2017).

[31] I. Háleček, P. Fǐser, J. Schmidt, Are XORs in logic synthesis really neces-770

sary?, in: Proceedings of the 2017 IEEE 20th International Symposium on

Design and Diagnotics of Electronic Circuit & Systems, IEEE, Piscataway,

NJ, 2017, pp. 134–139. doi:10.1109/DDECS.2017.7934583.

[32] I. Háleček, P. Fǐser, J. Schmidt, On XAIG rewriting, in: International

Workshop on Logic and Synthesis (IWLS), 2017, pp. 89–96.775

[33] M. Soeken, Personal communication (2017).

[34] A. Mishchenko, S. Chatterjee, R. Jiang, K. Brayton, Robert, FRAIGs:

A unifying representation for logic synthesis and verification, Tech. rep.,

UCB/ERL, EECS Dept., UC Berkeley (mar 2005).

[35] M. Soeken, G. De Micheli, A. Mishchenko, Busy man’s synthesis: Combi-780

national delay optimization with SAT, in: Design, Automation and Test in

Europe, 2017, pp. 830–835.

[36] J. Schmidt, P. Fǐser, The case for a balanced decomposition process, in:

12th Euromicro Conference on Digital System Design, Architectures, Meth-

ods and Tools, 2009, pp. 601–604. doi:10.1109/DSD.2009.156.785

[37] V. Kabanets, J.-Y. Cai, Circuit minimization problem, in: 32th Annual

ACM Symposium on Theory of Computing, 2000, pp. 73–79.

[38] N. Eén, N. Sörensson, An extensible SAT-solver, Lecture notes in computer

science 2919 (2003) 333–336.

[39] N. Eén, N. Sörensson, Translating pseudo-Boolean constraints into SAT,790

Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 1–

26.

39

http://dx.doi.org/10.1109/DDECS.2017.7934583
http://dx.doi.org/10.1109/DSD.2009.156

[40] University of California, Brekeley, Berkeley logic interchange format (BLIF)

(2005).

[41] S. Yang, Logic synthesis and optimization benchmarks user guide: Version795

3.0, Tech. rep., MCNC Technical Report (Jan 1991).

[42] K. McElvain, IWLS’93 Benchmark Set: Version 4.0, Tech. rep. (May 1993).

[43] F. Brglez, H. Fujiwara, A Neutral Netlist of 10 Combinational Benchmark

Circuits and a Target Translator in Fortran, in: IEEE International Sym-

posium Circuits and Systems (ISCAS’85), IEEE Press, Piscataway, N.J.,800

1985, pp. 677–692.

[44] F. Brglez, D. Bryan, K. Kozminski, Combinational profiles of sequential

benchmark circuits, in: IEEE International Symposium on Circuits and

Systems (ISCAS’89), 1989, pp. 1929–1934 vol.3. doi:10.1109/ISCAS.

1989.100747.805

[45] F. Corno, M. Reorda, G. Squillero, RT-level ITC’99 benchmarks and first

ATPG results, Design Test of Computers, IEEE 17 (3) (2000) 44–53. doi:

10.1109/54.867894.

[46] L. Amaru, The EPFL combinational benchmark suite, Tech. rep., Inte-

grated Systems Laboratory, EPFL, Lausanne, Switzerland (Sep. 2016).810

[47] C. Albrecht, IWLS 2005 benchmarks, Tech. rep. (Jun. 2005).

[48] P. Fǐser, J. Schmidt, A comprehensive set of logic synthesis and optimiza-

tion examples, in: 12th. Int. Workshop on Boolean Problems (IWSBP),

2016, pp. 151–158.

URL http://ddd.fit.cvut.cz/prj/Benchmarks/815

[49] I. Wegener, The Complexity of Boolean Functions, John Wiley & Sons

Ltd., 1987.

40

http://dx.doi.org/10.1109/ISCAS.1989.100747
http://dx.doi.org/10.1109/ISCAS.1989.100747
http://dx.doi.org/10.1109/ISCAS.1989.100747
http://dx.doi.org/10.1109/54.867894
http://dx.doi.org/10.1109/54.867894
http://dx.doi.org/10.1109/54.867894
http://ddd.fit.cvut.cz/prj/Benchmarks/
http://ddd.fit.cvut.cz/prj/Benchmarks/
http://ddd.fit.cvut.cz/prj/Benchmarks/
http://ddd.fit.cvut.cz/prj/Benchmarks/

[50] J. Schmidt, P. Fǐser, J. Balcárek, On robustness of EDA tools, in: Eu-

romicro Conference on Digital System Design Architectures, Methods and

Tools, 2014, pp. 427–434.820

[51] W. Shum, H. Anderson, Jason, Analyzing and predicting the impact of

CAD algorithm noise on FPGA speed performance and power, in: Inter-

national ACM Symposium on Field-Programmable Gate Arrays, 2012, pp.

107–110.

[52] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,825

H. Savoj, P. Stephan, R. K. Brayton, A. L. Sangiovanni-Vincentelli, SIS:

a system for sequential circuit synthesis, Tech. Rep. UCB/ERL M92/41,

EECS Department, University of California, Berkeley (1992).

41

	Introduction
	Preliminaries
	And-Inverter Graphs
	Representation of XOR Gates in AIG
	The Cut Enumeration Procedure

	The XAIG Structure and its Properties
	XAIG-Based Rewriting Algorithm
	The Basic Rewriting Algorithm
	XOR Transformations
	Replacement structures generation

	Implementation of XAIGs in ABC
	The ABC GIA Manager
	The XIAG File Format
	Recognizing XOR Gates

	Experimental Results
	Influence of the XOR Cost
	Comparison of Rewriting Algorithms for Different XOR Costs
	The Overall Synthesis Process – FPGA Mapping
	Algorithmic Noise
	A Combined Synthesis Procedure
	Standard Cells Mapping
	Influence of Using Multiple Replacement Structures per Function

	Discussion
	Compared procedures and replacements
	Replacement structures
	XAIG properties
	An XOR as an implicit representation

	Conclusion

