Peter Mitura

miturpet@fit.cvut.cz

presented:

Small feedback vertex sets in planar digraphs

Louis Esperet, Laetitia Lemoine, Frédéric Maffray

https://arxiv.org/pdf/1606.04419.pdf

Abstract

Let G be a directed planar graph on n vertices, with no directed cycle of length less than $g \ge 4$. We prove, that G contains a set X of vertices such that G - X has no directed cycle, and $|X| \le \frac{5n-5}{9}$ if g = 4, $|X| \le \frac{2n-5}{4}$ if g = 5, and $|X| \le \frac{2n-6}{g}$ if $g \ge 6$.

Definitions

- Digirth of a digraph G is the minimum length of a directed cycle in G (∞ if G is acyclic).
- A feedback vertex set in a digraph G is a set X of vertices such that G X is acyclic, and the minimum size of such set is denoted by $\tau(G)$.
- In a planar grape, the degree of face F, denoted by d(F), is the sum of the lengths (number of edges) of the boundary walls of F.
- C denotes a maximum collection of edge-disjoint directed cycles in G. If we fix a planar embedding of G, given a directed cycle C of C, we denote by \overline{C} the closed region bounded by C and by \mathring{C} the interior of \overline{C} .
- For a cycle C in C, we define the closed region \mathcal{R}_C as \overline{C} minus the interior of all cycles inside the interior of C.
- ϕ is the sum of 3d(F) 6, over all faces F of G.
- ϕ_C is the sum of 3d(F) 6, over all faces F of G lying in \mathcal{R}_C .

Theorems

Theorem 1. Prove the statement in abstract for all $n \geq 3$.

Lemma 2. Let *H* be a planar bipartite graph, with bipartition (U, V), such that all faces of *H* have degree at least 4, and all vertices of *V* have degree at least 2. Then *H* contains at most 2|U| - 4 faces of degree at least 6.

Lemma 3. Let G be a connected planar graph, and let $S = \{F_1, \ldots, F_k\}$ be a set of k faces of G, such that each F_i is bounded by a cycle, and these cycles are pairwise vertex-disjoint. Then

$$\sum_{F \notin S} (3d(F) - 6) \ge \sum_{i=1}^{k} (3d(F_i) + 6) - 12$$

where the first sum varies over faces F of G not contained in S.

Theorem 4. Let C_0 be a node of \mathcal{F} (explained during presentation) with children C_1, \ldots, C_k . Then $\phi_{C_0} \geq \frac{3}{2}(g-2)k + \frac{3}{2}g$. Moreover, if $g \geq 6$, then $\phi_{C_0} \geq \frac{3}{2}(g-2)k + \frac{3}{2}g + 3$.