Jan Matyáš Křištéan

kristja6@fit.cvut.cz
presented:

Minimal dominating sets in interval graphs and trees

Petr A. Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Dieter Kratsch, Yngve Villanger
http://www.sciencedirect.com/science/article/pii/S0166218X16300373

Definitions

- Let $S \subseteq V$ and $v \in S$. We say the x is the private neighbor of v with respect to S, if no other vertex in S has x as its neighbor and x itself is not in S.
- $D \subseteq V$ is a dominating set if every vertex in G is either in D or is a neighbor of some vertex of D. We say that a vertex in D is dominating its neighbors.
- A dominating set D is minimal, if we can't remove any vertex from it without it ceasing to be a dominating set.
- A graph $G=(V, E)$ is an interval graph, if and only if there is a collection l of intervals of the real line and a bijection between V and l such that to each vertex $v \in V$ corresponds an interval $I_{v}=[l(v), r(v)] \in l$ and two vertices u and w are adjacent in G if and only if $I_{u} \cap I_{w} \neq \emptyset$.
- $l(v)$ is the left coordinate of the interval belonging to $v \in V$.
- $r(v)$ is the right coordinate of the interval belonging to $v \in V$.
- $O^{*}(f(n))=O\left(f(n) \cdot n^{O(1)}\right)$
- $\mu(G)$ is the number of minimal dominating sets in an interval graph G.
- $\mu(n)$ is $\max \{\mu(G):|V(G)|=n\}$
- A vertex set $S \subseteq V$ is an irredundant set of G if every vertex of S has a private neighbor with respect to S.
- An irredundant set $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ in an interval graph is good if every vertex w satisfying $r(w)<$ $l\left(u_{i}\right)$ has a neigbor in U.

Theorems

Whenever we mention a set of vertcies indexed with consecutive integers, like $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$, it should be understood that $l\left(u_{i}\right)<l\left(u_{i+1}\right)$ for $1 \leq i \leq k-1$.

Theorem 1. Let G be an interval graph, and let $D=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be a set of vertices in G. Then D is a minimal dominating set of G if and only if the following conditions hold:

1. $l\left(u_{1}\right)<r(v)$ for every vertex v of G.
2. $l(v)<r\left(u_{k}\right)$ for every vertex v of G.
3. for every $i \in[1, k-1]$: if $l(v)<r\left(u_{i}\right)$ for every vertex v of G, then $i=k$, otherwise $l(w)<r\left(u_{i+1}\right)$, where w is the vertex with the smallest $l(w)$ such that $l(w)>r\left(u_{i}\right)$.
4. for every $i \in[1, k-1]: r(y)<l\left(u_{i+1}\right)<r(z)$, where y is the private neighbor of u_{i} with the smallest $r(y)$, and z is the vertex with the smallest $r(z)$ such that $l(z)>r\left(u_{i}\right)$

Corollary 1. Let $D=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be a minimal dominating set of an interval graph. Then $\left\{u_{1}, \ldots, u_{i}\right\}$ is a good irredundant set for every $1 \leq i \leq k$.

Lemma 1. Let $U=\left\{u_{1}, \ldots, u_{i}\right\}$ be a good irredundant set of an interval graph, and let W be the set of vertices w satisfying $r(y)<l(w)<r(z)$, where y is the private neighbor of u_{i} with the smallest $r(y)$, and z is the vertex with the smallest $r(z)$ such that $l(z)>r\left(u_{i}\right)$. Then every good irredundant set that contains U contains at most one vertex of W.

Lemma 2. Let v be the vertex with the smallest $r(v)$ in an interval graph, and let X be the set of vertices x satisfying $l(x)<r(v)$. Then there is no good irredundant set that contains more than one vertex of X.

Theorem 2. There is a branching algorithm to enumerate all minimal dominating sets of an interval graph in time $O^{*}\left(3^{n / 3}\right)$.

Theorem 3. The maximum number of minimal dominating sets in an interval graph on n vertices is $3^{n / 3}$.
Theorem 4. There is a branching algorithm to enumerate all minimal dominating sets of a tree in time $O^{*}\left(3^{n / 3}\right)$.

Theorem 5. The maximum number of minimal dominating sets in a forest on n vertices is at most $3^{n / 3}$.

