Jiří Kubišta

kubisjir@fit.cvut.cz
presented:

Graph editing to a fixed target

Petr A. Golovach, Daniël Paulusma, Iain Stewart

https://www.sciencedirect.com/science/article/pii/S0166218X14003096

Definitions

- Edge contraction is removal of edge e = (u, v) and identification of vertices u, v.
- Vertex dissolution is the removal of a vertex v with exactly two neighbors u and w, which may not be adjacent to each other, followed by the inclusion of the edge uw.
- Relation is induced if edge deletions are excluded from the permitted graph operations.
- A graph H is called a topological minor of a graph G if a subdivision of H is isomorphic to a subgraph of G.

Problems

H-MINOR EDIT PROBLEM

Input: Graph G and an integer k

Decide: Can G be modified into H by at most k operations? Operations: Edge contraction, edge deletion, vertex deletion

H-Topological Minor Edit Problem Input: Graph G and an integer k

Decide: Can G be modified into H by at most k operations? Operations: Vertex disolution, edge deletion, vertex deletion

Theorems

Figure 1: The smallest graph H^* for which H-INDUCED MINOR is NP-complete

Lemma 1. H-MINOR can be solved in cubic time for all graphs H.

Lemma 2. H^* -INDUCED MINOR is NP-complete.

Lemma 3. K_5 -INDUCED TOPOLOGICAL MINOR is NP-complete.

Lemma 4. If (G, k) is a yes-instance of H-Minor Edit of H-Topological Minor Edit, for some graph H, then $|VH| \leq |VG| \leq |VH| + k$.

Lemma 5. Let H be a graph. Then the following two statements hold:

- 1. H-Induced Minor $\leq H$ -Minor Edit.
- 2. H-Induced Topological Minor $\leq H$ -Topological Minor Edit.

Lemma 6. Let H be a graph and k an integer. If a graph G has an H-minor sequence of length k, then G has a nice H-minor sequence of length at most k.

Lemma 7. Let H be a graph and k an integer. If a graph G has an H-topological minor sequence of length k, then G has a *seminice* H-topological minor sequence S of length at most k, such that the vertices not deleted by the vertex deletions of S induce a subgraph that contains a subdivision of H as a spanning subgraph.

Lemma 8. Let \mathcal{G} be any nontrivial minor-closed graph class. Then, for all graphs H, the H-INDUCED MINOR problem can be solved in linear time on \mathcal{G} .

Lemma 9. For all graphs H, the H-INDUCED MINOR problem can be solved in polynomial time on AT-free graphs.

Lemma 10. For all graphs H, the H-INDUCED MINOR problem can be solved in polynomial time on chordal graphs

Lemma 11. Let \mathcal{G} be a graph class and H a graph. If H'-INDUCED MINOR is polynomial-time solvable on \mathcal{G} for each spanning supergraph H' of H, then H-MINOR EDIT is polynomial-time solvable on \mathcal{G} .

Theorem 1. The following two statements hold:

- 1. There is a graph H for which H-MINOR EDIT is NP-complete.
- 2. There is a graph H for which H-TOPOLOGICAL MINOR EDIT is NP-complete.

Theorem 2. The following two statements hold:

- 1. K_r -MINOR EDIT can be solved in cubic time for all $r \geq 1$.
- 2. K_r -Topological Minor Edit can be solved in polynomial time, if $r \leq 3$, and is NP-complete, if $r \geq 5$.

Theorem 3. P_r -MINOR EDIT and $K_{1,r}$ -MINOR EDIT can both be solved in polynomial time for all $r \geq 1$.

Theorem 4. Let H be a subdivided star. Then H-TOPOLOGICAL MINOR EDIT is polynomial-time solvable.

Theorem 5. C_r -Topological Minor Edit can be solved in polynomial time for all $r \geq 3$.

Theorem 6. For all graphs H, the H-MINOR EDIT problem is polynomial-time solvable on

- 1. the class of AT-free graphs,
- 2. the class of chordal graphs,
- 3. any nontrivial minor-closed class of graphs.