
Reducing Output Response Aliasing Using Boolean
Optimization Techniques

Robert Hülle, Petr Fišer, Jan Schmidt
Faculty of Information Technology

Czech Technical University in Prague
Prague, Czech Republic

Email: {hullerob, fiserp, schmidt}@fit.cvut.cz

Abstract—In digital circuit testing, output response compaction
can have a significant impact on fault coverage. The loss of
fault coverage is caused by aliasing in the output response
compaction. Classical approaches to reducing (eliminating) fault
aliasing are based on modifications of the compactor design or
modifying precomputed test sequence. In this paper, we propose
a completely different approach based on a dedicated test pattern
generation algorithm. The algorithm generates a test sequence
with minimal aliasing for targeted faults. As the generated test
sequence is tailored to given static and dynamic compactor
structures, any response compactor can be used without a change
in the design. We expand on our previous work, zero-aliasing
ATPG, and incorporate pseudo-Boolean optimization techniques
in the process.

The algorithm is evaluated using an LFSR-based MISR on a
selection of benchmark circuits. A comparison with a state-of-
the-art ATPG process without anti-aliasing measures is drawn.

Index Terms—ATPG, multiple-target test generation, SAT,
pseudo-Boolean optimization, fault aliasing, response compaction,
test compaction, LFSR

I. INTRODUCTION

The low test length and the low test application time
are essential in both after-manufacture and in-deployment
testing. The Desing for testability (DfT) techniques are used
to simplify and speed-up test generation, test application, and
to increase the fault coverage.

Output response compaction, a DfT technique, can be
used to decrease the amount of read-out data during testing.
This is useful both for Built-In Self-Test (BIST) and testing
with external equipment. A fault aliasing can occur during
the response compaction, decreasing the fault coverage. The
output response compaction can be divided into spatial (static)
and temporal (dynamic) parts.

Spatial response compaction is performed by a combina-
tional circuit. It reduces the amount of data produced by
a single test pattern, i.e., the output response bit width.
Consecutive test patterns do not influence each other. The
aliasing can be prevented in this compactor by its proper
design [1]–[4].

Temporal response compaction reduces the number of re-
sponse patterns and creates a signature of the test response.
This is usually done by a Multiple-Input Signature-Register
(MISR) – a sequential circuit that accumulates the output
responses over multiple clock cycles in its internal state. One

example of a MISR is a Linear Feedback Shift Register (LFSR)
with parallel inputs.

Preventing aliasing in a temporal compactor is more com-
plex because consecutive test patterns and output responses
influence each other. Usual methods to prevent aliasing are
manipulating the compactor design [5]–[9] or manipulating
preexisting test pattern sequence [10].

A different approach to reducing the aliasing in the temporal
response compaction is by constraining the ATPG algorithm
to prevent aliasing in the compactor [11]. In this approach, the
design of the compactor must be known during test generation.
The ATPG then generates a test that is not aliased in the
temporal (sequential) compactor. While this approach can
achieve zero aliasing even for small and simple compactors,
the trade-off is in the resulting test length and test generation
time. Additionally, the generated test cannot be processed
further, e.g., by a static test compaction [12]–[14].

Dynamic test compaction [15]–[20] is, in contrast to static
compaction, performed during test pattern generation, on the
incomplete test set. It is also beneficial for the ATPG to
utilize extra information from the compaction while generating
the next test pattern. Typical dynamic compaction tries to
use the unspecified bits of generated test patterns to target
additional faults. Other methods of dynamic compaction in-
clude multiple-target test generation (MTTG) [17]–[19] and
optimization-based MTTG (OTG) [20] that can target multiple
faults at once. Dynamic compaction can produce a more com-
pact test set than static compaction, at the price of increased
computational complexity. In this paper, we adopt modern
dynamic compaction principles to the zero-aliasing test gen-
eration process. As a result, the test length is significantly
reduced, compared to the original ZATPG algorithm.

