
Radovan Červený
cervera3@fit.cvut.cz

presented:

Hitting paths in graphs
Radovan Červený, Ondřej Suchý

https://doi.org/10.1142/S0218196704001700

5-Path Vertex Cover, 5-PVC

Input: A graph G = (V,E), an integer k ∈ Z+
0 .

Output: A set F ⊆ V , such that |F | ≤ k and G \ F is a P5-free graph.

Definition 1. A star is a graph S with vertices V (S) = {s} ∪ {l1, . . . , lk}, |V (S)| ≥ 4 and edges E(S) =
{{s, li} | i ∈ {1, . . . , k}}. Vertex s is called a center, vertices L = l1, . . . , lk are called leaves.

Definition 2. A star with a triangle is a graph S4 with vertices V (S4) = {s, t1, t2} ∪ {l1, . . . , lk}, |V (S4)| ≥ 4
and edges E(S4) = {{s, t1}, {s, t2}, {t1, t2}} ∪ {{s, li} | i ∈ {1, . . . , k}}. Vertex s is called a center, vertices
T = {t1, t2} are called triangle vertices and vertices L = l1, . . . , lk are called leaves.

Definition 3. A di-star is a graph D with vertices V (D) = {s, s′} ∪ {l1, . . . , lk} ∪ {l′1, . . . , l′m}, |V (D)| ≥ 4,
k ≥ 1,m ≥ 1 and edges E(D) = {{s, s′}} ∪ {{s, li} | i ∈ {1, . . . , k}} ∪ {{s′, l′j} | j ∈ {1, . . . ,m}}. Vertices s, s′

are called centers, vertices L = {l1, . . . , lk} and L′ = {l′1, . . . , l′m} are called leaves.

Definition 4. A P5-free bipartition of graph G = (V,E) is a pair (V1, V2) such that V = V1 ∪ V2, V1 ∩ V2 = ∅
and G[V1], G[V2] are P5-free.

5-PVC with P5-free Bipartition, 5-PVCwB

Input: A graph G = (V,E) with P5-free bipartition (V1, V2), an integer k ∈ Z+
0 .

Output: A set F ⊆ V2, such that |F | ≤ k and G \ F is a P5-free graph.

Lemma 1. If a connected graph is P5-free and has more than 5 vertices, then it is a star, a star with a triangle,
or a di-star.

Lemma 2. Assume that the Rules (R0) – (R2) are not applicable. Then for each vertex v ∈ V (G) there exists
a P5 in G that uses v; every P5 in G uses exactly one red vertex; and there are only isolated vertices in G[V1].

Lemma 3. Assume that the Rules (R0) – (R3) are not applicable. Let v be a blue vertex to which at least two
red vertices are connected and let Cv be a connected component of G[V2] which contains v. Then for each red
vertex w connected to v we have that N(w) ⊆ V (Cv).

Lemma 4. Let X be a subset of V2 such that N(X)∩ V1 = ∅ and |N(X)∩ V2| = 1. If there exists a solution F
such that F ∩X 6= ∅, then there exists a solution F ′ such that F ′ ∩X = ∅ and |F ′| ≤ |F |.

Lemma 5. Let x, y be blue vertices that are symmetric. Let F be a solution and x ∈ F . Then at least one of
the following holds:

(1) y ∈ F

(2) F ′ = (F \ {x}) ∪ {y} is a solution

Lemma 6. Let C be a connected component of G[V2] and X = V (C)∩N(V1). Let F be a solution that deletes
at least |X| vertices in C. Then F ′ = (F \ V (C)) ∪X is also a solution and |F ′| ≤ |F |.

Rule (R0). This rule stops the recursion of disjoint r. It has three stopping conditions:

1. If k < 0, return no solution;

2. else if G is P5-free, return F ;

3. else if k = 0, return no solution.

Rule (R1). Let v ∈ V (G) be a vertex such that there is no P5 in G that uses v. Then remove v from G.
Rule (R2). Let P be a P5 in G with X = V (P)∩V2 such that |X| ≤ 3. Then branch on 〈x1 | x2 | . . . 〉, xi ∈ X,
i.e. branch on the blue vertices of P .
Rule (R3). Let v be an isolated vertex in G[V2] and let P = (v, w, x, y, z) be a P5 where w is a red vertex.
Then branch on 〈x | y | z 〉.
Rule (R17). Let there be a di-star D and the two red vertices w,w′ connected to D are connected to leaves
l1, l

′
1, respectively, and both centers have degree exactly two. Then branch on 〈 l1 | l′1 〉.

mailto:cervera3@fit.cvut.cz
https://doi.org/10.1142/S0218196704001700

Illustrative pseudocode of iterative compression

1: procedure algo(G = (V,E), k)
2: V ′ ← ∅, F ← ∅
3: while V \ V ′ 6= ∅ do
4: with v ∈ V \ V ′

5: V ′ ← V ′ ∪ {v}, F ← F ∪ {v}
6: if |F | = k + 1 then
7: F̂ ← no solution
8: for X (F do
9: Y ← F \X

10: if G[Y] is P5-free then
11: G′ ← G[V ′] \X
12: F ′ ← disjoint(G′, Y, V (G′) \ Y, |Y | − 1)
13: if F ′ 6= no solution then
14: F̂ = X ∪ F ′

15: break
16: end if
17: end if
18: end for
19: if F̂ 6= no solution then
20: F ← F̂
21: else
22: return no solution
23: end if
24: end if
25: end while
26: return F
27: end procedure

Illustrative pseudocode of the recursive procedure

1: procedure disjoint(G,V1, V2, k)
2: return disjoint r(G,V1, V2, ∅, k)
3: end procedure

4: procedure disjoint r(G,V1, V2, F, k)
5: Fresult ← no solution
6: R← the first rule that is applicable
7: if R is (R0) then
8: Fresult ← either F or no solution based on which stopping condition

of (R0) was triggered
9: else if R is a reduction rule then

10: let G′, V ′
1 , V

′
2 be simplified by R and let X be the vertices that R

wants to add to F
11: Fresult ← disjoint r(G′, V ′

1 , V
′
2 , F ∪X, k − |X|)

12: else
13: let the branches of R be 〈X1 | X2 | . . . | Xl 〉
14: for i← 1, . . . , l do
15: Fcandidate ← disjoint r(G \Xi, V1, V2 \Xi, F ∪Xi, k − |Xi|)
16: if Fcandidate 6= no solution and

(Fresult = no solution or |Fcandidate| ≤ |Fresult|) then
17: Fresult ← Fcandidate

18: end if
19: end for
20: end if
21: return Fresult

22: end procedure

2

