Radovan Červený
 \author{ cervera3@fit.cvut.cz

}
presented:

Hitting paths in graphs

Radovan Cervený, Ondřej Suchý
https://doi.org/10.1142/S0218196704001700

5-Path Vertex CoVEr, 5 -PVC	
Input:	A graph $G=(V, E)$, an integer $k \in Z_{0}^{+}$
Output:	A set $F \subseteq V$, such that $\|F\| \leq k$ and $G \backslash F$ is a P_{5}-free graph.

Definition 1. A star is a graph S with vertices $V(S)=\{s\} \cup\left\{l_{1}, \ldots, l_{k}\right\},|V(S)| \geq 4$ and edges $E(S)=$ $\left\{\left\{s, l_{i}\right\} \mid i \in\{1, \ldots, k\}\right\}$. Vertex s is called a center, vertices $L=l_{1}, \ldots, l_{k}$ are called leaves.

Definition 2. A star with a triangle is a graph S^{\triangle} with vertices $V\left(S^{\triangle}\right)=\left\{s, t_{1}, t_{2}\right\} \cup\left\{l_{1}, \ldots, l_{k}\right\},\left|V\left(S^{\triangle}\right)\right| \geq 4$ and edges $E\left(S^{\triangle}\right)=\left\{\left\{s, t_{1}\right\},\left\{s, t_{2}\right\},\left\{t_{1}, t_{2}\right\}\right\} \cup\left\{\left\{s, l_{i}\right\} \mid i \in\{1, \ldots, k\}\right\}$. Vertex s is called a center, vertices $T=\left\{t_{1}, t_{2}\right\}$ are called triangle vertices and vertices $L=l_{1}, \ldots, l_{k}$ are called leaves.

Definition 3. A di-star is a graph D with vertices $V(D)=\left\{s, s^{\prime}\right\} \cup\left\{l_{1}, \ldots, l_{k}\right\} \cup\left\{l_{1}^{\prime}, \ldots, l_{m}^{\prime}\right\},|V(D)| \geq 4$, $k \geq 1, m \geq 1$ and edges $E(D)=\left\{\left\{s, s^{\prime}\right\}\right\} \cup\left\{\left\{s, l_{i}\right\} \mid i \in\{1, \ldots, k\}\right\} \cup\left\{\left\{s^{\prime}, l_{j}^{\prime}\right\} \mid j \in\{1, \ldots, m\}\right\}$. Vertices s, s^{\prime} are called centers, vertices $L=\left\{l_{1}, \ldots, l_{k}\right\}$ and $L^{\prime}=\left\{l_{1}^{\prime}, \ldots, l_{m}^{\prime}\right\}$ are called leaves.

Definition 4. A P_{5}-free bipartition of graph $G=(V, E)$ is a pair $\left(V_{1}, V_{2}\right)$ such that $V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset$ and $G\left[V_{1}\right], G\left[V_{2}\right]$ are P_{5}-free.

```
5-PVC with P}\mp@subsup{P}{5}{}\mathrm{ -Free Bipartition, 5-PVCwB
InPUT: 
Output: A set F\subseteq\mp@subsup{V}{2}{}\mathrm{ , such that }|F|\leqk\mathrm{ and }G\backslashF\mathrm{ is a }\mp@subsup{P}{5}{}\mathrm{ -free graph.}
```

Lemma 1. If a connected graph is P_{5}-free and has more than 5 vertices, then it is a star, a star with a triangle, or a di-star.

Lemma 2. Assume that the Rules (R0) - (R2) are not applicable. Then for each vertex $v \in V(G)$ there exists a P_{5} in G that uses v; every P_{5} in G uses exactly one red vertex; and there are only isolated vertices in $G\left[V_{1}\right]$.

Lemma 3. Assume that the Rules (R0) - (R3) are not applicable. Let v be a blue vertex to which at least two red vertices are connected and let C_{v} be a connected component of $G\left[V_{2}\right]$ which contains v. Then for each red vertex w connected to v we have that $N(w) \subseteq V\left(C_{v}\right)$.

Lemma 4. Let X be a subset of V_{2} such that $N(X) \cap V_{1}=\emptyset$ and $\left|N(X) \cap V_{2}\right|=1$. If there exists a solution F such that $F \cap X \neq \emptyset$, then there exists a solution F^{\prime} such that $F^{\prime} \cap X=\emptyset$ and $\left|F^{\prime}\right| \leq|F|$.