In particular, the main contributions of this paper are as
follows:

• Dynamic test compaction applied in zero-aliasing SAT-
based ATPG

• Optimization-based fault selection for anti-aliasing
• Evaluation and comparison with a state-of-the-art ATPG

without anti-aliasing measures
The paper is structured as follows:
In Section II, there is a brief overview of recent work in the

field as well as an introduction to tools being used. In Section
III, the newly proposed method is described. The experimental

BD=1
PO

PO'

PI

CUT1

CUT0

f1

Figure 1: Miter: conceptual circuit for SAT-based ATPG

results are presented in section IV. Conclusions and discussed
possibilities for future work are drawn in the last section V.

II. PRELIMINARIES

A. SAT-ATPG

SAT-based ATPG is an ATPG that uses the Boolean sat-
isfiability problem (SAT) and a SAT solver to generate test
patterns [21].

Construction of a miter, a conceptual circuit, is one of the
possible ways to construct an SAT instance and generate a test
pattern. Illustrated for the fault f1 in Figure 1, two replicas of
the circuit under test are created. One for the original fault-free
circuit (CUT0), and the second for a faulty circuit (CUT1). The
fault f1 is modeled in the replica CUT1. Inputs (PIs) of the two
replicas are connected and the outputs (POs) are compared.
The output signal BD of the miter indicates whether a test
pattern p on the PIs detects the fault f1 or not. Finding a test
pattern is then a problem of finding an input vector that sets
the output of the circuit to the value 1.

This problem is then translated to SAT by means of the
Tseitin transformation [21], [22]. The generated SAT instance
is usually in the conjunctive normal form (CNF) as that is the
input form that SAT solvers use.

When the SAT instance is satisfiable, then the certificate
(Boolean assignment of the variables) corresponds to the
values of signals in the miter. The test pattern is then extracted
as the values of the input signals.

B. Multiple-Target Test Generation

Usual dynamic compaction techniques use unspecified bits
of a test pattern to target additional faults. The compaction
achieved by this approach is sensitive to the additional fault
selection (fault ordering) and the chosen subset of unspecified
bits in the test pattern.

Multiple-Target Test Generation (MTTG) techniques [17]–
[19] solve the problem of unspecified bits selection by target-
ing multiple faults in one step. Modern SAT solvers are robust
enough to efficiently find a test pattern for all selected faults or
to prove that no such test pattern exists. This approach suffers
from the need to efficiently find a subset of faults that can be
tested by a single test pattern. In practice, faults are added to
the targeted subset incrementally.

C. Optimization-Based MTTG

In the MTTG, a test pattern detecting all selected faults is
found. If such a test pattern does not exist, the test pattern

is not generated, and a new fault set must be selected.
Optimization-based MTTG (OTG) techniques [20] do not
prove the non-existence of such test pattern. Instead, they
compute a test pattern, which tests some subset of selected
faults. The optimization criterion is the number of detected
faults.

The algorithm presented in [20] works by constructing a
miter for all selected faults. D-chains are also generated for
each selected fault. The D-chains are not constrained to detect
all faults, but their activation is done by the solver. The number
of active D-chains, and thus detected faults, is maximized by
the optimization function.

D. Reducing Aliasing in ATPG

The main idea behind the reduction of fault aliasing in an
ATPG is constraining an SAT instance to not allow aliasing
for selected faults (ZATPG) [11].

In this approach, the faults that were aliased by the previous
(non-accepted) test pattern are selected for constraining (anti-
aliasing). Constraining is done in the miter. In addition to
generating a basic miter, as in Figure 1, the faults selected
for anti-aliasing are appended as additional faulty replicas,
similarly to the MTTG.

The aliasing happens in the temporal compactor, which is
a sequential circuit. Aliasing can be detected by reading the
internal compactor state only one clock cycle after the test
pattern is applied to the inputs. As is illustrated in Figure 2,
for the detection of aliasing during the SAT instance solving,
the unrolled temporal compactors, i.e., their combinational
parts, need to be appended to the outputs (POs) of each anti-
aliasing replica. Outputs of these unrolled compactors are then
constrained to differ from the fault-free compactor. The SAT
solver is then forced to find a test pattern that would not alias
these faults. The existence of such pattern is not guaranteed.

