Patrik Nikl

niklpatr@fit.cvut.cz
presented:

Induced colorful trees and paths in large chromatic graphs
 András Gyárfás, Gábor N. Sárközy, http://www.combinatorics.org/ojs/index.php/eljc/article/view/v23i4p46

Definitions

- In a proper vertex coloring of a graph a subgraph is colorful if it's vertices are colored with different colors
- In graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and all of the edges connecting pairs of vertices in that subset.
- Assume we have a proper coloring on G. The color degree $\operatorname{cod}_{G}(v)$ is the number of distinct colors appearing on the neighbors of v and $\operatorname{cod}(G)=\max \left\{\operatorname{cod}_{G}(v): v \in V(G)\right\}$.

Theorems

Conjecture 1. In any proper coloring of any triangle free k-cromatic graph G there is an induced colorful path on k vertices.
Theorem 1. Let T_{k} be a tree on k vertices. Then every $\left\{C_{3}, C_{4}\right\}$-free graph of minimum degree at least $k-1$ contains T_{k} as an induced subgraph.
Theorem 2. Let T_{k} be a tree on $k>=4$ vertices. Then every proper coloring of $\left\{C_{3}, C_{4}\right\}$-free graph G with $\operatorname{cod}(G)>=2 k-5$ contains T_{k} as an induced colorful subgraph.
Theorem 3. Let k be a positive integer and T_{k} be a tree on k vertices. There exists a function $f(k)$ such that the following holds. If G is a $\left\{C_{3}, C_{4}\right\}$-free graph with $\chi(G)>=f(k)$ then in any proper coloring of G and in any acyclic orientation of G there is either an induced colorful T_{k} or an induced directed path P_{k}.
Lemma 1. $P=P_{t}$ contains an induced P_{k} starting from the first vertex of P.

