Jan Matyáš Křišťan

kristja6@fit.cvut.cz

presented:

Minimal dominating sets in interval graphs and trees

Petr A. Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Dieter Kratsch, Yngve

Villanger

http://www.sciencedirect.com/science/article/pii/S0166218X16300373

Definitions

- Let $S \subseteq V$ and $v \in S$. We say the x is the **private neighbor** of v with respect to S, if no other vertex in S has x as its neighbor and x itself is not in S.
- $D \subseteq V$ is a **dominating set** if every vertex in G is either in D or is a neighbor of some vertex of D. We say that a vertex in D is dominating its neighbors.
- A dominating set *D* is **minimal**, if we can't remove any vertex from it without it ceasing to be a dominating set.
- A graph G = (V, E) is an **interval graph**, if and only if there is a collection l of intervals of the real line and a bijection between V and l such that to each vertex $v \in V$ corresponds an interval $I_v = [l(v), r(v)] \in l$ and two vertices u and w are adjacent in G if and only if $I_u \cap I_w \neq \emptyset$.
- l(v) is the left coordinate of the interval belonging to $v \in V$.
- r(v) is the right coordinate of the interval belonging to $v \in V$.

•
$$O^*(f(n)) = O(f(n) \cdot n^{O(1)})$$

- $\mu(G)$ is the number of minimal dominating sets in an interval graph G.
- $\mu(n)$ is $\max\{\mu(G) : |V(G)| = n\}$
- A vertex set $S \subseteq V$ is an **irredundant set** of G if every vertex of S has a private neighbor with respect to S.
- An irredundant set $U = \{u_1, u_2, \dots, u_k\}$ in an interval graph is **good** if every vertex w satisfying $r(w) < l(u_i)$ has a neighbor in U.

Theorems

Whenever we mention a set of vertices indexed with consecutive integers, like $U = \{u_1, u_2, \ldots, u_k\}$, it should be understood that $l(u_i) < l(u_{i+1})$ for $1 \le i \le k-1$.

Theorem 1. Let G be an interval graph, and let $D = \{u_1, u_2, \ldots, u_k\}$ be a set of vertices in G. Then D is a minimal dominating set of G if and only if the following conditions hold:

- 1. $l(u_1) < r(v)$ for every vertex v of G.
- 2. $l(v) < r(u_k)$ for every vertex v of G.

3. for every $i \in [1, k-1]$: if $l(v) < r(u_i)$ for every vertex v of G, then i = k, otherwise $l(w) < r(u_{i+1})$, where w is the vertex with the smallest l(w) such that $l(w) > r(u_i)$.

4. for every $i \in [1, k-1]$: $r(y) < l(u_{i+1}) < r(z)$, where y is the private neighbor of u_i with the smallest r(y), and z is the vertex with the smallest r(z) such that $l(z) > r(u_i)$

Corollary 1. Let $D = \{u_1, u_2, \dots, u_k\}$ be a minimal dominating set of an interval graph. Then $\{u_1, \dots, u_i\}$ is a good irredundant set for every $1 \le i \le k$.

Lemma 1. Let $U = \{u_1, \ldots, u_i\}$ be a good irredundant set of an interval graph, and let W be the set of vertices w satisfying r(y) < l(w) < r(z), where y is the private neighbor of u_i with the smallest r(y), and z is the vertex with the smallest r(z) such that $l(z) > r(u_i)$. Then every good irredundant set that contains U contains at most one vertex of W.

Lemma 2. Let v be the vertex with the smallest r(v) in an interval graph, and let X be the set of vertices x satisfying l(x) < r(v). Then there is no good irredundant set that contains more than one vertex of X.

Theorem 2. There is a branching algorithm to enumerate all minimal dominating sets of an interval graph in time $O^*(3^{n/3})$.

Theorem 3. The maximum number of minimal dominating sets in an interval graph on n vertices is $3^{n/3}$.

Theorem 4. There is a branching algorithm to enumerate all minimal dominating sets of a tree in time $O^*(3^{n/3})$.

Theorem 5. The maximum number of minimal dominating sets in a forest on n vertices is at most $3^{n/3}$.