The requirement of zero aliasing for every test pattern is,
however, too strong; instead, a relaxed constraint is used. The
aliasing is allowed to occur, as long as the overall coverage is
increased, i.e., the number of newly detected faults is higher
than the number of aliased faults. If not, the aliased faults are
added to the miter and the process repeats.

In short, the algorithm for generating a test pattern for a
single fault is as follows. This procedure is performed for all
faults in the fault list. First, a classical miter with the fault-free
CUT (CUT0) and a selected fault f1 (CUT1) is used to find a
test pattern. Second, fault simulation is performed to identify
the aliased faults. Third, if the test pattern does not increase
the fault coverage, aliased faults (f2, . . . fn) are added to the
miter and a test pattern is generated again. The resulting miter
is illustrated in Figure 2.

If no test pattern can be found for the currently tested fault,
it is skipped and visited later – it is moved to the end of the
fault list. For more details on this basic ZATPG procedure,
see [11].

This approach leads to high test generation times and the
length of generated test is also not optimized. Further, the
static test compaction cannot be used, because the aliasing

BD
PO

PO'

PI

M
I
S
R

M
I
S
R

1

S1 S2

CUT1

CUT2

CUT0

PO"

CUTn
PO'n

Sn

M
I
S
R

f1

f2

fn

Previous compactor states

Figure 2: ZATPG: restricting fault aliasing

(and zero-aliasing property of the test) is dependent on the
exact test pattern sequence and its ordering. Therefore, dy-
namic test compaction must be used to reduce the number of
test patterns. This was our main motivation for the proposed
method described in the following section.

III. THE PROPOSED METHOD

In this section, we describe our approach to reduce both the
aliasing and the test length. For that, we use an optimizing
Pseudo-Boolean Optimization (PBO) solver in the ATPG
process. The resulting proposed algorithm will be referenced
as ZATPG-PBO.

A. Minimizing Fault Aliasing

In our approach, we build on our previous algorithm,
ZATPG [11]. When using hard constraints on aliasing, we can
get into a situation where no test pattern can be generated for
our selection of anti-aliased faults (see Section II-D).

To avoid such a situation, we use an optimization criterion
to minimize the number of aliased faults. Therefore, we let
the solver select (some) minimal subset of anti-aliased faults
to increase the probability that a test pattern for the currently
selected fault exists.

Adding all faults to the miter for anti-aliasing would be
too expensive – both in the miter construction and PBO
solving time. Thus, we only add faults that are likely to be
aliased. We detect such faults by simulation after a test pattern
is generated. If necessary, we construct a new miter with
appended faults and try to generate the test pattern again.

Example 1: Let us have a set of faults Fa = {f1, . . . fn}
that were aliased by a newly generated test pattern p1. The
pattern is simulated and if the overall coverage has decreased
because of aliasing, the pattern p1 is not accepted. The aliased
faults from Fa are added to the miter. A new test pattern p2
is generated. The PBO solver minimizes the number of faults
in Fa that are aliased by p2. The pattern p2 is simulated and
if the overall fault coverage increases, it is accepted.

PO

PO'

PI

M
I
S
R

S0

BDn

BD1

S1

CUT1

CUT0

CUTn
PO'n

Sn

M
I
S
R

f1

fn

Previous compactor states

M
I
S
R

Figure 3: Miter for multiple targeted and anti-aliased faults.

B. Test Compaction

Dynamic test compaction is used, because of the test’s strict
sequentiality – the aliasing depends on all test patterns and
their ordering. For this reason, static test compaction or any
other test post-processing cannot be used.

For this, we adapt recent OTG techniques [20]. With this
method, we do not test a single fault; instead, we select a
set of faults Ft to be tested. The faults are selected in the
order of increasing accidental detection index ADI [23], i.e.,
faults that are less likely to be detected by an arbitrary pattern
are selected first. Again, we use a PBO solver to select the
maximal subset F ′

t ⊂ Ft of faults that can be tested by a
single test pattern.

