Radovan Červený

cervera3@fit.cvut.cz

Unavoidable sets of constant length
Jean-Marc Champarnaud, Georges Hansel, Dominique Perrin
https://doi.org/10.1142/S0218196704001700

Definitions

- A is an alphabet; A^{*} is a set of all words on A; for $w \in A^{*}$: word length $|w|$; prefix p if $w=$ pu; proper prefix p if $p \neq w$; suffix and proper suffix defined symmetrically; factor x if $w=p x q$.
- sequence $w=\left(a_{n}\right)_{n \in Z}$ is a two-sided infinite word on $A ; x$ is a factor of w if we have an index n such that $x=a_{n} a_{n+1} \ldots a_{n+|x|-1}$; two-sided infinite word is periodic if it is a repetition of some finite word u.
- < ordering on A^{*} is an alphabetic ordering.
- two words x, y are conjugate if there exist words u, v such that $x=u v$ and $y=v u$; conjugacy is an equivalence on A^{*}.
- a word is primitive if it is not of the form r^{n} for $r \in A^{*}$ and $n>1$.
- a word is minimal if it is the least one in its conjugacy class.
- a word is a Lyndon word if it is both primitive and minimal
- M is a set of minimal words, P is a set of prefixes of minimal words, L is a set of Lyndon words.
- a word w is said to be a sesquipower of word x if it is of the form $w=x^{n} p, n>0$ and p is a proper prefix of x.
- a division of word $w \in P$ is a pair $\left(l^{n}, u\right)$ such that $w=l^{n} u$ where $l \in L, n>0$ and $u \in A^{*},|u|<|l|$.
- the main division of word $w \in P$ is a division $\left(l^{n}, u\right)$ where l is the shortest Lyndon word that allows such division, the word l^{n} is the principal part of w, denoted by $p(w)$, and u is the rest, denoted by $r(w)$.
- a set $I \subset A^{*}$ is unavoidable if every two-sided infinite word admits at least one factor in I.

The Lemmas, the Theorem and the Consequence

Lemma 1: The following are equivalent for any non-empty word w :

1. w is a Lyndon word.
2. for any non-empty u, v such that $w=u v$, we have $w<v u$.
3. for any non-empty proper suffix s of w, we have $w<s$.

Lemma 2: A word w is minimal if and only if it is a power of a Lyndon word. This Lyndon word is uniquely determined.
Lemma 3: Let w be a prefix of a minimal word. Then any prefix of w is less than or equal to the suffix of the same length of w.

Lemma 4: The following are equivalent for any word w :

1. w is a non-empty prefix of a minimal word.
2. w is a sesquipower of a Lyndon word.

Lemma 5: The cardinality of I_{k} is at least the number of conjugacy classes of words of length k.
Lemma 6: The following are equivalent for any finite $I \subset A^{*}$ set of words:

1. I is unavoidable.
2. every two-sided infinite periodic word admits at least one factor in I.

Lemma 7: Let λ, l be Lyndon words, with λ prefix of l. Let s be a proper suffix of l, with $|s|<|\lambda|$. Then for all $n>0$, the word $w=\lambda^{n} s$ is a Lyndon word.

Lemma 8: Let w be a prefix of a minimal word and let $\left(\lambda^{n}, u\right)$ be its main division. Let u^{\prime} be a word, with $\left|u^{\prime}\right|=|u|$, such that $w^{\prime}=\lambda^{n} u^{\prime}$ is also a prefix of a minimal word. Then the main division of w^{\prime} is (λ^{n}, u^{\prime}).

Lemma 9: Let l be a Lyndon word. Let $n>0$ be the smallest integer such that $\left|l^{n}\right|>k$. Then the word l^{n+1} has a factor in I_{k}.

Theorem: The set $I_{k}=\left\{r(m) p(m) \mid m \in M_{k}\right\}$ is unavoidable.
Consequence: The cardinality of I_{k} is equal to the number of conjugacy classes of words of length k.

