Radovan Červený

cervera3@fit.cvut.cz

presented:

Hitting paths in graphs

Radovan Cervený, Ondřej Suchý

https://doi.org/10.1142/S0218196704001700

5-PATH VERTEX COVER, 5-PVC INPUT: A graph G = (V, E), an integer $k \in \mathbb{Z}_0^+$. OUTPUT: A set $F \subseteq V$, such that $|F| \leq k$ and $G \setminus F$ is a P_5 -free graph.

Definition 1. A star is a graph S with vertices $V(S) = \{s\} \cup \{l_1, \ldots, l_k\}, |V(S)| \ge 4$ and edges $E(S) = \{\{s, l_i\} \mid i \in \{1, \ldots, k\}\}$. Vertex s is called a center, vertices $L = l_1, \ldots, l_k$ are called leaves.

Definition 2. A star with a triangle is a graph S^{\triangle} with vertices $V(S^{\triangle}) = \{s, t_1, t_2\} \cup \{l_1, \ldots, l_k\}, |V(S^{\triangle})| \ge 4$ and edges $E(S^{\triangle}) = \{\{s, t_1\}, \{s, t_2\}, \{t_1, t_2\}\} \cup \{\{s, l_i\} \mid i \in \{1, \ldots, k\}\}$. Vertex s is called a center, vertices $T = \{t_1, t_2\}$ are called triangle vertices and vertices $L = l_1, \ldots, l_k$ are called leaves.

Definition 3. A *di-star* is a graph *D* with vertices $V(D) = \{s, s'\} \cup \{l_1, \ldots, l_k\} \cup \{l'_1, \ldots, l'_m\}, |V(D)| \ge 4, k \ge 1, m \ge 1$ and edges $E(D) = \{\{s, s'\}\} \cup \{\{s, l_i\} \mid i \in \{1, \ldots, k\}\} \cup \{\{s', l'_j\} \mid j \in \{1, \ldots, m\}\}$. Vertices s, s' are called centers, vertices $L = \{l_1, \ldots, l_k\}$ and $L' = \{l'_1, \ldots, l'_m\}$ are called leaves.

Definition 4. A P_5 -free bipartition of graph G = (V, E) is a pair (V_1, V_2) such that $V = V_1 \cup V_2, V_1 \cap V_2 = \emptyset$ and $G[V_1], G[V_2]$ are P_5 -free.

5-PVC with P_5 -free Bipartition, 5-PVCwB	
INPUT:	A graph $G = (V, E)$ with P_5 -free bipartition (V_1, V_2) , an integer $k \in Z_0^+$.
OUTPUT:	A set $F \subseteq V_2$, such that $ F \leq k$ and $G \setminus F$ is a P_5 -free graph.

Lemma 1. If a connected graph is P_5 -free and has more than 5 vertices, then it is a star, a star with a triangle, or a di-star.

Lemma 2. Assume that the Rules (R0) - (R2) are not applicable. Then for each vertex $v \in V(G)$ there exists a P_5 in G that uses v; every P_5 in G uses exactly one red vertex; and there are only isolated vertices in $G[V_1]$.

Lemma 3. Assume that the Rules (R0) - (R3) are not applicable. Let v be a blue vertex to which at least two red vertices are connected and let C_v be a connected component of $G[V_2]$ which contains v. Then for each red vertex w connected to v we have that $N(w) \subseteq V(C_v)$.

Lemma 4. Let X be a subset of V_2 such that $N(X) \cap V_1 = \emptyset$ and $|N(X) \cap V_2| = 1$. If there exists a solution F such that $F \cap X \neq \emptyset$, then there exists a solution F' such that $F' \cap X = \emptyset$ and $|F'| \leq |F|$.

Lemma 5. Let x, y be blue vertices that are symmetric. Let F be a solution and $x \in F$. Then at least one of the following holds:

(1) $y \in F$

(2) $F' = (F \setminus \{x\}) \cup \{y\}$ is a solution

Lemma 6. Let C be a connected component of $G[V_2]$ and $X = V(C) \cap N(V_1)$. Let F be a solution that deletes at least |X| vertices in C. Then $F' = (F \setminus V(C)) \cup X$ is also a solution and $|F'| \leq |F|$.