We combine this optimization criterion with the previous
one, the aliasing minimization. Our goal is to maximize the
overall fault coverage gained by the generated test pattern. The
optimization cost of one newly detected fault is the same as the
cost of one fault that was not aliased, i.e. we do not care if the
pattern detects fault ft1 while aliasing fault fa1 or if neither is
detected and aliased. This also leads to decreased complexity
of the constructed miter – the newly selected faults and anti-
aliased faults are uniform in the miter and PBO instance.

C. Miter and PBO Instance

The miter is constructed in a similar manner to the ZATPG
algorithm (Figure 2), with the difference being that the faulty
responses are not hard-constrained to be different from the
fault-free response. Instead, they are included in the optimiza-
tion criterion of the PBO instance. The optimization criterion
is to maximize the number of differing faulty responses. See
signals BD1 through BDn in Figure 3 and Equation 1.

n∑
i=1

BDi = max. (1)

The output of the solver is the test pattern with the maxi-
mum of selected faults detected (maximum of the BDi signals
set to the value 1). These are either newly targeted faults

or faults selected for anti-aliasing. Because the difference
outputs are not constrained, this test pattern will always exist,
possibly decreasing the fault coverage. The final change in
fault coverage is known only after fault simulation.

D. The Algorithm Overview

Algorithm 1 General overview of the algorithm.
1: procedure ATPG(C)
2: P ← ∅
3: F ← faults(C)
4: repeat
5: Ft ← select(F)
6: Fa ← ∅
7: repeat
8: p← genPattern(C,Ft ∪ Fa)
9: Fd, Fa ← simulate(C, p)

10: until |Fd| − |Fa| ≥Mi ∨ |Fa| ≤Ma

11: if |Fd| − |Fa| ≥Mi then
12: P ← append(P, p)
13: F ← update(F, Fd, Fa)
14: end if
15: until F = ∅ ∨ select(F) = ∅
16: return P
17: end procedure

A high-level view of the overall ZATPG-PBO algorithm is
shown in Algorithm 1.

The algorithm is parametrized by the following variables:
Mf default number of targeted faults
Mfm maximum of targeted faults
Mi acceptable improvement
Ma the maximum of anti-aliased faults
The flow of the algorithm is as follows:
1) Fault Generation: On the line 3, a fault list for the circuit

C is prepared. This fault list is precomputed and ordered by
the ADI [23]. We also use this step to remove redundant faults
from the fault-list.

2) Fault Selection: On line 5, a set Ft of targeted faults
is selected from F . On the first invocation or after a test
pattern was accepted, up to Mf first faults are selected. If
a satisfactory test pattern was not found, new faults for Ft are
selected (re-targeted [24]) and the first nMf

2 faults are skipped
for every (n) unsuccessful search.

3) Pattern Generation: On line 8, a test pattern p is
generated, as described in previous subsections. The first run
is done only for targeted faults Ft. Subsequent runs are done
also for aliased faults Fa. This step is repeated until (line 10) a
satisfactory pattern is generated or the number of aliased faults
grows over the maximum number of anti-aliased faults Ma.
Care must also be taken to detect that no satisfactory pattern
exists. We do this by detecting that Fa was not changed since
the last iteration.

4) Fault Simulation: On line 9, a fault simulation is done
for all faults and the fault coverage is analyzed; aliased Fa

and newly detected Fd faults are recorded. In addition to the

circuit under test, the compactor is also simulated. The internal
state of the compactor is kept for each fault by the algorithm.

5) Accepting Pattern: If the generated pattern is satisfactory
– increases the fault coverage by at least Mi (line 11) – it is
recorded (line 12). The internal state of the compactor is also
updated for each fault and fault-free circuit. The fault list F
is updated (line 13), detected faults are removed, and aliased
faults are added back. The fault list remains ordered by ADI.

6) Algorithm Termination: The algorithm terminates when
all faults are covered or if the fault list is exhausted (line 15).
In the case of fault list exhaustion, there are some faults left.
As the last attempt, the entire algorithm can be optionally
restarted with increased number of targeted faults Mf . This
restart keeps the already generated test set and the internal
state of the algorithm. This is however effective only if the
number of undetected faults is greater than Mf .

