Decompositions of complete graphs into bipartite 2-regular subgraphs

Darryn Bryant, Andrea Burgess, Peter Danziger
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i2p1

Definitions

- A decomposition of a graph K is a set $\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ of subgraphs of K such that $E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup$ $\cdots \cup E\left(G_{t}\right)=E(K)$ and $E\left(G_{i}\right) \cap E\left(G_{j}\right)=\emptyset$ for $1 \leq i<j \leq t$.
- Let G be a graph and $\mathcal{D}=\left\{G_{1}, G_{2}, \ldots, G_{t}\right\}$ a decomposition such that G_{i} is isomorphic to G, then \mathcal{D} is called a G-decomposition.
- The complete graph of order n is denoted by K_{n}, the cycle of order n is denoted by C_{n} and the path of order n is denoted by P_{n} (so P_{n} has $n-1$ edges).
- If n is odd, then K_{n}^{*} is K_{n}, otherwise it is $K_{n}-I$, where I denotes the edges of a perfect matching on K.
- Let G be a 2 -regular graph of order k and K_{n}^{*} defined as above. If there exists a G-decomposition of $K_{n}^{*}(n \geq 3)$, then it is obvious that $3 \leq k \leq n$ and $k \left\lvert\, n\left\lfloor\frac{n-1}{2}\right\rfloor\right.$. These conditions are called the obvious and neccessary conditions for the existence of a G-decomposition of K_{n}^{*}.
- For a given graph K, we define the graph $K^{(2)}$ by $V\left(K^{(2)}\right)=V(K) \times \mathbb{Z}_{2}$ and $E\left(K^{2}\right)=\left\{\{(x, a),(y, b)\}:\{x, y\} \in E(K), a, b \in \mathbb{Z}_{2}\right\}$.
- For each even $r \geq 2$ let Y_{r} denote any graph isomorphic to the graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{r+1}\right\}$ and edge set

$$
\left\{\left(v_{i}, v_{i+1}\right): i=1,2, \ldots, r\right\} \cup\left\{\left(v_{1}, v_{3}\right) \cup\left\{\left(v_{i}, v_{i+3}\right): i=2,4, \ldots, r-2\right\}\right\}
$$

and specially $E\left(Y_{2}\right)=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right),\left(v_{1}, v_{3}\right)\right\}$.

- Let $X_{2 r}$ denote the graph obtained from $Y_{r}^{(2)}$ by adding the edges

$$
\left\{\left(\left(v_{1}, 0\right),\left(v_{1}, 1\right)\right),\left(\left(v_{2}, 0\right),\left(v_{2}, 1\right)\right), \ldots,\left(\left(v_{r+1}, 0\right),\left(v_{r+1}, 1\right)\right)\right\} .
$$

- For each even $r \geq 2$ we define the graph $J_{2 r}$ to be the graph with vertex set $V\left(J_{2 r}\right)=\left\{u_{1}, u_{2}, \ldots, u_{r+2}\right\} \cup$ $\left\{v_{1}, v_{2}, \ldots, v_{r+2}\right\}$ and the edge set

$$
\begin{aligned}
E\left(J_{2 r}\right)= & \left\{\left(u_{i}, v_{i}\right): i=3,4, \ldots, r+2\right\} \cup \\
& \left\{\left(u_{i}, u_{i+1}\right),\left(v_{i}, v_{i+1}\right),\left(u_{i}, v_{i+1}\right),\left(v_{i}, u_{i+1}\right): i=2,3, \ldots, r+1\right\} \cup \\
& \left\{\left(u_{i}, u_{i+3}\right),\left(v_{i}, v_{i+3}\right),\left(u_{i}, v_{i+3}\right),\left(v_{i}, u_{i+3}\right): i=1,3, \ldots, r-1\right\}
\end{aligned}
$$

Problems

Problem 1: For each 2-regular graph G and each positive integer n satisfying the obvious necessary conditions, determine whether there exists a G-decomposition of K_{n}^{*}.

Theorems

Theorem 1. If G is a bipartite 2-regular graph of order $2 m$, then there is a G-decomposition of $P_{m+1}^{(2)}$.
Theorem 2. If r and a are even where $r \leq 2 a-2, r \leq 2 b$ and $r \mid a b$, then there exists a P_{r+1} decomposition of $K_{a, b}$.
Theorem 3. There is a P_{r+1} decomposition of K_{v} if and only if $v \geq r+1$ and $r \left\lvert\, \frac{v(v-1)}{2}\right.$.
Lemma 4. For each even $r \geq 2$, there exists a decomposition of K_{r+1} into $\frac{r-2}{2}$ Hamilton paths and a copy of Y_{r}.
Lemma 5. If r is even, $2 \leq r \leq \frac{m-1}{2}$, and $r \left\lvert\, \frac{1}{2} m(m-1)-\frac{3 r}{2}\right.$, then there is a P_{r+1}-decomposition of $K_{m}-Y_{r}$.

Lemma 6. If G is a bipartite 2-regular graph of order $2 r$ where $r \geq 4$ is even, then there is a decomposition $\left\{H_{1}, H_{2}, H_{3}, H_{4}\right\}$ of $J_{2 r}$ such that
(1) $V\left(H_{1}\right)=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\} \cup\left\{v_{3}, v_{4}, \ldots, v_{r+2}\right\}$,
(2) $V\left(H_{2}\right)=\left\{u_{3}, u_{4}, \ldots, u_{r+2}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$,
(3) $V\left(H_{3}\right)=\left\{u_{3}, u_{4}, \ldots, u_{r+2}\right\} \cup\left\{v_{3}, v_{4}, \ldots, v_{r+2}\right\}$,
(4) $V\left(H_{4}\right)=\left\{u_{3}, u_{4}, \ldots, u_{r+2}\right\} \cup\left\{v_{3}, v_{4}, \ldots, v_{r+2}\right\}$,
(5) each of H_{1}, H_{2}, H_{3} is isomorphic to G,
(6) H_{4} is a 1-regular graph of order $2 r$.

Lemma 7. If $r \geq 2$ is even and G is any bipartite 2-regular graph of order $2 r$, then there is a decomposition of $X_{2 r}$ into three copies of G and a 1-factor.
Lemma 8. If $n \geq 6$ is even and G is any bipartite 2-regular graph of order $n-2$, then there is a G-decomposition of $K_{n}-I$.
Lemma 9. Let $r \geq 2$. If there is a P_{r+1}-decomposition of K_{m} if r is even and there is a P_{r+1}-decomposition of $K_{m}-Y_{r}$, then there is a G-decomposition of $K_{2 m}-I$ for every bipartite 2-regular graph of order $2 r$.
Theorem 10. Let G be a bipartite 2-regular graph, let k be the order of G, and let $n \geq 4$ be even. There exists a G-decomposition of $K_{n}-I$ if and only if $3 \leq k \leq n$ and $k \left\lvert\, \frac{n(n-2)}{2}\right.$, except possibly when $\frac{n}{2}<k<n-2$ and $\frac{n(n-2)}{2 k}$ is odd both hold.

