Waiter-Client and Client-Waiter colourability games on a k-uniform hypergraph and the k-SAT game
 Wei En Tan
 https://arxiv.org/pdf/1607.02258.pdf

Positional Games

Two-player perfect information games where each player takes turns to claim free elements of a set X until all members of X have been claimed. The winner is determined by a set \mathcal{F} of so-called "winning sets".

Biased (1 : q) Waiter-Client game: Waiter offers exactly $q+1$ free elements of X to Client. Client claims one of the offered elements. The remaining elements are claimed by Waiter. If only $1 \leq r \leq q$ free elements remain in the last round, Waiter claims them all. Waiter wins the game if he can force the Client to fully claim a winning set in \mathcal{F}.
Biased (1: q) Client-Waiter game: Waiter offers $1 \leq t \leq q+1$ free elements of X to Client. Client wins if he can fully claim a winning set in \mathcal{F}.

Definitions

- traversal family of \mathcal{F} is $\mathcal{F}^{*}:=\{A \subseteq X: A \cap B \neq \emptyset$ for every $B \in \mathcal{F}\}$
- traversal game: $\left(X, \mathcal{F}^{*}\right)$

Hypergraph

- k-uniform hypergraph: a generalization of a graph where each edge connects exactly k vertices
- independent set A : a set of vertices in a graph \mathcal{H} such that $\{e \in E(\mathcal{H}): e \subseteq A\}=\varnothing$
- independence number $\alpha(\mathcal{H})$: the maximum size of an independent set of vertices in a graph \mathcal{H}
- l-clique: a subgraph with l vertices in which every set of k vertices is an edge
- clique number $\omega(\mathcal{H})$: the largest l such that graph \mathcal{H} contains an l-clique
- weak chromatic number $\chi(\mathcal{H})$: the smallest integer k for which vertices in graph \mathcal{H} can be partitioned into k independent sets

k-SAT

- k-clause: the disjunction of exactly k non-complementary literals taken from n fixed boolean variables
- k-CNF boolean formula: the conjunction of any number of k-clauses
- $C_{n}^{(k)}$: a set of all possible k-clauses

Useful Tools

Lemma 2.2 Let $k \geq 2$ be an integer. Any $k-$ CNF boolean formula in which no variable appears in more than $2^{k-2} / k k$-clauses is satisfiable.

Theorem 2.3 Let q be a positive integer, let X be a finite set and let \mathcal{F} be a family of subsets of X. If

$$
\sum_{A \in \mathcal{F}}\left(\frac{q}{q+1}\right)^{|A|}<1
$$

then Client has a winning strategy for the $(1: q)$ Client-Waiter traversal game $\left(X, \mathcal{F}^{*}\right)$.
Theorem 2.4 Let q be a positive integer, let X be a finite set and let \mathcal{F} be a family of subsets of X. If

$$
\sum_{A \in \mathcal{F}} 2^{-|A| /(2 q-1)}<1 / 2,
$$

then Waiter has a winning strategy for the $(1: q)$ Waiter-Client traversal game $\left(X, \mathcal{F}^{*}\right)$.
Theorem 2.5 Let q be a positive integer, let X be a finite set, let \mathcal{F} be a family of (not necessarily distinct) subsets of X and let $\Phi(\mathcal{F})=\sum_{A \in \mathcal{F}}(q+1)^{-|A|}$. Then, when playing the $(1: q)$ Waiter-Client game (X, \mathcal{F}), Client has a strategy to avoid fully claiming more than $\Phi(\mathcal{F})$ sets in \mathcal{F}.

Results

Theorem 1.1 Let k, q and n be positive integers, with n sufficiently large and $k \geq 2$ fixed, and consider the (1:q) Waiter-Client non-2-colourability game played on the edge set of the complete k-uniform hypergraph $K_{n}^{(k)}$ on n vertices. If $q \leq\binom{\lceil n / 2\rceil}{ k} \frac{\ln 2}{2((1+\ln 2) n+\ln 2)}$, then Waiter can force Client to build a non-2-colourable hypergraph. Also, if $q \geq 2^{k / 2} e^{k / 2+1} k\binom{n}{k} / n$, then Client can keep his hypergraph 2-colourable throughout the game.
Theorem 1.5 Let k, q and n be positive integers, with n sufficiently large and $k \geq 2$ fixed, and consider the (1:q) Client-Waiter k-SAT game played on $\mathcal{C}_{n}^{(k)}$. When $q<\binom{n}{k} / n$, Client can ensure that the conjunction of all k-clauses he claims by the end of the game is not satisfiable. However, when $q \geq 16 k^{3}\binom{n}{k} / n$, Waiter can ensure that the conjunction of all k-clauses claimed by Client is satisfiable throughout the game.