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this Section, the experimental results are presented.
Achieved fault coverage for small-sized MISR is evaluated
and compared to two ATPGs without anti-aliasing awareness,
the Atalanta [25] ATPG and our implementation the OTG
algorithm [24].

A. Experimental Setup

The ZATPG-PBO algorithm was implemented in the Go
programming language. The used PBO solver is the Minisat+
[26]. The OTG algorithm was likewise re-implemented in the
Go language, according to the algorithm described in [24].
Experiments were run on the circuits from ISCAS’85 [27],
ISCAS’89 [28], ITC99 [29], and EPFL [30] benchmarks. For
sequential circuits, their combinational profiles were extracted.
The used fault model is the single stuck-at fault.

An output response compactor was appended to the pri-
mary outputs of the circuits in the following way: first, an
irredundant spatial output response compactor was generated.
The compactor was appended to the primary outputs of the
CUT. The spatial compactor was constructed as a collection
of disjoint elementary-gates trees [2], [3]. Second, an LFSR-
based MISR with a primitive polynomial was used as the
temporal output response compactor. The number of outputs
of the spatial compactor was chosen to be equal to the size of
the used MISR.

The experiments were run on the national grid infrastruc-
ture, consisting of heterogenous computation nodes. As such,
computation times of the algorithm are only approximative.

From our pilot experiments, we have chosen the following
setup: The maximal allowed targeted test window is set to
Mfm = 100. Default targeted test window is set to the value
Mf = 50. The acceptable improvement is set to Mi = 40.
The allowed anti-aliasing window is set to Ma = 100.

B. Fault Coverage and Test Length

Fault coverage and test length for selected benchmark
circuits are presented in Table I. Results for MISR sizes from 4
to 7 bits are selected, as the ZATPG-PBO generated a complete

Table I: Fault Coverage and Test Length

MISR SIZE 4 5
algorithm ZATPG-PBO OTG Atalanta ZATPG-PBO OTG Atalanta
circuit PO faults [%] length [%] length [%] length [%] length [%] length [%] length
c499 32 990 83.33 14 95.35 52 96.16 53 92.42 30 97.07 52 98.18 53
c880 26 1754 99.89 23 94.93 19 93.04 59 100.00 22 97.32 18 97.09 56
c1355 32 2702 89.45 29 93.49 84 94.30 85 96.45 62 97.56 84 97.04 85
c1908 25 3805 90.17 41 93.43 110 92.88 120 96.08 66 96.19 108 96.85 120
c2670 140 4704 - 99.57 47 97.66 47 95.73 70
c7552 108 14253 - -
s832 24 1640 94.45 73 95.67 109 95.91 116 98.90 99 98.66 114 98.35 113
s1238 32 2310 92.81 60 94.72 123 94.46 128 95.67 69 97.45 125 96.84 130
b04 74 2553 - 99.80 40 97.06 38 95.93 67
b05 60 3671 - 99.16 47 97.03 48 96.49 84
b11 37 2227 97.80 51 94.57 54 94.79 73 99.55 50 96.32 50 97.75 68
b12 127 4615 94.19 60 95.47 97 93.24 149 99.37 89 97.55 98 97.68 150
cavlc 11 3052 96.76 125 93.64 162 94.00 136 98.10 124 97.38 157 96.43 136
dec 256 1840 54.24 14 96.30 256 95.65 256 49.62 12 98.04 256 97.93 256
i2c 142 5014 - 99.78 54 97.15 61 96.93 119
priority 8 2861 99.62 26 94.48 18 94.34 33 100.00 24 98.18 16 96.64 32