Lemma 5. Let x, y be blue vertices that are symmetric. Let F be a solution and $x \in F$. Then at least one of the following holds:
(1) $y \in F$
(2) $F^{\prime}=(F \backslash\{x\}) \cup\{y\}$ is a solution

Lemma 6. Let C be a connected component of $G\left[V_{2}\right]$ and $X=V(C) \cap N\left(V_{1}\right)$. Let F be a solution that deletes at least $|X|$ vertices in C. Then $F^{\prime}=(F \backslash V(C)) \cup X$ is also a solution and $\left|F^{\prime}\right| \leq|F|$.

Rule (R0). This rule stops the recursion of DISJOINT_R. It has three stopping conditions:

1. If $k<0$, return no solution;
2. else if G is P_{5}-free, return F;

3 . else if $k=0$, return no solution.
Rule (R1). Let $v \in V(G)$ be a vertex such that there is no P_{5} in G that uses v. Then remove v from G.
Rule (R2). Let P be a P_{5} in G with $X=V(P) \cap V_{2}$ such that $|X| \leq 3$. Then branch on $\left\langle x_{1}\right| x_{2}|\ldots\rangle, x_{i} \in X$, i.e. branch on the blue vertices of P.

Rule (R3). Let v be an isolated vertex in $G\left[V_{2}\right]$ and let $P=(v, w, x, y, z)$ be a P_{5} where w is a red vertex. Then branch on $\langle x| y|z\rangle$.
Rule (R17). Let there be a di-star D and the two red vertices w, w^{\prime} connected to D are connected to leaves l_{1}, l_{1}^{\prime}, respectively, and both centers have degree exactly two. Then branch on $\left\langle l_{1} \mid l_{1}^{\prime}\right\rangle$.

```
Illustrative pseudocode of iterative compression
    procedure \(\operatorname{ALGO}(G=(V, E), k)\)
    \(V^{\prime} \leftarrow \emptyset, F \leftarrow \emptyset\)
    while \(V \backslash V^{\prime} \neq \emptyset\) do
        with \(v \in V \backslash V^{\prime}\)
        \(V^{\prime} \leftarrow V^{\prime} \cup\{v\}, F \leftarrow F \cup\{v\}\)
        if \(|F|=k+1\) then
            \(\hat{F} \leftarrow\) no solution
            for \(X \subset F\) do
                \(Y \leftarrow F \backslash X\)
                if \(G[Y]\) is \(P_{5}\)-free then
                    \(G^{\prime} \leftarrow G\left[V^{\prime}\right] \backslash X\)
                \(F^{\prime} \leftarrow \operatorname{DISJOINT}\left(G^{\prime}, Y, V\left(G^{\prime}\right) \backslash Y,|Y|-1\right)\)
                if \(F^{\prime} \neq\) no solution then
                    \(\hat{F}=X \cup F^{\prime}\)
                        break
                    end if
                    end if
        end for
        if \(\hat{F} \neq\) no solution then
            \(F \leftarrow \hat{F}\)
        else
            return no solution
        end if
        end if
    end while
        return \(F\)
    end procedure
    ustrative pseudocode of the recursive procedure
    procedure DisJoint \(\left(G, V_{1}, V_{2}, k\right)\)
        return DISJOINT_R \(\left(G, V_{1}, V_{2}, \emptyset, k\right)\)
    end procedure
    procedure DISJOINT_R \(\left(G, V_{1}, V_{2}, F, k\right)\)
        \(F_{\text {result }} \leftarrow\) no solution
        \(R \leftarrow\) the first rule that is applicable
        if \(R\) is (R0) then
            \(F_{\text {result }} \leftarrow\) either \(F\) or no solution based on which stopping condition
                        of (R0) was triggered
        else if \(R\) is a reduction rule then
            let \(G^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}\) be simplified by \(R\) and let \(X\) be the vertices that \(R\)
            wants to add to \(F\)
            \(F_{\text {result }} \leftarrow\) DISJOINT_R \(\left(G^{\prime}, V_{1}^{\prime}, V_{2}^{\prime}, F \cup X, k-|X|\right)\)
        else
            let the branches of \(R\) be \(\left.\left\langle X_{1}\right| X_{2}|\ldots| X_{l}\right\rangle\)
            for \(i \leftarrow 1, \ldots, l\) do
                \(F_{\text {candidate }} \leftarrow\) DISJOINT_R \(\left(G \backslash X_{i}, V_{1}, V_{2} \backslash X_{i}, F \cup X_{i}, k-\left|X_{i}\right|\right)\)
                if \(F_{\text {candidate }} \neq\) no solution and
                    \(\left(F_{\text {result }}=\right.\) no solution or \(\left.\left|F_{\text {candidate }}\right| \leq\left|F_{\text {result }}\right|\right)\) then
                        \(F_{\text {result }} \leftarrow F_{\text {candidate }}\)
            end if
            end for
        end if
        return \(F_{\text {result }}\)
    end procedure
```

