Peter Mitura

Small feedback vertex sets in planar digraphs
 Louis Esperet, Laetitia Lemoine, Frédéric Maffray
 https://arxiv.org/pdf/1606.04419.pdf

Abstract

Let G be a directed planar graph on n vertices, with no directed cycle of length less than $g \geq 4$. We prove, that G contains a set X of vertices such that $G-X$ has no directed cycle, and $|X| \leq \frac{5 n-5}{9}$ if $g=4,|X| \leq \frac{2 n-5}{4}$ if $g=5$, and $|X| \leq \frac{2 n-6}{g}$ if $g \geq 6$.

Definitions

- Digirth of a digraph G is the minimum length of a directed cycle in G (∞ if G is acyclic).
- A feedback vertex set in a digraph G is a set X of vertices such that $G-X$ is acyclic, and the minimum size of such set is denoted by $\tau(G)$.
- In a planar grapg, the degree of face F, denoted by $d(F)$, is the sum of the lengths (number of edges) of the boundary walls of F.
- \mathcal{C} denotes a maximum collection of edge-disjoint directed cycles in G. If we fix a planar embedding of G, given a directed cycle C of \mathcal{C}, we denote by \bar{C} the closed region bounded by C and by $\stackrel{\circ}{C}$ the interior of \bar{C}.
- For a cycle C in \mathcal{C}, we define the closed region \mathcal{R}_{C} as \bar{C} minus the interior of all cycles inside the interior of C.
- ϕ is the sum of $3 d(F)-6$, over all faces F of G.
- ϕ_{C} is the sum of $3 d(F)-6$, over all faces F of G lying in \mathcal{R}_{C}.

Theorems

Theorem 1. Prove the statement in abstract for all $n \geq 3$.
Lemma 2. Let H be a planar bipartite graph, with bipartition (U, V), such that all faces of H have degree at least 4 , and all vertices of V have degree at least 2 . Then H contains at most $2|U|-4$ faces of degree at least 6 .

Lemma 3. Let G be a connected planar graph, and let $S=\left\{F_{1}, \ldots, F_{k}\right\}$ be a set of k faces of G, such that each F_{i} is bounded by a cycle, and these cycles are pairwise vertex-disjoint. Then

$$
\sum_{F \notin S}(3 d(F)-6) \geq \sum_{i=1}^{k}\left(3 d\left(F_{i}\right)+6\right)-12
$$

where the first sum varies over faces F of G not contained in S.
Theorem 4. Let C_{0} be a node of \mathcal{F} (explained during presentation) with children C_{1}, \ldots, C_{k}. Then $\phi_{C_{0}} \geq$ $\frac{3}{2}(g-2) k+\frac{3}{2} g$. Moreover, if $g \geq 6$, then $\phi_{C_{0}} \geq \frac{3}{2}(g-2) k+\frac{3}{2} g+3$.