MISR SIZE 6 7
algorithm ZATPG-PBO OTG Atalanta ZATPG-PBO OTG Atalanta
circuit PO faults [%] length [%] length [%] length [%] length [%] length [%] length
c499 32 990 99.90 56 98.38 52 98.48 53 100.00 54 99.70 52 99.39 53
c880 26 1754 100.00 24 99.09 20 98.86 58 100.00 20 99.03 18 99.20 59
c1355 32 2702 100.00 88 98.41 84 98.67 85 100.00 86 98.93 85 99.48 85
c1908 25 3805 96.48 63 98.63 110 99.00 117 99.97 109 99.50 109 99.66 118
c2670 140 4704 100.00 56 98.94 48 96.19 70 99.74 41 99.36 45 97.53 71
c7552 108 14253 99.90 55 98.79 48 98.61 151 100.00 50 99.22 47 99.23 139
s832 24 1640 99.27 105 99.39 109 99.45 114 100.00 108 99.39 111 99.51 114
s1238 32 2310 96.75 70 99.22 123 98.92 127 99.78 113 99.26 128 98.92 130
b04 74 2553 99.96 42 98.94 39 98.90 66 100.00 39 99.29 39 99.29 67
b05 60 3671 100.00 53 99.18 51 98.72 84 100.00 49 98.86 48 99.54 83
b11 37 2227 99.91 57 98.83 53 98.25 69 99.96 50 99.55 53 98.92 67
b12 127 4615 99.85 88 98.44 91 97.83 145 100.00 92 99.68 96 99.46 145
cavlc 11 3052 99.15 135 98.92 156 97.97 136 99.64 142 99.57 156 98.69 136
dec 256 1840 68.21 62 99.24 256 99.24 256 78.75 126 99.46 256 99.08 256
i2c 142 5014 99.84 52 99.04 57 97.37 117 99.92 55 99.48 63 98.62 116
priority 8 2861 100.00 26 99.20 18 98.15 32 99.97 19 99.65 19 98.67 32

test in this range for most circuits. Missing values indicate
that the computation did not terminate within the time limit
or irredundant static compactor was not available.

The results are compared with Atalanta ATPG [25], which
uses static test compaction, and with the OTG [24], which
uses the same dynamic test compaction as the ZATPG-PBO.

Our algorithm produces tests of similar length as the OTG
while achieving higher fault coverage in most cases, especially
for bigger compactors. The OTG and Atalanta produce fault
coverage consistent with the theoretical probability of fault
masking in an LFSR (2−n).

For some circuits, the ZATPG-PBO performs poorly for
small compactor sizes. This can be explained by early termi-
nation in the case when no test pattern capable of improving
fault coverage is found for any remaining fault. Of note is
the circuit dec, where ZATPG-PBO performs very poorly; full
coverage is achieved for MISR of size 8 bits with a test length
of 258 patterns. Note that both OTG and Atalanta generated
exhaustive tests – 256 patterns for 8-bit PI.

C. Computation time

Table II shows computation times. The computation time
increases for smaller compactors, where the aliasing probabil-

Table II: Computation time

MISR 3 4 5 6 7 8 9
circuit [s] [s] [s] [s] [s] [s] [s]
c499 149694 4398 3713 1623 1497 747 564
c880 239315 75849 52237 74553 40264 18681 13332
c1355 74617 15462 19391 10894 4052 2427 1701
c1908 237705 98428 47796 19248 9143 5209 3776
c2670 - - 71337 31625 10699 5732 3787
c7552 - - - 89363 52530 57445 5712
s832 - 1567 1139 985 953 901 813
s1238 55594 31575 13013 5015 3089 2425 1736
b04 - - 304154 19479 12266 4369 2082
b05 - 208634 212417 84267 14621 7401 5516
b11 41364 34454 18744 12873 5656 2722 2778
b12 - 115641 38641 14748 8751 6479 3654
cavlc 8200 9863 5513 3443 2985 3459 3167
dec 647 1622 831 5222 8406 10342 7600
i2c - - 254353 10211 7395 2391 1823
max - - - - 271157 101279 70130
priority 5919 6299 496 191 186 186 -

ity is higher. This leads to bigger miters and PBO instances
and also to a higher number of PBO solver invocations.

For some circuits, there is a visible step in computation
time that coincides with runs where the number of anti-aliased
faults reached limit Ma = 100. This also indicates that fault
re-targeting is not as efficient as fault anti-aliasing.