Rule (R0). This rule stops the recursion of DISJOINT_R. It has three stopping conditions:

- 1. If k < 0, return no solution;
- 2. else if G is P_5 -free, return F;
- 3. else if k = 0, return no solution.

Rule (R1). Let $v \in V(G)$ be a vertex such that there is no P_5 in G that uses v. Then remove v from G. **Rule (R2).** Let P be a P_5 in G with $X = V(P) \cap V_2$ such that $|X| \leq 3$. Then branch on $\langle x_1 | x_2 | \ldots \rangle, x_i \in X$, i.e. branch on the blue vertices of P.

Rule (R3). Let v be an isolated vertex in $G[V_2]$ and let P = (v, w, x, y, z) be a P_5 where w is a red vertex. Then branch on $\langle x | y | z \rangle$.

Rule (R17). Let there be a di-star D and the two red vertices w, w' connected to D are connected to leaves l_1, l'_1 , respectively, and both centers have degree exactly two. Then branch on $\langle l_1 | l'_1 \rangle$.

Illustrative pseudocode of iterative compression

1:	procedure $ALGO(G = (V, E), k)$
2:	$V' \leftarrow \emptyset, F \leftarrow \emptyset$
3:	$\mathbf{while} V \setminus V' \neq \emptyset \mathbf{do}$
4:	with $v \in V \setminus V'$
5:	$V' \leftarrow V' \cup \{v\}, F \leftarrow F \cup \{v\}$
6:	$\mathbf{if} \ F = k + 1 \mathbf{ then}$
7:	$\hat{F} \leftarrow no \ solution$
8:	for $X \subsetneq F$ do
9:	$Y \leftarrow F \setminus X$
10:	if $G[Y]$ is P_5 -free then
11:	$G' \leftarrow G[V'] \setminus X$
12:	$F' \leftarrow \text{disjoint}(G', Y, V(G') \setminus Y, Y - 1)$
13:	if $F' \neq no$ solution then
14:	$F = X \cup F'$
15:	break
16:	end if
17:	end if
18:	end for
19:	if $F \neq no$ solution then
20:	$F \leftarrow F$
21:	else
22:	return no solution
23:	end if
24:	end if
25:	end while
26:	$\mathbf{return}\ F$
27:	end procedure

Illustrative pseudocode of the recursive procedure

- 1: **procedure** DISJOINT (G, V_1, V_2, k)
- 2: **return** DISJOINT_R $(G, V_1, V_2, \emptyset, k)$
- 3: end procedure

```
4: procedure DISJOINT_R(G, V_1, V_2, F, k)
         F_{result} \leftarrow no \ solution
 5:
         R \leftarrow the first rule that is applicable
 6:
        if R is (R0) then
 7:
             F_{result} \leftarrow either F or no solution based on which stopping condition
 8:
                           of (R0) was triggered
         else if R is a reduction rule then
 9:
             let G', V'_1, V'_2 be simplified by R and let X be the vertices that R
10:
             wants to add to F
             F_{result} \leftarrow \text{DISJOINT}_{\mathbb{R}}(G', V'_1, V'_2, F \cup X, k - |X|)
11:
        else
12:
             let the branches of R be \langle X_1 | X_2 | \dots | X_l \rangle
13:
             for i \leftarrow 1, \ldots, l do
14:
                  F_{candidate} \leftarrow \text{DISJOINT_R}(G \setminus X_i, V_1, V_2 \setminus X_i, F \cup X_i, k - |X_i|)
15:
                  if F_{candidate} \neq no \ solution \ and
16:
                     (F_{result} = no \ solution \ or \ |F_{candidate}| \le |F_{result}|) \ then
                      F_{result} \leftarrow F_{candidate}
17:
                  end if
18:
             end for
19:
         end if
20:
        return F_{result}
21:
22: end procedure
```