Matyáš Křišťan

kristja6@fit.cvut.cz
presented:

Relationship between supserstring and compression measures: New insights on the greedy conjecture

Bastien Cazaux, Eric Rivals

https://www.sciencedirect.com/science/article/pii/S0166218X1730183X

Definitions

- $\|P\|=\left|w_{1}\right|+\left|w_{2}\right|+\cdots+\left|w_{p}\right|$, where $P=\left\{w_{1}, w_{2}, \ldots, w_{p}\right\}$ is a set of words.
- $S_{A}(P)$ is the output of algorithm A with input P.
- $S_{\text {opt }}(P)$ is the shortest possible superstring given input P.
- super (A) is the approximation ratio of algorithm A. It is the smallest real value such that for any input P, the following holds:
$1 \leq \frac{\left|S_{A}(P)\right|}{\left|S_{\text {opt }}(P)\right|} \leq \operatorname{super}(A)$.
- $\operatorname{comp}(A)$ is the compression ratio of algorithm A. It is the largest real value, such that for any input P satistying $\|P\| \neq\left|S_{\text {opt }}(P)\right|$, the following holds:

$$
0 \leq \operatorname{comp}(A) \leq \frac{\|P\|-\left|S_{A}(P)\right|}{\|P\|-\left|S_{\text {opt }}(P)\right|}
$$

Problems

- Shortest Superstring Problem (SSP)
- INPUT: A set of p words $P=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}$ over a finite alphabet Σ.
- OUTPUT: The shortest string t containing each s_{i} for $1 \leq i \leq p$ as a substring.
- r-Shortest Superstring Problem (r-SSP)
- INPUT: A set of p words $P=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}$ over a finite alphabet Σ, where $\left|s_{i}\right|=r$ for every $1 \leq i \leq p$.
- OUTPUT: The shortest string t containing each s_{i} for $1 \leq i \leq p$ as a substring.

Theorems

- Theorem 1: Let P be a set of words satisfying $\left|S_{o p t}(P)\right| \neq\|P\|$. Let γ be a real such that $0<\gamma \leq \frac{\left|S_{\text {opt }}(P)\right|}{\|P\|}$, and let A be an approximation algorithm for SSP. We have: $\operatorname{super}(A) \leq \frac{(\gamma-1) \operatorname{comp}(A)+1}{\gamma}$.
- Proposition 1: Let $P \subseteq \Sigma^{r}$ and $p=|P|$. Let t be a superstring of P. Then $|t| \geq r+p-1$.
- Theorem 2: Let r be an integer such that $r>1$ and let P be a subset of Σ^{r}. For any approximation algorithm A, we have: $\frac{\left|S_{A}(P)\right|}{\left|S_{\text {opt }}(P)\right|} \leq r-(r-1) \operatorname{comp}(A)$.
- Proposition 2: GREEDY approximates r-SSP with a ratio of at least $2-\frac{1}{r}$.
- Theorem 3: The superstring approximation ratio of GREEDY for r-SSP is bounded by:
$2-\frac{1}{r} \leq \operatorname{super}(G R E E D Y) \leq \min \left(\frac{r+1}{2}, \frac{7}{2}\right)$.