V. CONCLUSIONS AND FUTURE WORK

The aim of this work was to propose a test generation
process minimizing aliasing in the temporal response com-
pactor, without the need to modify its structure. This is in
contrast to other approaches that aim at the compactor re-
design. As a result, satisfactory fault coverage can be achieved,
even for small compactors, without sacrificing the test length.
Therefore, the BIST area can be reduced “for free”; all the
effort is moved to the algorithmic level.

The presented method is a modified ATPG process based on
a Pseudo-Boolean Optimization problem, ZATPG-PBO. This
algorithm is an improvement upon our previous algorithm,
ZATPG [11].

The algorithm is evaluated in terms of fault coverage, test
length, and computation time. Our algorithm achieves better
fault coverage than ATPG without fault anti-aliasing. The test
length is comparable to a state-of-the-art ATPG with modern
dynamic test compaction.

The algorithm was tested with the LFSR temporal com-
pactor but can work with any compactor for which the
combinational logic can be extracted.

As a future work, we propose evaluating different tempo-
ral compactors, for example, cellular automata or non-linear
compactors. Additionally, the influence of all parameters and
their interaction is not completely understood.

ACKNOWLEDGMENT

The authors acknowledge the support of the OP VVV
MEYS funded project CZ.02.1.01/0.0/0.0/16 019/0000765
“Research Center for Informatics”. Computational resources
were supplied by the project “e-Infrastruktura CZ” (e-
INFRA CZ LM2018140) supported by the Ministry of Ed-
ucation, Youth and Sports of the Czech Republic. Compu-
tational resources were provided by the ELIXIR-CZ project
(LM2018131), part of the international ELIXIR infrastructure.

REFERENCES

[1] K. Chakrabarty, “Zero-aliasing space compaction using linear com-
pactors with bounded overhead,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 17, no. 5, pp. 452–457,
Aug. 2002.

[2] Y. Liu and A. Cui, “An efficient zero-aliasing space compactor based
on elementary gates combined with XOR gates,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design, Nov. 2013, pp. 95–100.

[3] B. Pouya and A. Touba, Nur, “Synthesis of zero-aliasing elementary-tree
space compactors,” in IEEE VLSI Test Symposium, 1998, pp. 70–77.

[4] H. Assaf, Mansour, B. Jone, Wen, M. Sahinoglu, R. Das, Sunil, A. Hos-
sain, S. Biswas, and M. Petriu, Emil, “On a new graph theory approach
to designing zero-aliasing space compressors for built-in self-testing,”
IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 10,
pp. 2146–2168, 2008.

[5] K. Pradhan, D., M. Reddy, Sudhakar, and K. Gupta, Sandeep, “Zero
aliasing compression,” in Fault-Tolerant Computing: 20th International
Symposium, June 1990, pp. 254–263.

[6] K. Pradhan, D. and K. Gupta, Sandeep, “A new framework for designing
and analyzing BIST techniques and zero aliasing compression,” IEEE
Transactions on Computers, vol. 40, no. 6, pp. 743–763, 1991.

[7] G. Edirisooriya, P. Robinson, John, and S. Edirisooriya, “On the
performance of augmented signature testing,” in IEEE International
Symposium on Circuits and Systems, May 1993, pp. 1607–1610.

[8] M. Kopec, “Can nonlinear compactors be better than linear ones?” IEEE
Transactions on Computers, vol. 44, no. 11, pp. 1275–1282, Nov. 1995.

[9] T. Bogue, M. Gossel, H. Jurgensen, and Y. Zorian, “Built-in self-test with
an alternating output,” in Proceedings Design, Automation and Test in
Europe, Feb. 1998, pp. 180–184.

[10] G. Edirisooriya and P. Robinson, John, “Test generation to minimize
error masking,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 12, no. 4, pp. 540–549, April 1993.

[11] R. Hülle, P. Fišer, and J. Schmidt, “ZATPG: SAT-based test patterns
generator with zero-aliasing in temporal compaction,” Microprocessors
and Microsystems, vol. 61, pp. 43 – 57, 2018.

[12] L. N. Reddy, I. Pomeranz, and S. M. Reddy, “ROTCO: a reverse order
test compaction technique,” in Proceedings Euro ASIC ’92, June 1992,
pp. 189–194.

