
Vladislav Martyniuk
martyvla@fit.cvut.cz

presented:

QuickHeapsort: Modifications and Improved Analysis
Volker Diekert, ArminWeiß

https://www.researchgate.net/publication/230877469 QuickHeapsort Modifications and Improved Analysis

Definitions

QuickHeapsort

• Abstract QuickHeapsort is a combination of Quicksort and Heapsort. It is based on Katajainen’s idea
for Ultimate Heapsort. Let the array is partitioned into two parts by some pivot element. QuickHeapsort
sorts the smaller part like HeapSort and calls itself recursively for the larger part, only.

• Simple in-place modification of QuickHeapsort saves 0.75n comparisons. Using n extra bits only we
can bound the expected number of comparisons to nlog2n− 0.997n+ o(n).

• QuickHeapsort variants: Basic QuickHeapsort, Improved QuickHeapsort, QuickHeapsort with bit arrays.
With median of 3 and

√
n.

• Others algorithms in competition with QuickHeapsort: Quicksort, Ultimate Heapsort, Bottom-Up-Heapsort,
MDR-Heapsort.

Two-layer-heap

• A two-layer-min-heap is an array A[1..n] of n elements together with a partition (G,R) of 1, ..., n into
green and red elements such that for all g ∈ G, r ∈ R we have A[g] ≤ A[r].

⇒ the green elements g satisfy the heap condition A[g] ≤ minA[2g], A[2g + 1].

⇒ if r is red, then 2r and 2r + 1 are red, too.

• Two-layer-maxheaps are defined analogously.

Algorithm

• ChoosePivot: It returns an element p of the array.

• PartitionReverse: It returns an index k and rearranges the array A so that p = A[k], A[i] ≥ A[k] for i < k
and A[i] ≤ A[k] for i > k using n− 1 comparisons.

• ConstructMaxHeap: Constructs a max-heap on the input array.

Theorems

Theorem 1. The expected number E[T (n)] of comparisons by basic (resp. improved) QuickHeapsort with
pivot as median of k randomly selected elements on an input array of size n satisfies E[T (n)] ≤ n lg n+ ckn+
o(n) with ck as follows:

k ck basic QHS variant ck improved QHS variant
1 +2.72 +1.97
3 +1.92 +1.17

f(n) +0.72 -0.03

Proposition 1. Tcstr(n) ≤ 1.625n+ o(n).

Theorem 2. Text(n) ≤ n · (blg nc − 3) + 2{n}+O(lg2 n).

Lemma 1. Let x ≥ y > δ ≥ 0. Then we have the inequalities: F (x) + F (y) ≤ F (x + δ) + F (y − δ) and
F (x) + F (y) ≤ F (x+ y).

Lemma 2. Let 1 ≤ v ∈ R. For all sequences x1, x2, ..., xt with xi ∈ R>0, which are valid w.r.t. v, we have:

t∑
i=1

F (xi) ≤
blg vc∑
i=1

F (
v

2i
)

.

mailto:martyvla@fit.cvut.cz
https://www.researchgate.net/publication/230877469_QuickHeapsort_Modifications_and_Improved_Analysis

Lemma 3.
blgnc∑
i=1

F (
n

2i
) ≤ F (n)− 2n+O(lg n)

.

Corollary 1. We have Text(n) ≤ n lg n− 2.9139n+O(lg2 n).

Lemma 4. Let 0 < δ < 1
2 and α = 4(1

4 − δ
2) < 1. If we choose the pivot as median of 2c+ 1 elements such

that 2c+ 1 ≤ n
2 then we have

Pr[pivot ≤ n

2
− δn] < (2c+ 1)αc

.

Theorem 3. Let f ∈ ω(1)∩ o(n) with 1 ≤ f(n) ≤ n and let the pivot be chosen as median of f(n) randomly
selected elements. Then the expected number of comparisons used in all recursive calls of partitioning satisfies

E[Tpart(n)] ≤ 2n+ o(n)

.

Corollary 2. Let f ∈ ω(1) ∩ o(n) with 1 ≤ f(n) ≤ n. When implementing Quickselect with the median of
f(n) randomly selected elements as pivot, the expected number of comparisons is 2n+ o(n).

Theorem 4. Let f ∈ ω(1) ∩ o(n) with 1 ≤ f(n) ≤ n e.g., f(n) =
√
n, and let E[T (n)] be expected number

of comparisions by QuickHeapsort using the CompareArray with the improvement and the RedGreenArray
on a fixed input array of size n. Choosing the pivot as median of f(n) randomly selected elements in time
O(f(n)), we have

E[T (n)] ≤ n lg n− 0.997n+ o(n)

.

2