[13] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Fast algorithms for static
compaction of sequential circuit test vectors,” in Proceedings. 15th IEEE
VLSI Test Symposium (Cat. No.97TB100125), April 1997, pp. 188–195.

[14] Xijiang Lin, J. Rajski, I. Pomeranz, and S. M. Reddy, “On static test
compaction and test pattern ordering for scan designs,” in Proceedings
International Test Conference 2001 (Cat. No.01CH37260), Nov 2001,
pp. 1088–1097.

[15] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “Compactest: a method
to generate compact test sets for combinational circuits,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 12, no. 7, pp. 1040–1049, July 1993.

[16] S. Remersaro, J. Rajski, S. M. Reddy, and I. Pomeranz, “A scalable
method for the generation of small test sets,” in 2009 Design, Automation
Test in Europe Conference Exhibition, April 2009, pp. 1136–1141.

[17] Jau-Shien Chang and Chen-Shang Lin, “Test set compaction for com-
binational circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 14, no. 11, pp. 1370–1378, Nov
1995.

[18] G. Tromp, “Minimal test sets for combinational circuits,” in IEEE
International Test Conference, Oct 1991, pp. 204–209.

[19] S. Eggersglüß, R. Krenz-Baath, A. Glowatz, F. Hapke, and R. Drechsler,
“A new SAT-based ATPG for generating highly compacted test sets,” in
15th IEEE Design and Diagnostics of Electronic Circuits and Systems,
April 2012, pp. 230–235.

[20] S. Eggersglüß, K. Schmitz, R. Krenz-Bååth, and R. Drechsler, “On
optimization-based ATPG and its application for highly compacted
test sets,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35, no. 12, pp. 2104–2117, 2016.

[21] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 11, no. 1, pp. 4–15, Jan. 1992.

[22] G. Tseitin, “On the complexity of derivation in propositional calculus,”
in Automation of Reasoning, ser. Symbolic Computation, J. Siekmann
and G. Wrightson, Eds. Springer Berlin Heidelberg, 1983, pp. 466–483.

[23] I. Pomeranz and M. Reddy, Sudhakar, “The accidental detection index
as a fault ordering heuristic for full-scan circuits,” in Design, Automation
and Test in Europe, 2002, pp. 1008–1013.

[24] S. Eggersglüß, K. Schmitz, R. Krenz-Baath, and R. Drechsler,
“Optimization-based multiple target test generation for highly compacted
test sets,” in 2014 19th IEEE European Test Symposium (ETS), May
2014, pp. 1–6.

[25] H. K. Lee and D. S. Ha, “On the generation of test patterns for
combinational circuits,” Dep’t of Electrical Eng., Virginia Polytechnic
Institute, Tech. Rep.

[26] N. Eén and N. Sörensson, “Translating pseudo-boolean constraints into
SAT,” Journal on Satisfiability, Boolean Modeling and Computation,
vol. 2, pp. 1–26, 11 2006.

[27] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational bench-
mark circuits and a target translator in Fortran,” in IEEE International
Symposium Circuits and Systems (ISCAS’85). IEEE Press, Piscataway,
N.J., 1985, pp. 677–692.

[28] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in IEEE International Symposium on
Circuits and Systems (ISCAS’89), May 1989, pp. 1929–1934 vol.3.

[29] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” in IEEE Design Test of Computers, Jul 2000,
pp. 44–53 vol.17.

[30] L. Amarù, P.-E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in International Workshop on Logic & Synthesis
(IWLS), 2015.

	Introduction
	Preliminaries
	SAT-ATPG
	Multiple-Target Test Generation
	Optimization-Based MTTG
	Reducing Aliasing in ATPG

	The Proposed Method
	Minimizing Fault Aliasing
	Test Compaction
	Miter and PBO Instance
	The Algorithm Overview
	Fault Generation
	Fault Selection
	Pattern Generation
	Fault Simulation
	Accepting Pattern
	Algorithm Termination

	Experimental Results and Discussion
	Experimental Setup
	Fault Coverage and Test Length
	Computation time

	Conclusions and Future Work
	References

